
Citation: Hsu, C.-H.; Juang, J.-G.

Using a Robot for Indoor Navigation

and Door Opening Control Based on

Image Processing. Actuators 2024, 13,

78. https://doi.org/10.3390/

act13020078

Academic Editor: Zhuming Bi

Received: 27 December 2023

Revised: 12 February 2024

Accepted: 15 February 2024

Published: 16 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Using a Robot for Indoor Navigation and Door Opening
Control Based on Image Processing
Chun-Hsiang Hsu and Jih-Gau Juang *

Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University,
Keelung 202, Taiwan; 10667016@mail.ntou.edu.tw
* Correspondence: jgjuang@mail.ntou.edu.tw

Abstract: This study used real-time image processing to realize obstacle avoidance and indoor
navigation with an omnidirectional wheeled mobile robot (WMR). The distance between an obstacle
and the WMR was obtained using a depth camera. Real-time images were used to control the robot’s
movements. The WMR can extract obstacle distance data from a depth map and apply fuzzy theory
to avoid obstacles in indoor environments. A fuzzy control system was integrated into the control
scheme. After detecting a doorknob, the robot could track the target and open the door. We used the
speeded up robust features matching algorithm to recognize the WMR’s movement direction. The
proposed control scheme ensures that the WMR can avoid obstacles, move to a designated location,
and open a door. Like humans, the robot performs the described task only using visual sensors.

Keywords: indoor navigation; image processing; mobile robot; obstacle avoidance; feature matching

1. Introduction

With scientific and technological advancements, advanced machine systems are ex-
pected to replace human labor. Robots have always attracted considerable attention in
the industrial technology development domain. In recent years, robots have been used to
perform a few simple labor tasks. For instance, they are employed in unmanned factories,
as vacuum cleaners, for restaurant service, and as tourist guides [1,2]. To allow robots to
perform more tasks, it is important to conduct research on how to make robots intelligent
and humanized. Diverse types of robots are used in different working environments. In
this study, an omnidirectional wheeled robot is used in an indoor working area. Omnidi-
rectional wheeled mobile robots (WMRs) are more flexible than ordinary moving robots as
they can move in complex and narrow environments [3]. Omnidirectional robots can move
in any direction without turning their heads and have been applied to many tasks [4–6].
In traditional robots, many sensors are installed to detect objects and directions. Obstacle
avoidance is mainly achieved using ultrasonic and laser range finders or other distance-
measuring instruments. Navigation is performed using a few positioning instruments,
such as StarGazer, Bluetooth, or WiFi. In this study, we used cameras to replace traditional
obstacle avoidance and positioning sensors to make the robot more human-like.

With advancements in artificial intelligence, intelligent robots have been widely stud-
ied. In recent years, omnidirectional wheeled robots with different control systems have
been developed. Jia et al. developed an omnidirectional wheeled robot with multiple
control Mecanum wheels [7]. Park et al. studied the fuzzy PID steering control structure
of a mobile robot prototype [8]. Chung et al. modeled and analyzed an omnidirectional
mobile robot with three caster wheels [9]. When robots could move, researchers began to
study how to install obstacle avoidance components in them. Ruan et al. used ultrasonic
sensors to confer obstacle avoidance capabilities on a two-wheeled self-balancing robot [10].
Jin et al. used a rotating ultrasonic sensor to endow a car with active obstacle-avoidance
capabilities [11]. Peng et al. presented a laser-based obstacle avoidance scheme [12]. In

Actuators 2024, 13, 78. https://doi.org/10.3390/act13020078 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act13020078
https://doi.org/10.3390/act13020078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2683-9931
https://doi.org/10.3390/act13020078
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13020078?type=check_update&version=2

Actuators 2024, 13, 78 2 of 18

addition to ultrasonic sensor–based avoidance, a few researchers have studied image-based
obstacle avoidance. Wang et al. used a Kinect depth camera to detect obstacles [13]. They
used the Kinect to obtain a depth map and subsequently applied a Gaussian filter and
the mean-shift segmentation technique to detect obstacles. Hamzah et al. used a stereo
camera to obtain a disparity map and then used the map to compute object distance and
the direction of movement [14]. Sharifi et al. used the mean-shift color classification scheme
to distinguish obstacles from the ground [15]. AI-Jubouri et al. proposed the use of a set of
local features extracted from a sequence of image frames collected using a computer vision
system. The extracted features for each free-swimming fish were then compared with pre-
extracted sets of features stored in a database using the SURF matching method [16]. Their
method yielded a high object recognition rate. Sheu et al. used two cameras to compute a
target object’s deviation angle and distance and then used an adaptive PID control scheme
for real-time target object tracking [17]. In our study, we integrated omnidirectional wheels,
an Arduino system, a DC motor, a motor controller, a depth camera, and a robotic arm for
indoor navigation. The control scheme involves applying image processing methods and
feature matching to detect obstacles and compute the movement direction of a robot. The
robot’s movement is based on fuzzy control.

This study mainly revised the traditional ranging paradigm. Range detection was
realized by using an Intel Realsense depth camera. After computing the distance of an
object, fuzzy theory was applied to avoid obstacles. During robot motion on a path, we
used the speeded up robust features (SURF) algorithm to compute the robot’s self-position
and future trajectory. Moreover, the cameras detected the static and dynamic obstacles
encountered on the path. After arriving at the designated position, the control scheme used
HoughCircles to identify a circular object so that the arm could find the doorknob and
claw the door handle. Our experimental results indicate that the proposed visual control
scheme can facilitate omnidirectional obstacle avoidance and help the robot move to a
designated location and open the desired door. Compared to other relative research, most
of them utilized laser and ultrasonic sensors in robot navigation [18,19]. To make the robot
human-like, the proposed WMR system only uses visual information to avoid obstacles,
navigate indoors, identify the door, and guide the robot arm to reach the doorknob. In
addition, a simple fuzzy system is implemented in the control process that can reduce the
computing time and is suitable for real-time control.

2. System Description

The proposed control system was realized using an omnidirectional WMR, as shown
in Figure 1a. The length, width, and height of the omnidirectional WMR are 600, 400, and
850, respectively. The omnidirectional WMR has two mechanical arms. One of the arms is
570 mm long; it can grasp objects, and its wrist can rotate. The other arm is 470 mm long
and equipped with a 150 mm front clip that can hold an object, but the wrist on this arm
cannot rotate. The robot’s arms have six RX-64 motors; there are two on each shoulder
and one on the sides of each elbow. Each RX-64 motor has a length of 40.2 mm, a width
of 41 mm, and a height of 61.1 mm. The stall torque of this motor is 5.7 mNm. The left
wrist has an RX-28 motor with a length of 35.6 mm, a width of 35.5 mm, and a height of
50.6 mm. Its stall torque is 3.77 mNm. The right wrist has two RX-28 motors and one
XM430-W350 motor, which has a length of 46.5 mm, a width of 28.5 mm, and a height of
34 mm. Its stall torque is 4.1 mNm. The waistline of the wheeled robot measures 150 cm.
The omnidirectional wheel chassis has a radius of 240 mm. The three omnidirectional
wheels are spaced 120◦ apart, and three 12V-DC motors are installed to provide a rated
torque of 68 mNm. The omnidirectional electronic module is installed on the second floor
and has three motor encoders and two batteries. Moreover, the electronic module includes
a voltage step-down circuit board and a control panel. The battery supply is 12 V, and
the capacity is 7 Ah. One of the supply voltages is for the motor controller, and the other
is for the other control panels, additional power supply, and voltage step-down board.
The voltage step-down board reduces the voltage from 12 V to 9 V and 6 V, providing

Actuators 2024, 13, 78 3 of 18

voltage to the robot arm or other devices. The first panel is the Arduino system. Its main
functions are (1) transmitting and receiving signals between the laptop and the receiver and
(2) sending control commands to the motor. The second panel is the Arduino I/O extension
shield. Its primary function is to connect additional receivers (such as temperature receivers
and acceleration/tilt receivers), as shown in Figure 1b. We used an Intel Realsense Depth
Camera D415 to detect obstacles and distance, as shown in Figure 1c [20]. The camera
has three lenses, two of which are used to measure depth, and the other of which is a
red-green-blue (RGB) lens.

Actuators 2024, 13, 78 3 of 19

V, and the capacity is 7 Ah. One of the supply voltages is for the motor controller, and
the other is for the other control panels, additional power supply, and voltage step-
down board. The voltage step-down board reduces the voltage from 12 V to 9 V and
6 V, providing voltage to the robot arm or other devices. The first panel is the Arduino
system. Its main functions are (1) transmitting and receiving signals between the lap-
top and the receiver and (2) sending control commands to the motor. The second panel
is the Arduino I/O extension shield. Its primary function is to connect additional re-
ceivers (such as temperature receivers and acceleration/tilt receivers), as shown in Fig-
ure 1b. We used an Intel Realsense Depth Camera D415 to detect obstacles and dis-
tance, as shown in Figure 1c [20]. The camera has three lenses, two of which are used
to measure depth, and the other of which is a red-green-blue (RGB) lens.

(a) (b) (c)

Figure 1. The primary devices of the proposed robot system are (a) a mobile robot; (b) an omnidi-
rectional wheel, battery, and control components; and (c) an Intel Realsense depth camera.

The omnidirectional WMR can move along any angle [21,22]. The structure of the
omnidirectional wheels and the coordinate system are shown in Figure 2 [23], respec-
tively. The WMR has three omnidirectional wheels, separated by an angle of 120°. O
denotes the WMR center. The length between O and an omnidirectional wheel is L.
Counterclockwise and clockwise movements of the wheels are considered positive speed
and negative speed, respectively. The road speed of omnidirectional wheel 1 is v1, that of
omnidirectional wheel 2 is v2, and that of omnidirectional wheel 3 is v3. The center of the
omnidirectional WMR coordinate system is denoted as xm and ym, and δ, the angle be-
tween v1 (or v2) and ym, is 30°. The angle between v3 and ym is 90°.

(a) (b)

Figure 2. (a) Omnidirectional wheel structure. (b) Coordinate system.

Figure 1. The primary devices of the proposed robot system are (a) a mobile robot; (b) an omnidirec-
tional wheel, battery, and control components; and (c) an Intel Realsense depth camera.

The omnidirectional WMR can move along any angle [21,22]. The structure of the
omnidirectional wheels and the coordinate system are shown in Figure 2 [23], respectively.
The WMR has three omnidirectional wheels, separated by an angle of 120◦. O denotes the
WMR center. The length between O and an omnidirectional wheel is L. Counterclockwise
and clockwise movements of the wheels are considered positive speed and negative speed,
respectively. The road speed of omnidirectional wheel 1 is v1, that of omnidirectional wheel
2 is v2, and that of omnidirectional wheel 3 is v3. The center of the omnidirectional WMR
coordinate system is denoted as xm and ym, and δ, the angle between v1 (or v2) and ym, is
30◦. The angle between v3 and ym is 90◦.

Actuators 2024, 13, 78 3 of 19

V, and the capacity is 7 Ah. One of the supply voltages is for the motor controller, and
the other is for the other control panels, additional power supply, and voltage step-
down board. The voltage step-down board reduces the voltage from 12 V to 9 V and
6 V, providing voltage to the robot arm or other devices. The first panel is the Arduino
system. Its main functions are (1) transmitting and receiving signals between the lap-
top and the receiver and (2) sending control commands to the motor. The second panel
is the Arduino I/O extension shield. Its primary function is to connect additional re-
ceivers (such as temperature receivers and acceleration/tilt receivers), as shown in Fig-
ure 1b. We used an Intel Realsense Depth Camera D415 to detect obstacles and dis-
tance, as shown in Figure 1c [20]. The camera has three lenses, two of which are used
to measure depth, and the other of which is a red-green-blue (RGB) lens.

(a) (b) (c)

Figure 1. The primary devices of the proposed robot system are (a) a mobile robot; (b) an omnidi-
rectional wheel, battery, and control components; and (c) an Intel Realsense depth camera.

The omnidirectional WMR can move along any angle [21,22]. The structure of the
omnidirectional wheels and the coordinate system are shown in Figure 2 [23], respec-
tively. The WMR has three omnidirectional wheels, separated by an angle of 120°. O
denotes the WMR center. The length between O and an omnidirectional wheel is L.
Counterclockwise and clockwise movements of the wheels are considered positive speed
and negative speed, respectively. The road speed of omnidirectional wheel 1 is v1, that of
omnidirectional wheel 2 is v2, and that of omnidirectional wheel 3 is v3. The center of the
omnidirectional WMR coordinate system is denoted as xm and ym, and δ, the angle be-
tween v1 (or v2) and ym, is 30°. The angle between v3 and ym is 90°.

(a) (b)

Figure 2. (a) Omnidirectional wheel structure. (b) Coordinate system. Figure 2. (a) Omnidirectional wheel structure. (b) Coordinate system.

Based on the wheel radius and angular wheel velocity, we can compute the speed of
the omnidirectional wheel. To achieve the desired speed vm and move along the specified
direction, the speed vi of the omnidirectional wheel i is composed of

.
xm and

.
ym, which are

the road speeds along the xm and ym axes.

Actuators 2024, 13, 78 4 of 18

The Arduino system is an I/O platform based on an open-source code, and because it
uses the Java and C processing and wiring development environment, it has user-friendly
features. The Arduino system allows for the rapid development of applications [24].
Figure 3a shows an Arduino Uno R3. It is a microcontroller board based on ATmega328.
It has 14 digital input/output pins (6 can be used as PWM outputs), six analog inputs, a
16-MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset
button. The device can be connected to a computer through a USB cable or powered with
an AC-to-DC adapter or a battery. Figure 3b shows the DFRduino I/O expansion board [25].
Each omnidirectional wheel unit (4202X, KORNYYALK) [26] has three wheels. We added
a Microsoft LifeCam studio camera (Figure 3c) attached to the robotic arm to track the
doorknob, which is outside the field of view of the depth camera lens, and this camera is
only used to track the doorknob.

Actuators 2024, 13, 78 4 of 19

Based on the wheel radius and angular wheel velocity, we can compute the speed
of the omnidirectional wheel. To achieve the desired speed vm and move along the spec-
ified direction, the speed vi of the omnidirectional wheel i is composed of 𝑥 and 𝑦 ,
which are the road speeds along the xm and ym axes.

The Arduino system is an I/O platform based on an open-source code, and because
it uses the Java and C processing and wiring development environment, it has user-
friendly features. The Arduino system allows for the rapid development of applications [24]. Fig-
ure 3a shows an Arduino Uno R3. It is a microcontroller board based on ATmega328. It
has 14 digital input/output pins (6 can be used as PWM outputs), six analog inputs, a 16-
MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset but-
ton. The device can be connected to a computer through a USB cable or powered with an
AC-to-DC adapter or a battery. Figure 3b shows the DFRduino I/O expansion board [25].
Each omnidirectional wheel unit (4202X, KORNYYALK) [26] has three wheels. We added
a Microsoft LifeCam studio camera (Figure 3c) attached to the robotic arm to track the
doorknob, which is outside the field of view of the depth camera lens, and this camera is
only used to track the doorknob.

(a) (b) (c)

Figure 3. (a) Arduino Uno R3 [15], (b) DFRduino IO Expansion board, and (c) Microsoft LifeCam.

3. Image Processing and Pattern Recognition
The depth camera used in this study has three lenses; two are used to measure

depth, and the other is an RGB lens. The color space is mainly three-dimensional, so
people can clearly distinguish between colors. Many color spaces exist, such as RGB,
YCbCr, and HSV. The representations of the dimensions are different for each of these
color spaces. For instance, the RGB color space uses red, green, and blue as the X, Y, and
Z axes. The hue, saturation, value (HSV) color space uses chromaticity, saturation, and
lightness as the X, Y, and Z axes [27]. The human eye contains several types of cone-shaped
photoreceptor cells. Humans see yellow when the stimulation point is slightly larger than
green photoreceptor cells. Humans see red when the stimulation point is larger than green
photoreceptor cells [28]. Except for white and black, most colors can be obtained by ap-
propriately combining red, green, and blue. The RGB model’s red, green, and blue cube
coordinates are nonnegative numbers between 0 and 1. The origin (0,0,0) is black, and the
intensity of color increases along the coordinate axis direction, with the point (1,1,1) being
white. Computer monitors and TV screens mainly use the RGB color space, which com-
bines these three colors in each pixel. Each pixel in a computer monitor is represented by
24 bits, meaning that the color of RGB is represented by 8 bits, and an integer between 0
and 255 represents the intensity of each primary color. A total of 256 such values exist,
which can be combined with 16,777,216 colors [18,29]. To measure the distance between
an obstacle and the robot, the image depth must be calculated using two cameras [30], and
the imaging positions of the left and right cameras can be recognized. Three process steps
are required before the camera can be used for depth measurement: camera calibration,
stereo rectification, and stereo matching. After completing these steps, the camera can
measure the distance from images.

Figure 3. (a) Arduino Uno R3 [15], (b) DFRduino IO Expansion board, and (c) Microsoft LifeCam.

3. Image Processing and Pattern Recognition

The depth camera used in this study has three lenses; two are used to measure depth,
and the other is an RGB lens. The color space is mainly three-dimensional, so people can
clearly distinguish between colors. Many color spaces exist, such as RGB, YCbCr, and
HSV. The representations of the dimensions are different for each of these color spaces. For
instance, the RGB color space uses red, green, and blue as the X, Y, and Z axes. The hue,
saturation, value (HSV) color space uses chromaticity, saturation, and lightness as the X, Y,
and Z axes [27]. The human eye contains several types of cone-shaped photoreceptor cells.
Humans see yellow when the stimulation point is slightly larger than green photoreceptor
cells. Humans see red when the stimulation point is larger than green photoreceptor
cells [28]. Except for white and black, most colors can be obtained by appropriately
combining red, green, and blue. The RGB model’s red, green, and blue cube coordinates are
nonnegative numbers between 0 and 1. The origin (0,0,0) is black, and the intensity of color
increases along the coordinate axis direction, with the point (1,1,1) being white. Computer
monitors and TV screens mainly use the RGB color space, which combines these three
colors in each pixel. Each pixel in a computer monitor is represented by 24 bits, meaning
that the color of RGB is represented by 8 bits, and an integer between 0 and 255 represents
the intensity of each primary color. A total of 256 such values exist, which can be combined
with 16,777,216 colors [18,29]. To measure the distance between an obstacle and the robot,
the image depth must be calculated using two cameras [30], and the imaging positions
of the left and right cameras can be recognized. Three process steps are required before
the camera can be used for depth measurement: camera calibration, stereo rectification,
and stereo matching. After completing these steps, the camera can measure the distance
from images.

3.1. Camera Calibration

Camera calibration determines a camera’s internal parameters, external parameters,
and rotation matrix. The external parameters are the transformations describing real-world
and camera coordinates. These parameters are used to identify the relationship between
the imaging and actual object positions. In this study, we applied the Zhang Zhengyou

Actuators 2024, 13, 78 5 of 18

calibration method [31], which requires numerous samples for position calculation. Some
of the samples are shown in Figure 4.

Actuators 2024, 13, 78 5 of 19

3.1. Camera Calibration
Camera calibration determines a camera’s internal parameters, external parameters,

and rotation matrix. The external parameters are the transformations describing real-world
and camera coordinates. These parameters are used to identify the relationship between the
imaging and actual object positions. In this study, we applied the Zhang Zhengyou calibra-
tion method [31], which requires numerous samples for position calculation. Some of the
samples are shown in Figure 4.

Figure 4. Zhang Zhengyou camera calibration samples.

The stereo rectification step is performed to ensure that the two images correspond
after distortion correction. In this step, the epipolar lines of the two images are on the same
horizontal line so that one point in one of the images corresponds to the same point in the
other image, as shown in Figure 5.

Figure 5. Stereo rectification.

3.2. Depth Map
The parameters obtained after camera calibration and stereo rectification can be used

to detect the object’s depth. The results of a simulation conducted to detect the distance
between a robot and a mug are shown in Figure 6. The actual distance and the detected
distance are both 0.83 m.

Figure 6. Mug distance.

Figure 4. Zhang Zhengyou camera calibration samples.

The stereo rectification step is performed to ensure that the two images correspond
after distortion correction. In this step, the epipolar lines of the two images are on the same
horizontal line so that one point in one of the images corresponds to the same point in the
other image, as shown in Figure 5.

Actuators 2024, 13, 78 5 of 19

3.1. Camera Calibration
Camera calibration determines a camera’s internal parameters, external parameters,

and rotation matrix. The external parameters are the transformations describing real-world
and camera coordinates. These parameters are used to identify the relationship between the
imaging and actual object positions. In this study, we applied the Zhang Zhengyou calibra-
tion method [31], which requires numerous samples for position calculation. Some of the
samples are shown in Figure 4.

Figure 4. Zhang Zhengyou camera calibration samples.

The stereo rectification step is performed to ensure that the two images correspond
after distortion correction. In this step, the epipolar lines of the two images are on the same
horizontal line so that one point in one of the images corresponds to the same point in the
other image, as shown in Figure 5.

Figure 5. Stereo rectification.

3.2. Depth Map
The parameters obtained after camera calibration and stereo rectification can be used

to detect the object’s depth. The results of a simulation conducted to detect the distance
between a robot and a mug are shown in Figure 6. The actual distance and the detected
distance are both 0.83 m.

Figure 6. Mug distance.

Figure 5. Stereo rectification.

3.2. Depth Map

The parameters obtained after camera calibration and stereo rectification can be used
to detect the object’s depth. The results of a simulation conducted to detect the distance
between a robot and a mug are shown in Figure 6. The actual distance and the detected
distance are both 0.83 m.

Actuators 2024, 13, 78 5 of 19

3.1. Camera Calibration
Camera calibration determines a camera’s internal parameters, external parameters,

and rotation matrix. The external parameters are the transformations describing real-world
and camera coordinates. These parameters are used to identify the relationship between the
imaging and actual object positions. In this study, we applied the Zhang Zhengyou calibra-
tion method [31], which requires numerous samples for position calculation. Some of the
samples are shown in Figure 4.

Figure 4. Zhang Zhengyou camera calibration samples.

The stereo rectification step is performed to ensure that the two images correspond
after distortion correction. In this step, the epipolar lines of the two images are on the same
horizontal line so that one point in one of the images corresponds to the same point in the
other image, as shown in Figure 5.

Figure 5. Stereo rectification.

3.2. Depth Map
The parameters obtained after camera calibration and stereo rectification can be used

to detect the object’s depth. The results of a simulation conducted to detect the distance
between a robot and a mug are shown in Figure 6. The actual distance and the detected
distance are both 0.83 m.

Figure 6. Mug distance. Figure 6. Mug distance.

Because the camera is easily disturbed by light in a place with sunlight, such a dis-
turbance may cause a target to be unrecognizable, or a huge database and extensive
calculations may be required for target identification. Therefore, we installed an Intel
Realsense D415-type depth camera on the omnidirectional wheel robot. The Intel Realsense
depth camera provides a direct depth map estimation. The depth map shows different
colors according to the distance, as illustrated in Figure 7. Different colors mean different
distances of depth, and the distances are used in the fuzzy control of obstacle avoidance in
Section 4.2.

Actuators 2024, 13, 78 6 of 18

Actuators 2024, 13, 78 6 of 19

Because the camera is easily disturbed by light in a place with sunlight, such a dis-
turbance may cause a target to be unrecognizable, or a huge database and extensive cal-
culations may be required for target identification. Therefore, we installed an Intel Re-
alsense D415-type depth camera on the omnidirectional wheel robot. The Intel Realsense
depth camera provides a direct depth map estimation. The depth map shows different
colors according to the distance, as illustrated in Figure 7. Different colors mean different
distances of depth, and the distances are used in the fuzzy control of obstacle avoidance
in Section 4.2.

(a) (b)

Figure 7. (a) is the original image, (b) is the depth image where the blue color means the object is
near to the camera, and dark red means the object is far from the camera. The distance ranges from
0 m (dark blue) to 8 m (dark red).

3.3. Obstacle Detection
We set up a frame, as indicated by the green square in Figure 8. This frame represents

the safe range of the omnidirectional WMR in terms of bumping into an obstacle. Then,
we computed the distance of every pixel from the depth webcam for this frame and di-
vided this frame into three parts (left, middle, and right) [14]. After that, we computed the
minimum distance between the robot and an obstacle. Given the left distance, middle dis-
tance, and right distance, we can determine which obstacle is closer to the robot and iden-
tify the position of that obstacle.

Figure 7. (a) is the original image, (b) is the depth image where the blue color means the object is
near to the camera, and dark red means the object is far from the camera. The distance ranges from
0 m (dark blue) to 8 m (dark red).

3.3. Obstacle Detection

We set up a frame, as indicated by the green square in Figure 8. This frame represents
the safe range of the omnidirectional WMR in terms of bumping into an obstacle. Then, we
computed the distance of every pixel from the depth webcam for this frame and divided
this frame into three parts (left, middle, and right) [14]. After that, we computed the
minimum distance between the robot and an obstacle. Given the left distance, middle
distance, and right distance, we can determine which obstacle is closer to the robot and
identify the position of that obstacle.

Actuators 2024, 13, 78 7 of 19

(a)

(b) (c)

(d) (e)

Figure 8. Detection of different obstacles: (a) obstacle detection and obstacle depth map, (b) nearest
obstacle point is on the right side, (c) move to the left and the obstacle is outside the safe frame, (d)
nearest obstacle point is on the left side, (e) move to the right and the moving direction is clear.

3.4. Feature Matching
The SURF algorithm was proposed by Herbert Bay [32]. It is a robust algorithm for

local feature point detection and description. The SURF algorithm is a modified version
of the SIFT algorithm proposed by David Low. The SURF algorithm is faster and more
efficient than the SIFT algorithm. The SURF algorithm has three main components: the
extraction of local feature points, the description of feature points, and matching of feature
points. We used SURF feature matching for route planning. The webcam takes pictures as
the robot moves, and the pictures are matched with stored samples, which are images of
the known environment. These images provide features of the environment that can help
the robot with indoor navigation. We set a threshold for the feature points. When the
SURF feature matching feature points exceed the threshold, they represent a proper di-
rection or destination. The feature-matching process is shown in Figure 9.

Figure 8. Detection of different obstacles: (a) obstacle detection and obstacle depth map, (b) nearest
obstacle point is on the right side, (c) move to the left and the obstacle is outside the safe frame,
(d) nearest obstacle point is on the left side, (e) move to the right and the moving direction is clear.

Actuators 2024, 13, 78 7 of 18

3.4. Feature Matching

The SURF algorithm was proposed by Herbert Bay [32]. It is a robust algorithm for
local feature point detection and description. The SURF algorithm is a modified version
of the SIFT algorithm proposed by David Low. The SURF algorithm is faster and more
efficient than the SIFT algorithm. The SURF algorithm has three main components: the
extraction of local feature points, the description of feature points, and matching of feature
points. We used SURF feature matching for route planning. The webcam takes pictures as
the robot moves, and the pictures are matched with stored samples, which are images of
the known environment. These images provide features of the environment that can help
the robot with indoor navigation. We set a threshold for the feature points. When the SURF
feature matching feature points exceed the threshold, they represent a proper direction or
destination. The feature-matching process is shown in Figure 9.

Actuators 2024, 13, 78 8 of 19

(a)

(b)

(c)

Figure 9. SURF matching: (a) robot is heading in the right direction, (b) robot is heading in the wrong
direction, (c) robot is heading in the right direction.

3.5. Circular Doorknob Detection
The target doorknobs are circular. The two-stage HoughCircles transform can iden-

tify a circle in an image frame [33]. The first stage involves finding the center of a circle.
Given the threshold for an image, edges can be detected, as shown in Figure 10. Then, the
gradient line at each nonzero point in the edge image is identified. The greater the number
of line intersection points, the greater the likelihood that they are at the center of a circle.
A threshold value is set in the Hough space, which is considered the circle’s center if it
exceeds the threshold value. The second stage involves detecting the radius of the circle.
The Hough transform sets thresholds for the maximum and minimum radii. An object can
be extracted using these thresholds, as shown in Figure 10.

Figure 9. SURF matching: (a) robot is heading in the right direction, (b) robot is heading in the wrong
direction, (c) robot is heading in the right direction.

3.5. Circular Doorknob Detection

The target doorknobs are circular. The two-stage HoughCircles transform can identify
a circle in an image frame [33]. The first stage involves finding the center of a circle. Given
the threshold for an image, edges can be detected, as shown in Figure 10. Then, the gradient
line at each nonzero point in the edge image is identified. The greater the number of
line intersection points, the greater the likelihood that they are at the center of a circle.

Actuators 2024, 13, 78 8 of 18

A threshold value is set in the Hough space, which is considered the circle’s center if it
exceeds the threshold value. The second stage involves detecting the radius of the circle.
The Hough transform sets thresholds for the maximum and minimum radii. An object can
be extracted using these thresholds, as shown in Figure 10.

Actuators 2024, 13, 78 9 of 19

Figure 10. Edge detection uses a threshold, and the doorknob is detected; the Chinese character on
the left part of the figure is the roomʹs name.

4. Control Scheme
In the control system, we used LabVIEW to compile the robot system. The control

method and the image processing scheme were written in Python.

4.1. Motion Control
This study integrated obstacle avoidance and route navigation into the omnidirec-

tional wheel robot. The control sequence is presented in Figure 11. The robot will follow
a planned path with specified features. From the original starting point, the robot moves
straight forward to the next specified feature point. When the robot reaches the desired
midway point, it searches the destination point through feature matching and turns to the
target’s direction. When the destination features are matched, the robot moves forward to
the destination point. When the robot reaches the destination point, arm control is acti-
vated. A detailed arm control process is shown in Section 4.3. If an obstacle is found on
the pathway, the robot performs obstacle avoidance control (Section 4.2), as shown in
mark B in Figure 12. After avoiding the obstacle, the robot moves back to the planned path
to the desired midway point before mark C in Figure 12.

Figure 11. Control flowchart.

After the robot begins operating, it initially uses the SURF feature-matching algo-
rithm to determine whether it has reached a specified position. If the robot is not at the
specified position, it estimates the direction to be traveled by matching the features of the

Figure 10. Edge detection uses a threshold, and the doorknob is detected; the Chinese character on
the left part of the figure is the room’s name.

4. Control Scheme

In the control system, we used LabVIEW to compile the robot system. The control
method and the image processing scheme were written in Python.

4.1. Motion Control

This study integrated obstacle avoidance and route navigation into the omnidirectional
wheel robot. The control sequence is presented in Figure 11. The robot will follow a planned
path with specified features. From the original starting point, the robot moves straight
forward to the next specified feature point. When the robot reaches the desired midway
point, it searches the destination point through feature matching and turns to the target’s
direction. When the destination features are matched, the robot moves forward to the
destination point. When the robot reaches the destination point, arm control is activated.
A detailed arm control process is shown in Section 4.3. If an obstacle is found on the
pathway, the robot performs obstacle avoidance control (Section 4.2), as shown in mark B
in Figure 12. After avoiding the obstacle, the robot moves back to the planned path to the
desired midway point before mark C in Figure 12.

Actuators 2024, 13, 78 9 of 19

Figure 10. Edge detection uses a threshold, and the doorknob is detected; the Chinese character on
the left part of the figure is the roomʹs name.

4. Control Scheme
In the control system, we used LabVIEW to compile the robot system. The control

method and the image processing scheme were written in Python.

4.1. Motion Control
This study integrated obstacle avoidance and route navigation into the omnidirec-

tional wheel robot. The control sequence is presented in Figure 11. The robot will follow
a planned path with specified features. From the original starting point, the robot moves
straight forward to the next specified feature point. When the robot reaches the desired
midway point, it searches the destination point through feature matching and turns to the
target’s direction. When the destination features are matched, the robot moves forward to
the destination point. When the robot reaches the destination point, arm control is acti-
vated. A detailed arm control process is shown in Section 4.3. If an obstacle is found on
the pathway, the robot performs obstacle avoidance control (Section 4.2), as shown in
mark B in Figure 12. After avoiding the obstacle, the robot moves back to the planned path
to the desired midway point before mark C in Figure 12.

Figure 11. Control flowchart.

After the robot begins operating, it initially uses the SURF feature-matching algo-
rithm to determine whether it has reached a specified position. If the robot is not at the
specified position, it estimates the direction to be traveled by matching the features of the

Figure 11. Control flowchart.

Actuators 2024, 13, 78 9 of 18

Actuators 2024, 13, 78 10 of 19

SURF algorithm. The obstacle detection feature is always on during the walking process.
The obstacle avoidance function is activated if obstacles are found on the path. The robot
has fuzzy control installed, so the robot checks for obstacles and avoids them based on its
distance from these obstacles. The experimental environment of the omnidirectional
wheel robot and the predicted walking path are shown in Figure 12. When the robot ar-
rives at the specified position, doorknob detection is initiated. After detecting the door-
knob, the robot tracks the target and opens the door.

Figure 12. Robot moving path.

4.2. Obstacle Avoidance Control
To simplify the calculation process, other than neural network mobile robot control

[34,35], fuzzy control is used in obstacle avoidance to allow the robot to avoid obstacles
accurately [36]. The fuzzy control of obstacle avoidance uses three inputs and two outputs.
We cut the camera’s pixels into three parts: left (L), medium (M), and right (R). Each part
detects the nearest obstacle and returns the distance function between the obstacle and
the robot. The distances of these three obstacles are the three inputs of the fuzzy control
scheme, and the fuzzy sets are near, medium, and far. The outputs are time (T) and pixel
(P). The output time (T) is used to control the rotation time of the wheel, and the fuzzy
sets are long (LG), medium (MD), and short (ST). The pixel (P) controls the direction of
rotation. The fuzzy sets are turn_right (TR), turn_left (TL), and go_straight (TM), as shown
in Figure 13, and the fuzzy control models are shown in Figure 14. The fuzzy control
scheme is shown in Figure 15.
R1: If L is near and M is near and R is near, then T is LG and P is TR.
R2: If L is near and M is near and R is medium, then T is LG and P is TR.
R3: If L is near and M is near and R is far, then T is LG and P is TR.
R4: If L is near and M is medium and R is near, then T is ST and P is TM.
R5: If L is near and M is medium and R is medium, then T is MD and P is TR.
R6: If L is near and M is medium and R is far, then T is MD and P is TR.
R7: If L is near and M is far and R is near, then T is ST and P is TM.
R8: If L is near and M is far and R is medium, then T is ST and P is TR.
R9: If L is near and M is far and R is far, then T is ST and P is TR.
R10: If L is medium and M is near and R is near, then T is LG and P is TL.
R11: If L is medium and M is near and R is medium, then T is LG and P is TR.
R12: If L is medium and M is near and R is far, then T is LG and P is TR.
R13: If L is medium and M is medium and R is near, then T is MD and P is TL.
R14: If L is medium and M is medium and R is medium, then T is ST and P is TM.
R15: If L is medium and M is medium and R is far, then T is ST and P is TR.
R16: If L is medium and M is far and R is near then, T is ST and P is TL.

Figure 12. Robot moving path.

After the robot begins operating, it initially uses the SURF feature-matching algorithm
to determine whether it has reached a specified position. If the robot is not at the specified
position, it estimates the direction to be traveled by matching the features of the SURF
algorithm. The obstacle detection feature is always on during the walking process. The
obstacle avoidance function is activated if obstacles are found on the path. The robot has
fuzzy control installed, so the robot checks for obstacles and avoids them based on its
distance from these obstacles. The experimental environment of the omnidirectional wheel
robot and the predicted walking path are shown in Figure 12. When the robot arrives at the
specified position, doorknob detection is initiated. After detecting the doorknob, the robot
tracks the target and opens the door.

4.2. Obstacle Avoidance Control

To simplify the calculation process, other than neural network mobile robot
control [34,35], fuzzy control is used in obstacle avoidance to allow the robot to avoid
obstacles accurately [36]. The fuzzy control of obstacle avoidance uses three inputs and
two outputs. We cut the camera’s pixels into three parts: left (L), medium (M), and right
(R). Each part detects the nearest obstacle and returns the distance function between the
obstacle and the robot. The distances of these three obstacles are the three inputs of the
fuzzy control scheme, and the fuzzy sets are near, medium, and far. The outputs are time
(T) and pixel (P). The output time (T) is used to control the rotation time of the wheel,
and the fuzzy sets are long (LG), medium (MD), and short (ST). The pixel (P) controls the
direction of rotation. The fuzzy sets are turn_right (TR), turn_left (TL), and go_straight
(TM), as shown in Figure 13, and the fuzzy control models are shown in Figure 14. The
fuzzy control scheme is shown in Figure 15.

R1: If L is near and M is near and R is near, then T is LG and P is TR.
R2: If L is near and M is near and R is medium, then T is LG and P is TR.
R3: If L is near and M is near and R is far, then T is LG and P is TR.
R4: If L is near and M is medium and R is near, then T is ST and P is TM.
R5: If L is near and M is medium and R is medium, then T is MD and P is TR.
R6: If L is near and M is medium and R is far, then T is MD and P is TR.
R7: If L is near and M is far and R is near, then T is ST and P is TM.
R8: If L is near and M is far and R is medium, then T is ST and P is TR.
R9: If L is near and M is far and R is far, then T is ST and P is TR.
R10: If L is medium and M is near and R is near, then T is LG and P is TL.
R11: If L is medium and M is near and R is medium, then T is LG and P is TR.
R12: If L is medium and M is near and R is far, then T is LG and P is TR.
R13: If L is medium and M is medium and R is near, then T is MD and P is TL.
R14: If L is medium and M is medium and R is medium, then T is ST and P is TM.

Actuators 2024, 13, 78 10 of 18

R15: If L is medium and M is medium and R is far, then T is ST and P is TR.
R16: If L is medium and M is far and R is near then, T is ST and P is TL.
R17: If L is medium and M is far and R is medium, then T is ST and P is TM.
R18: If L is medium and M is far and R is far, then T is ST and P is TM.
R19: If L is far and M is near and R is near, then T is LG and P is TL.
R20: If L is far and M is near and R is medium, then T is LG and P is TL.
R21: If L is far and M is near and R is far, then T is LG and P is TL.
R22: If L is far and M is medium and R is near, then T is MD and P is TL.
R23: If L is far and M is medium and R is medium, then T is MD and P is TL.
R24: If L is far and M is medium and R is far, then T is MD and P is TL.
R25: If L is far and M is far and R is near, then T is ST and P is TL.
R26: If L is far and M is far and R is medium, then T is ST and P is TM.
R27: If L is far and M is far and R is far, then T is ST and P is TM.

Actuators 2024, 13, 78 11 of 19

R17: If L is medium and M is far and R is medium, then T is ST and P is TM.
R18: If L is medium and M is far and R is far, then T is ST and P is TM.
R19: If L is far and M is near and R is near, then T is LG and P is TL.
R20: If L is far and M is near and R is medium, then T is LG and P is TL.
R21: If L is far and M is near and R is far, then T is LG and P is TL.
R22: If L is far and M is medium and R is near, then T is MD and P is TL.
R23: If L is far and M is medium and R is medium, then T is MD and P is TL.
R24: If L is far and M is medium and R is far, then T is MD and P is TL.
R25: If L is far and M is far and R is near, then T is ST and P is TL.
R26: If L is far and M is far and R is medium, then T is ST and P is TM.
R27: If L is far and M is far and R is far, then T is ST and P is TM.

(a) Input L (b) Input M

(c) Input R (d) Output pixel

(e) Output time

Figure 13. The fuzzy sets of the three inputs are near (blue), medium (red), and far (yellow); the
fuzzy sets of the output pixel are turn_left (blue), go_straight (red), and turn_right (yellow); the fuzzy
sets of the output time are short (blue), medium (red), and long (yellow).

Actuators 2024, 13, 78 11 of 18

Actuators 2024, 13, 78 12 of 19

Figure 13. The fuzzy sets of the three inputs are near (blue), medium (red), and far (yellow); the
fuzzy sets of the output pixel are turn_left (blue), go_straight (red), and turn_right (yellow); the
fuzzy sets of the output time are short (blue), medium (red), and long (yellow).

(a) Fuzzy control model of pixel (b) Fuzzy control model of time

Figure 14. Fuzzy control model where the yellow color means large value and the dark blue means
small value.

Figure 15. Fuzzy control scheme.

In Figure 12, mark A shows that when the robot detects an obstacle, it inputs the
distance between the left, middle, and right to the fuzzy controller and outputs the time
and direction of the rotation, as shown in mark B in Figure 12. In Figure 12, mark C shows
that the robot stops at the specified position after avoiding an obstacle. When the robot
arrives at the specified position, it initiates doorknob detection. The robot tracks the door
after detecting the doorknob and then opens the door.

4.3. Arm Control
When the robot reaches the specified position, its arm is automatically lifted to the

height of the doorknob, and the camera installed on the arm is activated to start tracking
the doorknob, as shown in Figure 16. The robot determines the position of the doorknob
and judges the required direction of movement [37]. The directions of movement are left
rotation, right rotation, left parallel translation, and right parallel translation. We set two
threshold values: the return position is greater than the threshold and lower than the
threshold, and the corresponding motions are left and right translations. The times re-
quired for each right and left translation movement are 1.2 s and 900 ms, respectively. It
is easy to move to the specified range. Then, the left and right rotation movements are
performed to finetune the robot’s heading angle so that the robot’s arm points at the door-
knob. The movement of each left and right rotation is 5°. When the robot’s position is
within these two range values, the robot moves forward. When the distance from the door
is shorter than the set distance, the claw of the robot’s arm grabs the doorknob and rotates.
After the robot claw has turned the doorknob, it pushes the door forward and opens it.

Figure 14. Fuzzy control model where the yellow color means large value and the dark blue means
small value.

Actuators 2024, 13, 78 12 of 19

Figure 13. The fuzzy sets of the three inputs are near (blue), medium (red), and far (yellow); the
fuzzy sets of the output pixel are turn_left (blue), go_straight (red), and turn_right (yellow); the
fuzzy sets of the output time are short (blue), medium (red), and long (yellow).

(a) Fuzzy control model of pixel (b) Fuzzy control model of time

Figure 14. Fuzzy control model where the yellow color means large value and the dark blue means
small value.

Figure 15. Fuzzy control scheme.

In Figure 12, mark A shows that when the robot detects an obstacle, it inputs the
distance between the left, middle, and right to the fuzzy controller and outputs the time
and direction of the rotation, as shown in mark B in Figure 12. In Figure 12, mark C shows
that the robot stops at the specified position after avoiding an obstacle. When the robot
arrives at the specified position, it initiates doorknob detection. The robot tracks the door
after detecting the doorknob and then opens the door.

4.3. Arm Control
When the robot reaches the specified position, its arm is automatically lifted to the

height of the doorknob, and the camera installed on the arm is activated to start tracking
the doorknob, as shown in Figure 16. The robot determines the position of the doorknob
and judges the required direction of movement [37]. The directions of movement are left
rotation, right rotation, left parallel translation, and right parallel translation. We set two
threshold values: the return position is greater than the threshold and lower than the
threshold, and the corresponding motions are left and right translations. The times re-
quired for each right and left translation movement are 1.2 s and 900 ms, respectively. It
is easy to move to the specified range. Then, the left and right rotation movements are
performed to finetune the robot’s heading angle so that the robot’s arm points at the door-
knob. The movement of each left and right rotation is 5°. When the robot’s position is
within these two range values, the robot moves forward. When the distance from the door
is shorter than the set distance, the claw of the robot’s arm grabs the doorknob and rotates.
After the robot claw has turned the doorknob, it pushes the door forward and opens it.

Figure 15. Fuzzy control scheme.

In Figure 12, mark A shows that when the robot detects an obstacle, it inputs the
distance between the left, middle, and right to the fuzzy controller and outputs the time
and direction of the rotation, as shown in mark B in Figure 12. In Figure 12, mark C shows
that the robot stops at the specified position after avoiding an obstacle. When the robot
arrives at the specified position, it initiates doorknob detection. The robot tracks the door
after detecting the doorknob and then opens the door.

4.3. Arm Control

When the robot reaches the specified position, its arm is automatically lifted to the
height of the doorknob, and the camera installed on the arm is activated to start tracking
the doorknob, as shown in Figure 16. The robot determines the position of the doorknob
and judges the required direction of movement [37]. The directions of movement are
left rotation, right rotation, left parallel translation, and right parallel translation. We set
two threshold values: the return position is greater than the threshold and lower than the
threshold, and the corresponding motions are left and right translations. The times required
for each right and left translation movement are 1.2 s and 900 ms, respectively. It is easy to
move to the specified range. Then, the left and right rotation movements are performed
to finetune the robot’s heading angle so that the robot’s arm points at the doorknob. The
movement of each left and right rotation is 5◦. When the robot’s position is within these
two range values, the robot moves forward. When the distance from the door is shorter
than the set distance, the claw of the robot’s arm grabs the doorknob and rotates. After the
robot claw has turned the doorknob, it pushes the door forward and opens it.

Actuators 2024, 13, 78 12 of 18Actuators 2024, 13, 78 13 of 19

Figure 16. The robot arm lifts to the specified height; the Chinese characters on the figure are the
room’s name.

5. Experiment Result
We placed two obstacles in front of the robot. The robot was expected to avoid all

obstacles without any route planning. After detecting an obstacle, the robot estimated the
direction to move, as shown in Figure 17.

(a) Robot’s starting position (b) Robot avoids box (c) Robot goes straight

(d) Robot avoids human (e) Robot after avoiding human (f) Robot moves out of the obstacle area

Figure 17. Robot obstacle avoidance test.

When the robot is turned on, the onboard computer displays the image captured by
the depth camera, as shown in Figure 18. The three circles in the picture represent the
nearest left, center, and right distances, respectively. This representation makes it easy for
users to identify which objects are detected by the robot. The distance and direction of the
action are displayed after the obstacle detection process, as shown in Figure 18. On the
depth camera image, the distances of the nearest left, middle, and right objects are greater
than 2 m, so the action is GO. At the starting position, the robot does not detect any obsta-
cles, so the control scheme sends the “go” command, which tells the robot to go straight.

Figure 16. The robot arm lifts to the specified height; the Chinese characters on the figure are the
room’s name.

5. Experiment Result

We placed two obstacles in front of the robot. The robot was expected to avoid all
obstacles without any route planning. After detecting an obstacle, the robot estimated the
direction to move, as shown in Figure 17.

Actuators 2024, 13, 78 13 of 19

Figure 16. The robot arm lifts to the specified height; the Chinese characters on the figure are the
room’s name.

5. Experiment Result
We placed two obstacles in front of the robot. The robot was expected to avoid all

obstacles without any route planning. After detecting an obstacle, the robot estimated the
direction to move, as shown in Figure 17.

(a) Robot’s starting position (b) Robot avoids box (c) Robot goes straight

(d) Robot avoids human (e) Robot after avoiding human (f) Robot moves out of the obstacle area

Figure 17. Robot obstacle avoidance test.

When the robot is turned on, the onboard computer displays the image captured by
the depth camera, as shown in Figure 18. The three circles in the picture represent the
nearest left, center, and right distances, respectively. This representation makes it easy for
users to identify which objects are detected by the robot. The distance and direction of the
action are displayed after the obstacle detection process, as shown in Figure 18. On the
depth camera image, the distances of the nearest left, middle, and right objects are greater
than 2 m, so the action is GO. At the starting position, the robot does not detect any obsta-
cles, so the control scheme sends the “go” command, which tells the robot to go straight.

Figure 17. Robot obstacle avoidance test.

When the robot is turned on, the onboard computer displays the image captured by
the depth camera, as shown in Figure 18. The three circles in the picture represent the
nearest left, center, and right distances, respectively. This representation makes it easy for
users to identify which objects are detected by the robot. The distance and direction of
the action are displayed after the obstacle detection process, as shown in Figure 18. On
the depth camera image, the distances of the nearest left, middle, and right objects are
greater than 2 m, so the action is GO. At the starting position, the robot does not detect
any obstacles, so the control scheme sends the “go” command, which tells the robot to
go straight.

Actuators 2024, 13, 78 13 of 18Actuators 2024, 13, 78 14 of 19

Figure 18. On the depth camera image, the distances of the nearest left, middle, and right objects are
greater than 2 m, so the action is GO.

Figure 19 shows the robot detecting an obstacle. Figure 20 shows that the obstacle is
detected within 2 m between the middle and the right areas. After detecting the obstacle,
the robot executes the fuzzy control scheme to determine the direction to move. The con-
trol scheme sends the fuzzy control result “left,” which means left rotation. After the robot
rotates (Figure 21a), it will go straight and move the same distance parallel to the obstacle
and then rotate back in the opposite direction (Figure 21b). The robot can avoid the obsta-
cle successfully, as shown in Figure 21. The robot needs free space to avoid obstacles. If
there is not enough space, this means the path has been blocked, and the robot will stop
moving until the obstacle is removed.

Figure 19. Robot’s starting position.

Figure 20. The robot finds an obstacle as the blue mark (in the middle area) and yellow mark (in the
right area) on the picture, and the distances are 1.65 m and 1.62 m, respectively; the action is a LEFT
turn.

Figure 18. On the depth camera image, the distances of the nearest left, middle, and right objects are
greater than 2 m, so the action is GO.

Figure 19 shows the robot detecting an obstacle. Figure 20 shows that the obstacle is
detected within 2 m between the middle and the right areas. After detecting the obstacle,
the robot executes the fuzzy control scheme to determine the direction to move. The control
scheme sends the fuzzy control result “left,” which means left rotation. After the robot
rotates (Figure 21a), it will go straight and move the same distance parallel to the obstacle
and then rotate back in the opposite direction (Figure 21b). The robot can avoid the obstacle
successfully, as shown in Figure 21. The robot needs free space to avoid obstacles. If there
is not enough space, this means the path has been blocked, and the robot will stop moving
until the obstacle is removed.

Actuators 2024, 13, 78 14 of 19

Figure 18. On the depth camera image, the distances of the nearest left, middle, and right objects are
greater than 2 m, so the action is GO.

Figure 19 shows the robot detecting an obstacle. Figure 20 shows that the obstacle is
detected within 2 m between the middle and the right areas. After detecting the obstacle,
the robot executes the fuzzy control scheme to determine the direction to move. The con-
trol scheme sends the fuzzy control result “left,” which means left rotation. After the robot
rotates (Figure 21a), it will go straight and move the same distance parallel to the obstacle
and then rotate back in the opposite direction (Figure 21b). The robot can avoid the obsta-
cle successfully, as shown in Figure 21. The robot needs free space to avoid obstacles. If
there is not enough space, this means the path has been blocked, and the robot will stop
moving until the obstacle is removed.

Figure 19. Robot’s starting position.

Figure 20. The robot finds an obstacle as the blue mark (in the middle area) and yellow mark (in the
right area) on the picture, and the distances are 1.65 m and 1.62 m, respectively; the action is a LEFT
turn.

Figure 19. Robot’s starting position.

Actuators 2024, 13, 78 14 of 19

Figure 18. On the depth camera image, the distances of the nearest left, middle, and right objects are
greater than 2 m, so the action is GO.

Figure 19 shows the robot detecting an obstacle. Figure 20 shows that the obstacle is
detected within 2 m between the middle and the right areas. After detecting the obstacle,
the robot executes the fuzzy control scheme to determine the direction to move. The con-
trol scheme sends the fuzzy control result “left,” which means left rotation. After the robot
rotates (Figure 21a), it will go straight and move the same distance parallel to the obstacle
and then rotate back in the opposite direction (Figure 21b). The robot can avoid the obsta-
cle successfully, as shown in Figure 21. The robot needs free space to avoid obstacles. If
there is not enough space, this means the path has been blocked, and the robot will stop
moving until the obstacle is removed.

Figure 19. Robot’s starting position.

Figure 20. The robot finds an obstacle as the blue mark (in the middle area) and yellow mark (in the
right area) on the picture, and the distances are 1.65 m and 1.62 m, respectively; the action is a LEFT
turn.

Figure 20. The robot finds an obstacle as the blue mark (in the middle area) and yellow mark (in
the right area) on the picture, and the distances are 1.65 m and 1.62 m, respectively; the action is a
LEFT turn.

Actuators 2024, 13, 78 14 of 18Actuators 2024, 13, 78 15 of 19

(a) (b)

Figure 21. Robot avoids obstacle (box).

After the rotation is finished (Figure 21b), the robot’s movement will be determined
again. On the depth camera image (Figure 22), the distances of the nearest left, middle,
and right objects are greater than 2 m, so the robot is prompted to “go straight.” The robot
motion control process always uses SURF to match the target. When it matches the target,
the motion control will determine the matching position and the robot’s moving direction,
as shown in Figures 23 and 24.

Figure 22. Image on the robot’s depth camera.

(a) (b)

Figure 23. (a) The robot reaches the midway point; (b) the robot’s image.

Figure 24. After the SURF matching, the robot turns to the target direction and moves forward.

Figure 21. Robot avoids obstacle (box).

After the rotation is finished (Figure 21b), the robot’s movement will be determined
again. On the depth camera image (Figure 22), the distances of the nearest left, middle,
and right objects are greater than 2 m, so the robot is prompted to “go straight.” The robot
motion control process always uses SURF to match the target. When it matches the target,
the motion control will determine the matching position and the robot’s moving direction,
as shown in Figures 23 and 24.

Actuators 2024, 13, 78 15 of 19

(a) (b)

Figure 21. Robot avoids obstacle (box).

After the rotation is finished (Figure 21b), the robot’s movement will be determined
again. On the depth camera image (Figure 22), the distances of the nearest left, middle,
and right objects are greater than 2 m, so the robot is prompted to “go straight.” The robot
motion control process always uses SURF to match the target. When it matches the target,
the motion control will determine the matching position and the robot’s moving direction,
as shown in Figures 23 and 24.

Figure 22. Image on the robot’s depth camera.

(a) (b)

Figure 23. (a) The robot reaches the midway point; (b) the robot’s image.

Figure 24. After the SURF matching, the robot turns to the target direction and moves forward.

Figure 22. Image on the robot’s depth camera.

Actuators 2024, 13, 78 15 of 19

(a) (b)

Figure 21. Robot avoids obstacle (box).

After the rotation is finished (Figure 21b), the robot’s movement will be determined
again. On the depth camera image (Figure 22), the distances of the nearest left, middle,
and right objects are greater than 2 m, so the robot is prompted to “go straight.” The robot
motion control process always uses SURF to match the target. When it matches the target,
the motion control will determine the matching position and the robot’s moving direction,
as shown in Figures 23 and 24.

Figure 22. Image on the robot’s depth camera.

(a) (b)

Figure 23. (a) The robot reaches the midway point; (b) the robot’s image.

Figure 24. After the SURF matching, the robot turns to the target direction and moves forward.

Figure 23. (a) The robot reaches the midway point; (b) the robot’s image.

Actuators 2024, 13, 78 15 of 18

Actuators 2024, 13, 78 15 of 19

(a) (b)

Figure 21. Robot avoids obstacle (box).

After the rotation is finished (Figure 21b), the robot’s movement will be determined
again. On the depth camera image (Figure 22), the distances of the nearest left, middle,
and right objects are greater than 2 m, so the robot is prompted to “go straight.” The robot
motion control process always uses SURF to match the target. When it matches the target,
the motion control will determine the matching position and the robot’s moving direction,
as shown in Figures 23 and 24.

Figure 22. Image on the robot’s depth camera.

(a) (b)

Figure 23. (a) The robot reaches the midway point; (b) the robot’s image.

Figure 24. After the SURF matching, the robot turns to the target direction and moves forward. Figure 24. After the SURF matching, the robot turns to the target direction and moves forward.

The robot’s walking process always uses SURF for target matching. When the target
(predefined door) is matched, the control process shows the matching position and the
robot’s movement direction. The robot moves forward to the predefined door and stops 1
m ahead of the door, as shown in Figure 25a. The robot stops moving when it arrives at
the specified position. According to the image captured by the robot’s camera, the control
process shows that the robot has arrived at the specified location, as shown in Figure 25b.

Actuators 2024, 13, 78 16 of 19

The robot’s walking process always uses SURF for target matching. When the target
(predefined door) is matched, the control process shows the matching position and the
robot’s movement direction. The robot moves forward to the predefined door and stops 1
m ahead of the door, as shown in Figure 25a. The robot stops moving when it arrives at
the specified position. According to the image captured by the robot’s camera, the control
process shows that the robot has arrived at the specified location, as shown in Figure 25b.

(a) Robot arrives at a specified location (b) Robot’s camera image

Figure 25. (a) The robot arrives at the specified location; (b) the Chinese characters on the figure
are the room’s name.

The arm and arm camera are activated when the robot arrives at the specified loca-
tion. The arm camera starts to find the doorknob and returns the doorknob position to the
robot, as shown in Figure 26. The circle center coordinate of the doorknob is indicated in
Figure 26b.

(a) (b)

Figure 26. (a) Doorknob detection, Activate arm and arm’s camera; (b) the Chinese characters on
the figure are the room’s name. Arm’s camera image; the object distance is 0.827 m, and the coordi-
nate is (436.5, 51.5).

When the distance between the robot and the door is shorter than the preset thresh-
old, the robot’s claw automatically grabs the doorknob and rotates it, and the robot pushes
the door forward, opens the door, and stops, as shown in Figure 27.

Figure 25. (a) The robot arrives at the specified location; (b) the Chinese characters on the figure are
the room’s name.

The arm and arm camera are activated when the robot arrives at the specified location.
The arm camera starts to find the doorknob and returns the doorknob position to the
robot, as shown in Figure 26. The circle center coordinate of the doorknob is indicated
in Figure 26b.

Actuators 2024, 13, 78 16 of 19

The robot’s walking process always uses SURF for target matching. When the target
(predefined door) is matched, the control process shows the matching position and the
robot’s movement direction. The robot moves forward to the predefined door and stops 1
m ahead of the door, as shown in Figure 25a. The robot stops moving when it arrives at
the specified position. According to the image captured by the robot’s camera, the control
process shows that the robot has arrived at the specified location, as shown in Figure 25b.

(a) Robot arrives at a specified location (b) Robot’s camera image

Figure 25. (a) The robot arrives at the specified location; (b) the Chinese characters on the figure
are the room’s name.

The arm and arm camera are activated when the robot arrives at the specified loca-
tion. The arm camera starts to find the doorknob and returns the doorknob position to the
robot, as shown in Figure 26. The circle center coordinate of the doorknob is indicated in
Figure 26b.

(a) (b)

Figure 26. (a) Doorknob detection, Activate arm and arm’s camera; (b) the Chinese characters on
the figure are the room’s name. Arm’s camera image; the object distance is 0.827 m, and the coordi-
nate is (436.5, 51.5).

When the distance between the robot and the door is shorter than the preset thresh-
old, the robot’s claw automatically grabs the doorknob and rotates it, and the robot pushes
the door forward, opens the door, and stops, as shown in Figure 27.

Figure 26. (a) Doorknob detection, Activate arm and arm’s camera; (b) the Chinese characters on the
figure are the room’s name. Arm’s camera image; the object distance is 0.827 m, and the coordinate is
(436.5, 51.5).

Actuators 2024, 13, 78 16 of 18

When the distance between the robot and the door is shorter than the preset threshold,
the robot’s claw automatically grabs the doorknob and rotates it, and the robot pushes the
door forward, opens the door, and stops, as shown in Figure 27.

Actuators 2024, 13, 78 17 of 19

(a) Robot’s claw grabs the doorknob position (b) Enlarge image of claw grabbing the doorknob

(c) Robot claw rotates doorknob (d) Robot pushes the door

Figure 27. The robot opens the door; the Chinese characters on the figure are the room’s name.

6. Conclusions
In this study, we proposed the use of real-time images to control the robot’s move-

ment. The robot system has many instruments and devices installed. Some devices sense
obstacles or measure the targets to be tracked. To ensure our robot was human-like, we
only used cameras to make judgments regarding obstacle avoidance and navigation. The
Intel Realsense depth camera was used to provide information on the surrounding object’s
distance for obstacle avoidance usage. The Lifecam was used to identify target objects for
doorknob detection. In terms of control, we used LabVIEW to compile the robot system.
The control method and the image processing scheme were written in Python. In terms of
obstacle avoidance, we used depth images to help the robot avoid obstacles, and the im-
ages were more accurate and convenient than those output by conventional ultrasonic
obstacle avoidance methods. Compared with other approaches that use laser or ultrasonic
sensors, determining which target the robot has detected through images is a superior
method. Cameras are relatively inexpensive and easy to maintain compared to laser range
finders. Image processing is also more extensive than these other approaches. A fuzzy
control system was integrated into the proposed image obstacle avoidance method, and
the rotation angles corresponding to different distances were different, allowing the robot
to avoid multiple obstacles successfully. Most indoor navigations use SLAM to map and
recognize the surroundings. In this study, we assumed the surrounding environments are
known; the SURF algorithm was used to inform the robot of the position and direction of
the target location. In the experiment, the robot completed actions based only on the re-
sults of image processing and recognition; in other words, similar to humans, it used only
visual sensors.

Author Contributions: Conceptualization, J.-G.J.; methodology, C.-H.H.; software, C.-H.H.; valida-
tion, C.-H.H.; formal analysis, J.-G.J.; Investigation, J.-G.J.; Resources, J.-G.J.; Data curation, C.-H.H.;
writing—original draft, C.-H.H.; writing—review & editing, J.-G.J.; visualization, J.-G.J.; supervi-
sion, J.-G.J.; project administration, J.-G.J.; funding acquisition, J.-G.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (Taiwan), grant
number MOST 109-2221-E-019-058.

Figure 27. The robot opens the door; the Chinese characters on the figure are the room’s name.

6. Conclusions

In this study, we proposed the use of real-time images to control the robot’s movement.
The robot system has many instruments and devices installed. Some devices sense obstacles
or measure the targets to be tracked. To ensure our robot was human-like, we only used
cameras to make judgments regarding obstacle avoidance and navigation. The Intel
Realsense depth camera was used to provide information on the surrounding object’s
distance for obstacle avoidance usage. The Lifecam was used to identify target objects for
doorknob detection. In terms of control, we used LabVIEW to compile the robot system.
The control method and the image processing scheme were written in Python. In terms
of obstacle avoidance, we used depth images to help the robot avoid obstacles, and the
images were more accurate and convenient than those output by conventional ultrasonic
obstacle avoidance methods. Compared with other approaches that use laser or ultrasonic
sensors, determining which target the robot has detected through images is a superior
method. Cameras are relatively inexpensive and easy to maintain compared to laser range
finders. Image processing is also more extensive than these other approaches. A fuzzy
control system was integrated into the proposed image obstacle avoidance method, and
the rotation angles corresponding to different distances were different, allowing the robot
to avoid multiple obstacles successfully. Most indoor navigations use SLAM to map and
recognize the surroundings. In this study, we assumed the surrounding environments are
known; the SURF algorithm was used to inform the robot of the position and direction
of the target location. In the experiment, the robot completed actions based only on the
results of image processing and recognition; in other words, similar to humans, it used only
visual sensors.

Actuators 2024, 13, 78 17 of 18

Author Contributions: Conceptualization, J.-G.J.; methodology, C.-H.H.; software, C.-H.H.; valida-
tion, C.-H.H.; formal analysis, J.-G.J.; Investigation, J.-G.J.; Resources, J.-G.J.; Data curation, C.-H.H.;
writing—original draft, C.-H.H.; writing—review & editing, J.-G.J.; visualization, J.-G.J.; supervision,
J.-G.J.; project administration, J.-G.J.; funding acquisition, J.-G.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (Taiwan), grant
number MOST 109-2221-E-019-058.

Data Availability Statement: The original contributions presented in this study are included in this
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service robot implementation: A theoretical framework and research agenda.

Serv. Ind. J. 2020, 40, 203–225. [CrossRef]
2. Gonzalez-Aguirre, J.A.; Osorio-Oliveros, R.; Rodríguez-Hernández, K.L.; Lizárraga-Iturralde, J.; Menendez, R.M.; Ramírez-

Mendoza, R.A.; Ramírez-Moreno, M.A.; Lozoya-Santos, J.d.J. Service Robots: Trends and Technology. Appl. Sci. 2021, 11, 10702.
[CrossRef]

3. Chi, L. Application of Real-Time Image Recognition and Feature Matching to Wheeled Mobile Robot for Room Service. Master’s
Thesis, National Taiwan Ocean University, Keelung City, Taiwan, 2018.

4. Najim, H.A.; Kareem, I.S.; Abdul-Lateef, W.E. Design and Implementation of an Omnidirectional Mobile Robot for Medi-cine
Delivery in Hospitals during the COVID-19 Epidemic. AIP Conf. Proc. 2023, 2830, 070004.

5. Bernardo, R.; Sousa, J.M.C.; Botto, M.A.; Gonçalves, P.J.S. A Novel Control Architecture Based on Behavior Trees for an
Omni-Directional Mobile Robot. Robotics 2023, 12, 170. [CrossRef]

6. Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional
Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [CrossRef] [PubMed]

7. Jia, Q.; Wang, M.; Liu, S.; Ge, J.; Gu, C. Research and development of mecanum-wheeled omnidirectional mobile robot
implemented by multiple control methods. In Proceedings of the 23rd International Conference on Mechatronics and Machine
Vision in Practice, Nanjing, China, 28–30 November 2016.

8. Park, S.; Ryoo, Y.; Im, D. Fuzzy Steering Control of Three-Wheels Based Omnidirectional Mobile Robot. In Proceedings of the
International Conference on Fuzzy Theory and Its Applications, Taichung, Taiwan, 9–11 November 2016.

9. Chung, J.H.; Yi, B.-J.; Kim, W.K.; Lee, H. The dynamic modeling and analysis for an omnidirectional mobile robot with three caster
wheels. In Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 14–19 September 2003.

10. Ruan, X.; Li, W. Ultrasonic sensor based two-wheeled self-balancing robot obstacle avoidance control system. In Proceedings of
the IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014.

11. Jin, Y.; Li, S.; Li, J.; Sun, H.; Wu, Y. Design of an Intelligent Active Obstacle Avoidance Car Based on Rotating Ultrasonic Sensors.
In Proceedings of the IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent
Systems, Tianjin, China, 19–23 July 2018.

12. Peng, Y.; Qu, D.; Zhong, Y.; Xie, S.; Luo, J. The Obstacle Detection and Obstacle Avoidance Algorithm Based on 2-D Lidar. In
Proceedings of the IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015.

13. Wang, T.; Bu, L.; Huang, Z. A new method for obstacle detection based on Kinect depth image. In Proceedings of the Chinese
Automation Congress, Wuhan, China, 27–29 November 2015.

14. Hamzah, R.A.; Rosly, H.N.; Hamid, S. An Obstacle Detection and Avoidance of a Mobile Robot with Stereo Vision Camera.
In Proceedings of the International Conference on Electronic Devices, Systems and Applications, Kuala Lumpur, Malaysia,
25–27 April 2011.

15. Sharifi, M.; Chen, X. Introducing a novel vision based obstacle avoidance technique for navigation of autonomous mobile robots.
In Proceedings of the IEEE 10th Conference on Industrial Electronics and Applications, Auckland, New Zealand, 15–17 June 2015.

16. AI-Jubouri, Q.; AI-Nuaimy, W.; AI-Taeeand, M.; Young, I. Recognition of Individual Zebrafish Using Speed-Up Robust Feature
Matching. In Proceedings of the 10th International Conference on Developments in eSystems Engineering, Paris, France,
14–16 June 2017.

17. Sheu, J.-S.; Tsai, W.-H. Implementation of a following wheel robot featuring stereoscopic vision. Multimed. Tools Appl. 2017, 76,
25161–25177. [CrossRef]

18. Tsai, C.-Y.; Nisar, H.; Hu, Y.-C. Mapless LiDAR Navigation Control of Wheeled Mobile Robots Based on Deep Imitation Learning.
IEEE Access 2021, 9, 117527–117541. [CrossRef]

19. Li, C.; Wang, S.; Zhuang, Y.; Yan, F. Deep Sensor Fusion between 2D Laser Scanner and IMU for Mobile Robot Localization. IEEE
Sens. J. 2019, 21, 8501–8509. [CrossRef]

20. Intel Realsense Depth Camera D415. Available online: https://www.intel.com/content/www/us/en/products/sku/128256
/intel-realsense-depth-camera-d415/specifications.html (accessed on 21 January 2019).

https://doi.org/10.1080/02642069.2019.1672666
https://doi.org/10.3390/app112210702
https://doi.org/10.3390/robotics12060170
https://doi.org/10.3390/s21217216
https://www.ncbi.nlm.nih.gov/pubmed/34770522
https://doi.org/10.1007/s11042-016-4297-y
https://doi.org/10.1109/ACCESS.2021.3107041
https://doi.org/10.1109/JSEN.2019.2910826
https://www.intel.com/content/www/us/en/products/sku/128256/intel-realsense-depth-camera-d415/specifications.html
https://www.intel.com/content/www/us/en/products/sku/128256/intel-realsense-depth-camera-d415/specifications.html

Actuators 2024, 13, 78 18 of 18

21. Pin, F.; Killough, S. A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. Robot.
Autom. 1994, 10, 480–489. [CrossRef]

22. Purwin, O.; D’andrea, R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot. Auton. Syst. 2006,
54, 13–22. [CrossRef]

23. Zhong, Q.H. Using Omni-Directional Mobile Robot on Map Building Application. Master’s Thesis, National Cheng Kung
University, Tainan City, Taiwan, 2009.

24. Arduino Uno R3. Available online: https://electricarena.blogspot.com/ (accessed on 10 January 2019).
25. DFRduino IO Expansion Shield for Arduino. Available online: https://www.dfrobot.com/product-1009.html (accessed on

15 March 2019).
26. Omni Wheel. Available online: http://www.kornylak.com/ (accessed on 15 March 2019).
27. Color Space. Available online: https://en.wikipedia.org/wiki/Color_space (accessed on 20 April 2019).
28. Dragoi, V. Chapter 14: Visual—Eye and Retina. Neurosci. Online. 2020. Available online: https://nba.uth.tmc.edu/neuroscience/

m/s2/chapter14.html (accessed on 20 April 2019).
29. Color Cube. Available online: https://cs.vt.edu/Undergraduate/courses.html (accessed on 20 April 2019).
30. Zhang, Y.; Xu, X.; Dai, Y. Two-Stage Obstacle Detection Based on Stereo Vision in Unstructured Environment. In Proceedings of the

Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2014.
31. Zhang, Z. A Flexible New Technique for Camera Calibration. Available online: https://www.microsoft.com/en-us/research/

wp-content/uploads/2016/02/tr98-71.pdf (accessed on 20 January 2019).
32. Bay, H.; Tuytelaars, T.; Gool, L.V. Speed Up Robust Features. In Proceedings of the European Conference on Computer Vision,

Graz, Austria, 7–13 May 2006.
33. Liu, H.; Qian, Y.; Lin, S. Detecting Persons Using Hough Circle Transform in Surveillance Video. In Proceedings of the International

Conference on Computer Vision Theory and Applications, Angers, France, 17–21 May 2010.
34. Fang, W.; Chao, F.; Yang, L.; Lin, C.-M.; Shang, C.; Zhou, C.; Shen, Q. A recurrent emotional CMAC neural network controller for

vision-based mobile robots. Neurocomputing 2019, 334, 227–238. [CrossRef]
35. Wu, Q.; Lin, C.-M.; Fang, W.; Chao, F.; Yang, L.; Shang, C.; Zhou, C. Self-Organizing Brain Emotional Learning Controller Network

for Intelligent Control System of Mobile Robots. IEEE Access 2018, 6, 59096–59108. [CrossRef]
36. Chao, C.H.; Hsueh, B.Y.; Hsiao, M.Y.; Tsai, S.H.; Li, T.H.S. Real-Time Target Tracking and Obstacle Avoidance for Mobile Robots

using Two Cameras. In Proceedings of the ICROS-SICE International Joint Conference, Fukuoka, Japan, 18–21 August 2009.
37. Su, H.-R.; Chen, K.-Y. Design and Implementation of a Mobile Robot with Autonomous Door Opening Ability. Int. J. Fuzzy Syst.

2019, 21, 333–342. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/70.313098
https://doi.org/10.1016/j.robot.2005.10.002
https://electricarena.blogspot.com/
https://www.dfrobot.com/product-1009.html
http://www.kornylak.com/
https://en.wikipedia.org/wiki/Color_space
https://nba.uth.tmc.edu/neuroscience/m/s2/chapter14.html
https://nba.uth.tmc.edu/neuroscience/m/s2/chapter14.html
https://cs.vt.edu/Undergraduate/courses.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr98-71.pdf
https://doi.org/10.1016/j.neucom.2019.01.032
https://doi.org/10.1109/ACCESS.2018.2874426
https://doi.org/10.1007/s40815-018-0557-5

	Introduction
	System Description
	Image Processing and Pattern Recognition
	Camera Calibration
	Depth Map
	Obstacle Detection
	Feature Matching
	Circular Doorknob Detection

	Control Scheme
	Motion Control
	Obstacle Avoidance Control
	Arm Control

	Experiment Result
	Conclusions
	References

