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Abstract: Deep domain adaptation techniques have recently been the subject of much research in
machinery fault diagnosis. However, most of the work has been focused on domain alignment,
aiming to learn cross-domain features by bridging the gap between source and target domains.
Despite the success of these methods in achieving domain alignment, they often overlook the
class discrepancy present in cross-domain scenarios. This can result in the misclassification of
target domain samples that are located near cluster boundaries or far from their associated class
centers. To tackle these challenges, a novel approach called deep domain adaptation with correlation
alignment and supervised contrastive learning (DCASCL) is proposed, which synchronously realizes
both domain distribution alignment and class distribution alignment. Specifically, the correlation
alignment loss is used to enforce the model to generate transferable features, facilitating effective
domain distribution alignment. Additionally, classifier discrepancy loss and supervised contrastive
learning loss are integrated to carry out feature distribution alignment class-wisely. The supervised
contrastive learning loss leverages class-specific information of source and target samples, which
efficiently promotes the compactness of samples of the same class and the separation of samples
from different classes. Moreover, our approach is extensively validated across three diverse datasets,
demonstrating its effectiveness in diagnosing machinery faults across different domains.

Keywords: domain adaptation; intelligent fault diagnosis; correlation alignment; supervised contrastive
learning; rotating machinery

1. Introduction

Bearings and gears are two essential components in rotating mechanical equipment,
widely utilized in various fields such as automobiles, aircraft engines, and wind turbines.
However, due to their operation under harsh conditions, such as high speeds and heavy
loads, these components are prone to failure, significantly impacting the performance
and reliability of the equipment. Therefore, achieving rapid and accurate intelligent fault
diagnosis for these components is crucial [1]. Some early fault diagnosis techniques, such
as signal analysis [2,3] and machine learning [4,5], have been extensively employed in
machinery defect diagnosis. Nevertheless, these methods require a certain level of expertise
and manual feature extraction, limiting their widespread application. With the increase
in computational resources and advancements in big data and sensing technologies, deep
learning-based intelligent fault diagnosis has been increasingly investigated. This is at-
tributed to their capability for end-to-end learning, reducing the necessity for extensive
human involvement in model development. Janssens et al. [6] established a feature learning-
based approach using a CNN to detect different types of bearing defects. This approach
was also compared with traditional machine learning-based methods such as support
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vector machine (SVM) and random forest (RF) using the same data. The results signifi-
cantly demonstrated the superiority of end-to-end learning methods over traditional ones.
Wang et al. [7] employed a CNN model to learn the discriminative features for gearbox fault
diagnosis from time-frequency graphs. Shao et al. [8] introduced a new deep autoencoder
method that is effective and robust for feature learning and has been successfully applied
to identify bearing or gearbox failures. While these methods have demonstrated potential
effectiveness in practice, they also have several considerable limitations. First, they rely on
supervised learning, requiring large amounts of training data with different labels, includ-
ing normal states and various fault situations. However, in a real industrial environment,
obtaining data with a fault label is very difficult because the frequency of failures is usually
very low. In addition, labeling failure data is exhausting and time-intensive [9]. There-
fore, supervised learning methods are limited in practical industrial applications. Second,
these methods often assume that the feature distributions of the training and test samples
are identical or comparable [10]. Nevertheless, operational circumstances, deteriorated
states, and background noise levels of industrial machinery are frequently inconsistent
in real-world industrial settings. This implies the presence of a mismatch between the
feature distributions of training and test samples, resulting in a notable decline in the
performance of fault diagnosis based on deep learning methodologies. As a consequence
of the previously outlined factors, the application of these deep learning methods becomes
challenging when confronted with data exhibiting distribution discrepancies.

Domain adaptation (DA) emerged as a viable technique for addressing variations in
feature distributions across diverse domains. Generally speaking, it is a transfer learning
technique that concentrates on utilizing the knowledge learned from a source domain
(where labeled data are abundant) to improve the model performance in a target domain
(where labeled data are scarce or nonexistent). The primary objective here is to make the
gap between the feature representations or distributions of source and target samples as
small as possible, enabling the model to generalize and generate accurate predictions on
the target samples. In recent years, several methods have been developed based on DA
to realize the identification of machine failures across different domains [11–13]. Most
of the existing methodologies can generally be divided according to the mechanisms of
minimizing the discrepancy between domains into two categories, including discrepancy-
based techniques and adversarial-based techniques. Discrepancy-based techniques aim
to reduce the gap between different domains by minimizing some defined statistical
discrepancy metrics. Representative examples of such techniques include maximum mean
discrepancy (MMD) [14], correlation alignment (CORAL) loss [15,16], central moment
discrepancy (CMD) [17], and so on. For instance, researchers in prior works [18–20] utilized
MMD as part of their objective function, aiming to minimize the distribution discrepancies
between the source and target domains for fault diagnosis. Che et al. [21] computed the
multiple kernel maximum mean discrepancy (MK-MMD) across selected hidden layers and
integrated it into the loss function. This integration aimed to improve the effectiveness of
domain adaptation in the context of bearing fault diagnosis. But in methods based on MK-
MMD, it is imperative to manually choose an appropriate kernel or multiple kernels within
the Reproducing Kernel Hilbert Space (RKHS). In order to reduce the manual interference,
Qian et al. [22] combined the CORAL loss with an adversarial mechanism, thereby reducing
the distribution discrepancy between the two domains. On the other hand, adversarial-
based techniques [23–25] introduce an additional classifier to predict the domain label of
the input samples called domain discriminator and force the feature extractor to confuse
it during the training process. This strategy allows for the extraction of features that are
domain-invariant. Li et al. [26] proposed an adversarial training scheme to reduce the
gap between cross-sensor data in the feature space, thereby achieving cross-domain fault
diagnosis. Chen et al. [27] attempted to address the large domain shift problem in cross-
domain fault diagnosis scenarios by employing a domain adversarial transfer network.
However, although these methods have demonstrated encouraging results in domain
adaptation, these domain alignment methods can only reduce domain shift rather than
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completely eliminate it. Consequently, target samples located near cluster boundaries or
far from their respective class centers are more prone to misclassification due to the learned
hyperplane from the source domain [28]. In other words, these methods focused solely on
acquiring shared feature representations by minimizing distribution discrepancies among
various domains but failed to preserve class distinctive features, which can lead to the
misclassification of the target samples distributed near class decision boundaries [29].

In an attempt to leverage class-specific decision boundaries, Saito et al. [30] introduced
a new method called maximum classifier discrepancy (MCD), which is relevant to our
approach. They utilized a feature extractor and two differently initialized classifiers in a
mini-max game during domain adaptation. The approach focuses on maximizing the pre-
diction discrepancy of unlabeled target domain samples, thereby facilitating the detection
of ambiguous target samples falling outside the support of the source domain. Simulta-
neously, it minimizes this discrepancy when optimizing the feature extractor to generate
target features that reside within the source feature regions. However, MCD exclusively
addresses class-level alignment but overlooks global domain alignment. Such an approach
highly depends on the accuracy of the domain source classifier, leading to significant
performance degradation, especially when the gap between domains is substantial [31].
Furthermore, MCD does not incorporate class label information when minimizing classifier
discrepancies, potentially causing some target samples to be assigned to incorrect category.

To address the aforementioned challenges, a deep domain adaptation with correla-
tion alignment and supervised contrastive learning (DCASCL) method is developed in
this work, which carries out feature distribution alignment on both global domain and
class-level scales. In particular, global domain alignment is achieved through correlation
alignment loss. By minimizing this loss, the model is trained to generate generalizable
feature representations that are robust to domain shift. Additionally, to align the feature
distributions on the class-level scale, a cross-domain supervised contrastive learning loss is
combined with the classifier discrepancy loss. This allows the model to utilize class-label
information and learn discriminative features with improved intra-class compactness and
inter-class separability. The following is a brief summary of our work’s main contributions.

1. We propose DCASCL, a novel domain adaptation (DA) framework applied to fault
diagnosis of mechanical machinery. DCASCL simultaneously considers domain
distribution alignment and class distribution alignment. We experimentally validate
that these two aspects complement each other.

2. The correlation alignment is used to realize the domain distribution alignment by
minimizing the difference between the covariance matrices of the source and target
domain features. The supervised contrastive learning loss is combined with classifier
discrepancy loss to align the feature distributions class-wisely. Unlike other methods,
DCASCL utilizes class label information through the supervised contrastive learning
loss term, which makes it possible to align the features of samples of the same class
more tightly while pushing apart those of dissimilar classes.

3. Three different datasets with distinct transfer tasks are employed to validate the
feasibility of DCASCL. Furthermore, extensive comparison experiments are carried
out to demonstrate the effectiveness of DCASCL over several popular cross-domain
diagnostic methods.

2. Methods
2.1. Problem Description

Let a source domainDs with ns labeled fault samples be represented asDs = {(xs
i , ys

i )}
ns
i=1,

where xs
i and ys

i denote the i-th source domain fault sample and its corresponding fault label,
respectively. Similarly, let a target domain Dt with nt unlabeled fault samples be represented
as Dt = {(xt

i)}
nt
i=1, where xt

i is the i-th target domain fault sample. It is assumed that the
source domain samples Xs and target domain samples Xt share a common feature space but
have distinct distributions P(Xs) ̸= P(Xt). This implies that the source and target domains
exhibit divergent marginal distributions, resulting in a domain shift. Therefore, our goal is
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to develop a novel strategy to effectively transfer knowledge from the source to the target
domain, allowing the model to reliably identify the target domain samples.

2.2. Model Structure

DCASCL comprises three components, as illustrated in Figure 1: a feature extractor
F is employed to acquire high-dimensional feature vectors, and two classifiers C1 and C2
for label prediction. To mitigate the impact of high-frequency noise on the classification
accuracy of bearing signals, the structure of the feature extractor F in DCASCL is similar to
the WDCNN method proposed by Zhang et al. [32], which implemented a large kernel in
the first convolution layer. The feature extractor F is composed of five 1-D convolutional
blocks and two dense blocks. Each convolutional block consists of a convolutional layer,
ReLU activation, batch normalization (BN), and max pooling. The first convolutional
layer utilizes larger convolutional kernels (64 × 1), while the subsequent layers utilize
smaller convolutional kernels (3 × 1). Each dense block consists of a fully connected
layer, a ReLU layer, and a BN layer. The classifiers C1 and C2 consist of two dense blocks
and a fully connected layer, and the structure of the dense blocks is consistent with that
of the feature extractor. To enhance the network’s capacity for generalization and avoid
overfitting, dropout layers are included following every dense block. The final layer is
a fully connected layer that maps the model’s output to the probability distribution of
each corresponding category through the softmax activation function. The detailed model
design is provided in Table 1.

Figure 1. The model architecture diagram of DCASCL. The source domain samples Xs and the target
domain samples Xt act as inputs to the feature extractor F after FFT processing, ultimately obtaining
high-dimensional features Zs and Zt. The LCORAL is employed to measure the difference in the co-
variance matrices between Zs and Zt. Pseudo-labels for target domain samples are acquired using the
double-confirmation (DC) strategy and are subsequently utilized for supervised contrastive learning
(LSCL) alongside labeled source domain samples. The Ladv represents the classifier discrepancy and
is computed from the probability outputs of two classifiers, C1(F(Xt)) and C2(F(Xt)). The LC is a
classification loss.
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Table 1. The detailed parameters of DCASCL.

Module Name Block Name Layer Type In/Out Channel Kernel
Size/Stride

Activation
Function

Feature extractor

Conv1
Convolutional 1/16 64/4 ReLU

BatchNorm 16 / /
Max Pooling / 2/1 /

Conv2
Convolutional 16/32 3/2 ReLU

BatchNorm 32 / /
Max Pooling / 2/1 /

Conv3
Convolutional 32/64 3/2 ReLU

BatchNorm 64 / /
Max Pooling / 2/1 /

Conv4
Convolutional 64/64 3/2 ReLU

BatchNorm 64 / /
Max Pooling / 2/1 /

Conv5
Convolutional 64/64 3/1 ReLU

BatchNorm 64 / /
Max Pooling / 2/1 /

Dense1 Linear 64 × 56/2048 / ReLU
BatchNorm 2048 /

Dense2 Linear 2048/1024 / ReLU
BatchNorm 1024 / /

Classifier

/
Linear 1024/512 / ReLU

BatchNorm 512 / /
Dropout / / /

/
Linear 512/256 / ReLU

BatchNorm 256 / /
Dropout / / /

/ Linear 256/num classes / Softmax

2.3. Optimization Objectives of DCASCL

Classification Loss Term: To enable the model to learn discriminative features of the
input fault samples, we first utilize the source domain to train the whole model, including
the feature extractor F and the classifiers C1 and C2. This training phase aims to minimize
the classification loss of both classifiers. The classification loss used is the cross-entropy,
which is computed for both classifiers and integrated as follows:

LC(Xs, Ys) = −E(xs ,ys)∼(Xs ,Ys)[
K

∑
k=1

1[k=ys ]logp1(y|xs) +
K

∑
k=1

1[k=ys ]logp2(y|xs)] (1)

where p1(y|xs) and p2(y|xs) represent the probabilistic output from the classifiers C1 and
C2, respectively. k stands for the fault label.

During the network training, the primary objective is to seek the optimal θ̂F, θ̂C1,
and θ̂C2 by reducing LC(Xs, Ys). The entire process can be represented as(

θ̂F, θ̂C1 , θ̂C2

)
= arg min

θF ,θC1
,θC2

Lc(Xs, Ys) (2)

Correlation Alignment Loss Term: The correlation alignment (CORAL) loss is a
statistical matching-based domain adaptation strategy. Its primary objective is to align
the feature distributions of the source and target domains by minimizing the difference
in the covariance matrices in the feature space. This aids in extracting domain-invariant
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feature representations that are robust to the domain shift. The CORAL loss is calculated
as follows:

LCORAL =
1

4d2 ∥CS − CT∥2
F (3)

where d stands for the feature space’s dimension, ∥·∥2
F denotes the squared matrix Frobenius

norm, and CS and CT represent the covariance matrices of the features of the source and
target domains, respectively. The covariance matrices can be expressed as

Cs =
1

Ns − 1

(
ZT

s Zs −
1

Ns

(
1TZs

)T(
1TZs

))
(4)

Ct =
1

Nt − 1

(
ZT

t Zt −
1

Nt

(
1TZt

)T(
1TZt

))
(5)

in which Zs and Zt represent domain features of the source and target domains obtained
with batch size Ns and Nt, respectively, and 1Tis a vector wherein all elements equal 1.

In this study, the training process of the network aims to minimize the LCORAL between
the features extracted from the source and target domains. The optimization of parameters
θ̂F is performed to achieve global domain alignment. The process of training θ̂F as follows:(

θ̂F
)
= arg min

θF

LCORAL (6)

Discrepancy Loss Term: Due to the presence of domain shift, global domain alignment
can only alleviate it but not entirely remove it. This results in target samples near the class
boundaries being prone to mis-classification by the classifier. Therefore, it is imperative to
implement class alignment as well. In this work, class alignment is realized by adopting
the discrepancy loss between the classifiers C1 and C2. Since the classifiers are initialized
differently, their predictions for the target samples near class boundaries that fall outside
the support of the source domain are inconsistent. By intentionally maximizing this
inconsistency in the predictions between C1 and C2, the model can effectively identify the
target samples situated near class boundaries. We can measure the difference between the
predictions of the two classifiers on the target domain samples as follows:

dis
(

p1
(
y|xt), p2

(
y|xt)) = 1

K

K

∑
k=1

|p1k

(
y|xt)− p2k

(
y|xt)| (7)

where p1k

(
y|xt) and p2k

(
y|xt) represent the probability outputs of p1

(
y|xt) and p2

(
y|xt)

for class k, respectively; and | · | denotes the l1norm.
In addition, the cross-entropy loss LC(Xs, Ys) is added to ensure that the source

domain samples are correctly classified while maximizing the classifier discrepancy loss. Fi-
nally, the maximization of the classifier discrepancy loss can be achieved by the
following formula: (

θ̂C1 , θ̂C2

)
= arg min

θC1
,θC2

{Lc(Xs, Ys)−Ladv
(
Xt)} (8)

Ladv = Ext∼Xt
[
dis

(
p1
(
y|xt), p2

(
y|xt))] (9)

To align the feature distributions of the source and target domains class-wisely and
encourage the features of the target samples to be generated under the influence of the
source domain, we also need to minimize the discrepancy between classifiers. In this
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case, we need to keep the two classifiers fixed and update the feature extractor using the
following formula: (

θ̂F
)
= arg min

θF

Ladv
(
Xt)

(10)

Supervised Contrastive Learning Loss Term: In the process of minimizing classifier
discrepancy, the class label information is neglected. In order to utilize this information ef-
fectively, drawing inspiration from supervised contrastive learning (SCL) [33], we introduce
a novel cross-domain supervised contrastive learning loss aimed at learning representations
with both intra-class compactness and inter-class separability. Applying this loss, the model
is trained to project samples of the identical category nearer in the feature space while
pushing apart the samples of distinct categories, whether these samples originate from the
source or target domain. We regard the ℓ2-normalized features zt

i obtained from the i-th
sample xt

i in the target domain as an anchor. It forms a positive pair with a sample from
the source domain belonging to the identical category, denoted as zs

p. The cross-domain
supervised contrastive learning loss is then defined as follows:

Lt,s
SCL =

N

∑
i=1

−1
|Ps(ŷt

i)|
∑

p∈Ps(ŷt
i )

log
exp

(
ztT

i · zs
p/τ

)
∑j∈It exp

(
ztT

i · zs
j /τ

) (11)

where the · symbol denotes the inner dot product; Ps(ŷt
i) =

{
k|ys

k = ŷt
i
}

is the set of
positive samples in the source domain that share the identical category as the target domain
anchor xt

i , ŷt
i is the pseudo-label of the target domain sample xt

i . It respresents the set
of source samples in a batchsize; τ is a temperature hyper-parameter. Additionally, we
can calculate Ls,t

SCL by using the features of source domain samples as anchor, where
Pt(ys

i ) =
{

k|ŷt
k = ys

i
}

represents the set of positive samples in the target domain with
the identical category as the anchor samples from the source domain. Finally, combining
Lt,s

SCL and Ls,t
SCL, the ultimate cross-domain supervised contrastive loss can be expressed

as follows:

LSCL = Lt,s
SCL + Ls,t

SCL (12)

Although we cannot directly obtain the true labels of target domain samples, we can
acquire a set of pseudo-labels through the predictions made by classifiers. A common
practice is to use the highest prediction probability of the classifier as a pseudo-label for
each sample [34]. However, not all pseudo-labels are accurate, as there may be some
misleading ones that could misguide the model during training. To ensure the generation
of high-quality pseudo-labels, we propose a strategy named double confirmation (DC),
comprising two steps. Firstly, employing a pre-defined fixed threshold Tthre to filter out
low-confidence samples predicted by the classifiers. Subsequently, we select samples for
which pseudo-label predictions are consistent between two classifiers. Specifically, we use
a fixed threshold of 0.95 to filter and obtain two sets, denoted as Ŷ1 (predicted by C1) and
Ŷ2 (predicted by C2), which consist of samples with predicted probabilities greater than or
equal to the threshold. We then extract samples from these sets where both classifiers C1
and C2 predict consistent pseudo-labels. These consistent samples are utilized to create a
new dataset, denoted as Ŷt, which will be used in the previously mentioned supervised
contrastive learning process. Ŷt is expressed as follows:

Ŷt =
{{

Ŷ1 =
{

max(P1(y|xt)) ≥ Tthre
}}

∩
{

Ŷ2 =
{

max(P2(y|xt)) ≥ Tthre
}}}

(13)

Minimizing the supervised contrastive learning loss helps bring closer the distances
between samples of the identical category originating from different domains or the same
domain, while simultaneously increasing the distances between samples of distinct cate-
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gories in the feature space. By pursuing this training objective, we guide the model to learn
more discriminative feature representations. Therefore, the training process for F can be
formulated as follows: (

θ̂F
)
= arg min

θF

αLSCL (14)

where α is a hyper-parameter. Despite employing the DC strategy to obtain reliable pseudo-
labels as much as possible, there exists some noise in the pseudo-labels of the target domain,
particularly during the initial stages of network training. This noise can have an impact on
supervised contrastive learning. To alleviate this issue, we introduce a hyper-parameter
α during the optimization of the supervised contrastive learning loss. The α is gradually
adjusted from 0 to 1 as the number of iterations progresses to mitigate the influence of
noisy pseudo-labels. The variation of α can be expressed as [35]

α =
2

1 + exp
(
−γ

(
i
E

)) − 1 (15)

where i is the i-th epoch, E represents the total number of epochs and is set to 200, and γ is
set to 10.

2.4. Training Process

As demonstrated in Figure 2, the training process involves three steps.

Figure 2. The detailed training process of the DCASCL model. (a) represents the prediction process,
(b) represents Step 1, (c) represents Step 2, and (d) represents Step 3. In the figure, the black arrow
indicates the flow of source domain data, while the red arrow indicates the flow of target domain data.

Step 1: the feature extractor F and the two classifiers C1 and C2 are trained syn-
chronously using the cross-entropy loss term and the CORAL loss term, as shown in
Figure 2b. The overall optimization goal is achieved by combining Equations (2) and (6) as
follows: (

θ̂F, θ̂C1 , θ̂C2

)
= arg min

θF ,θC1
,θC2

LC(Xs, Ys) + λarg min
θF

LCORAL (16)

Step 2: the feature extractor F is fixed, and the two classifiers C1 and C2 are trained
using the discrepancy loss term, as displayed in Figure 2c. The objective of this step is
to maximize the discrepancy of the prediction distributions between C1 and C2 on target
samples using Equation (8).
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Step 3: the two classifiers C1 and C2 are fixed, and the feature extractor F is trained
using SCL loss term and discrepancy loss term, as depicted in Figure 2d. The objective
of this step is to minimize the discrepancy loss along with the SCL loss. Integrating
Equations (10) and (14), the training process for F in this step can be expressed as follows:(

θ̂F
)
= arg min

θF

{Ladv
(
Xt)+ αLSCL} (17)

where α and λ are the trade-off parameters. The above three steps are iterated until the
model is trained. And Algorithm 1 summarizes the overall algorithm and training process
of DCASCL.

Algorithm 1: Training process of DCASCL
Input: the labeled samples Xs and the corresponding label Ys, the unlabeled
samples Xt, number of epochs (E), number of batch size (B), initial learning rate,
and the trade-off parameter λ

Output: Optimal parameters θF of F, Optimal parameters θC1 and θC2 of C1 and C2
1. For epoch = 1 to E do
2. α increases from 0 to 1
3. For i = 1 to B do
4. #Step 1: Simultaneously update parameters of F, C1, and C2,
5. Calculate classification loss LC(Xs, Ys) and correlation alignment loss

LCORAL using Equations (1) and (3)
6. Update parameters of F, C1, C2 using the Equation (16)
7. #Step 2: Update parameters of C1 and C2, fix parameters of F
8. Calculate classifier discrepancy dis

(
p1
(
y|xt), p2

(
y|xt)) using Equation (7)

9. Update parameters of C1, C2 using the Equation (8)
10. #Step 3: Update parameters of F, fix parameters of C1 and C2
11. Calculate classifier discrepancy dis

(
p1
(
y|xt), p2

(
y|xt)) and supervised

contrastive learning loss using Equations (7) and (12)
12. Update parameters of C1, C2 using the Equation (17)
13. End
14. End

3. Experimental Results and Discussion
3.1. Dataset Description

We conducted experiments on three distinct datasets to assess the performance of the
DCASCL model. These datasets include the Case Western Reserve University (CWRU)
dataset, the Southeast University (SEU) dataset, and the Jiangnan University (JNU) dataset,
respectively. Details about these three datasets are described below.

CWRU Bearing Dataset: The CWRU dataset is commonly utilized for fault diagno-
sis [36], and its experimental configuration is depicted in Figure 3, which is adapted from [37].
Downloads for it are available at [38]. The dataset was acquired at either 12 kHz or 48 kHz.
In this paper, we specifically utilized the data collected at 12 kHz. They contain vibration
signals obtained from bearings, covering four distinct operating conditions: 0, 1, 2, and 3 hp.
Each operating condition comprises ten distinct health states of the bearings, including normal
(N), inner race fault (IF) with defect diameters of 0.007, 0.014, and 0.021 inches, as well as
both ball fault (BF) and outer race fault (OF) with the corresponding defect diameters. Twelve
different transfer tasks are established based on the distinct operating conditions. In the
transfer task 0 hp → 1 hp, it indicates the utilization of 0 hp and 1 hp operating conditions
as the source domain and target domain datasets, respectively. Detailed information can be
found in Table 2.
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Figure 3. CWRU bearing test rig [37].

Table 2. Description of the CWRU dataset.

Fault Type BF BF BF IF IF IF OF OF OF N
Fault Size (Inches) 7 14 21 7 14 21 7 14 21 0
Class Label 0 1 2 3 4 5 6 7 8 9
Load (hp) 0, 1, 2, 3

Total number of samples 4000
Train and test set ratio 7:3

JNU Bearing Dataset: Jiangnan University provided this dataset [39], which is also
commonly used for research in bearing fault diagnosis. Its experimental signal acquisition
system is illustrated in Figure 4, which is sourced from [39], and it can be obtained from [40].
The vibration data in the JNU bearing dataset were acquired at three different speeds:
600, 800, and 1000 rpm. Normal health (N), inner fault (IF), outer fault (OF), and ball fault
(BF) are the four health states included in each speed. Six transfer tasks were established
based on the three different speed conditions, where 600 rpm → 800 rpm indicates that
the dataset obtained at the speed condition of 600 rpm is used for the source domain and
800 rpm is employed for the target domain. Table 3 provides comprehensive information.

Figure 4. Experimental signal acquisition system for the JNU dataset [39].
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Table 3. Description of the JNU dataset.

Fault Type IF N OF BF
Class Label 0 1 2 3
Speed (rpm) 600, 800,1000

Total number of samples 2400
Train and test set ratio 7:3

SEU Gearbox Dataset: This dataset is from the Southeast University in China [41],
and its experimental setup is depicted in Figure 5, which is adapted from [37]. It can
be downloaded from [42]. The dataset is separated into two sub-datasets that provide
information on the health of bearings and gearboxes. The data were collected using a
Drivetrain Dynamics Simulator (DDS) and included eight vibration information channels.
The data from the second channel of the gearbox dataset are used in this work. This dataset
contains two operating conditions based on speed and load: 20 HZ-0V and 30 HZ-2V. Each
operating condition includes one healthy condition and four faulty conditions, namely
Health, Chipped, Root, Miss, and Surface. Based on these two operating conditions, two
transfer tasks are created, where 20 HZ-0V → 30 HZ-2V represents the utilization of the
20 HZ-0V dataset for the source domain and the 30 HZ-2V dataset for the target domain.
For more comprehensive information, refer to Table 4.

Figure 5. The experimental setup of SEU dataset [37].

Table 4. Description of the SEU dataset.

Fault Type Chipped Health Miss Root Surface
Class Label 0 1 2 3 4
RS-LC 20 HZ-0V, 30 HZ-2V

Total number of samples 3000
Train and test set ratio 7:3

3.2. Data Processes

In this paper, the same approach is employed for preprocessing the three datasets
mentioned above. First, we applied a random sampling approach to sample the raw
vibration data, with a sample length of 4096 for each sample. Then, we applied the Fast
Fourier Transform (FFT) technique to each randomly sampled data. Due to the symmetry
of the spectral coefficients, we used only half of the length of the FFT-transformed samples,
which is 2048. Finally, the FFT-processed samples underwent Z-score standardization,
with the Z-score standardization formula as follows:

xn
i =

xi − xmean
i

xstd
i

(18)



Actuators 2024, 13, 93 12 of 21

Here, the mean and standard deviation of xi are indicated by xmean
i and xstd

i , respectively.

3.3. Implementation Details

We constructed the entire model using the PyTorch framework and conducted both
training and testing on a PC equipped with an NVIDIA RTX 3060 GPU. The batch size
for both the source and target domains is 128. The Adam optimizer is utilized for model
optimization, with an initial learning rate of 0.0001 for both the feature extractor and the
two classifiers. The dropout ratio is established at 0.2. The accuracy of diagnosis on the
target domain is utilized as a metric to assess the performance of our suggested model.
To mitigate randomness and bolster result robustness, each experiment undergoes ten
iterations, and the average performance over these repetitions is reported as the final result.

3.4. Comparison Methods

We compared our proposed strategy to numerous approaches in order to assess its
efficacy and superiority:

(1) No Domain Adaptation: 1D-CNN serves as a baseline method, utilizing only source
domain data to directly train the model for diagnostic tasks in the target domain.

(2) Only Domain Distribution Alignment: Both MK-MMD [43] and CORAL [15] align
distributions by matching statistical differences between two domains. DANN [44]
introduces a domain discriminator to differentiate between domains and encourages
the model to learn representations that are invariant across domains by confusing
the discriminator.

(3) Only Class Distribution Alignment: MCD [30] method maximizes discrepancy in
predictions on unlabeled target samples between two separate classifiers during
optimization. Meanwhile, it minimizes this discrepancy when optimizing the feature
extractor to generate target features under the support of the source domain.

3.5. Experimental Results and Analysis

Tables 5–7 and Figures 6–8 display detailed diagnostic performance for our method
and other approaches in the transfer tasks across three datasets.

As presented in Table 5, DCASCL consistently demonstrated top accuracy in all twelve
transfer tasks within the CRWU dataset, achieving a remarkable 100% accuracy. Although
MCD achieved perfect accuracy in ten tasks, its accuracy decreased to 93.45% and 92.96%
in the 0 hp → 3 hp and 3 hp → 0 hp tasks, respectively, primarily due to the significant
variations in working conditions between these two tasks.

Table 5. Results of DCASCL and other approaches on CRWU dataset.

Tasks Symbol Tasks 1D-CNN MK-MMD CORAL DANN MCD DCASCL

C0 0 hp → 1 hp 98.67 100 98.53 99.35 100 100
C1 0 hp → 2 hp 97.08 100 98.54 100 100 100
C2 0 hp → 3 hp 90.84 94.65 93.65 92.76 93.45 100
C3 1 hp → 0 hp 94.04 99.81 100 99.78 100 100
C4 1 hp → 2 hp 93.19 100 100 100 100 100
C5 1 hp → 3 hp 95.79 99.84 100 98.43 100 100
C6 2 hp → 0 hp 90.99 98.85 99.23 98.46 100 100
C7 2 hp → 1 hp 95.73 99.35 99.68 100 100 100
C8 2 hp → 3 hp 89.19 100 100 100 100 100
C9 3 hp → 0 hp 91.21 94.13 92.50 93.51 92.96 100
C10 3 hp → 1 hp 94.18 99.03 92.21 94.28 100 100
C11 3 hp → 2 hp 96.24 100 99.68 98.68 100 100
Average - 93.93 98.81 97.84 97.94 98.87 100
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Figure 6. The experimental results of the CRWU dataset.

Due to the relatively straightforward nature of diagnosing bearing faults across dif-
ferent domains in the CRWU dataset, the advantage of DCASCL is not as pronounced.
Hence, the evaluation is extended to the JNU dataset. Compared to the CRWU dataset,
the JNU dataset involves significant variations in rotation speed, making domain adapta-
tion more challenging due to substantial differences in features implied by similar signal
states. Table 6 presents the experimental outcomes of various methods across six transfer
tasks using the JNU dataset. The experimental results highlight the adaptability of the
DCASCL model to the signals of the same faults that bear large differences between dif-
ferent working conditions (in this case, different rotation speeds). In each transfer task,
DCASCL outperformed other methods in terms of diagnostic performance. Particularly,
DCASCL attained remarkable accuracies of 100% and 99.68%, for the challenging tasks of
600 rpm → 1000 rpm and 1000 rpm → 600 rpm, respectively. These results highlight the
superiority of DCASCL, even when faced with substantial variations in working conditions.

Table 6. Results of DCASCL and other approaches on JNU dataset.

Tasks Symbol Tasks 1D-CNN MK-MMD CORAL DANN MCD DCASCL

J0 600 rpm → 800 rpm 83.01 89.73 93.45 95.57 98.67 99.37
J1 600 rpm → 1000 rpm 78.95 91.80 90.27 94.32 96.34 100
J2 800 rpm → 600 rpm 86.09 90.36 94.05 92.51 99.07 100
J3 800 rpm → 1000 rpm 88.65 92.63 91.25 93.83 98.12 100
J4 1000 rpm → 600 rpm 80.49 91.27 88.14 93.67 97.81 99.68
J5 1000 rpm → 800 rpm 90.35 93.27 92.13 92.49 97.06 100
Average - 84.59 91.51 91.55 93.73 97.85 99.84

Table 7 presents the results achieved from the experiments performed on two transfer
tasks from the SEU dataset, where our method consistently showed the best performance.
In particular, our method has shown a fault diagnosis accuracy of 100% in both tasks. It
significantly improves the accuracy by 31.65% in the 20 HZ-0V → 30 HZ-2V task compared
to the accuracy results achieved when no domain adaptation is used.
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Figure 7. The experimental results of the JNU dataset.

Table 7. Results of DCASCL and other approaches on SEU dataset.

Tasks Symbol Tasks 1D-CNN MK-MMD CORAL DANN MCD DCASCL

S0 20 HZ-0V → 30 HZ-2V 68.35 81.35 83.62 65.86 81.48 100
S1 30 HZ-2V → 20 HZ-0V 75.43 84.52 85.17 79.32 82.93 100
Average - 71.89 82.94 84.40 72.59 82.21 100

Figure 8. The experimental results of the SEU dataset.

From these three experimental result tables, it is observed that all domain adaptation
methods outperform baseline methods in terms of average accuracy. Notably, DCASCL
excels in this aspect, surpassing other comparative domain adaptation methods, those
that solely focus on either domain distribution alignment or class distribution alignment.
This further underscores the importance of simultaneously considering both types of
distribution alignment in the context of fault diagnosis domain adaptation.

4. Model Analysis
4.1. Ablation Studies

To assess the impact of each component in the DCASCL model on performance, we
conducted ablation experiments on transfer tasks selected from the CWRU, JNU, and SEU
datasets, specifically, the 0 hp → 3 hp, 600 rpm → 1000 rpm, and 20 HZ-0V → 30 HZ-2V tasks.
MCD was chosen as our baseline method, and thus we categorized the ablation experiments
into four groups: (1) MCD, (2) MCD combined with the CORAL loss (MCD+CORAL),
(3) MCD combined with supervised contrastive learning loss (MCD+SCL), and (4) DCASCL.
We utilized accuracy and F1-score as evaluation metrics, where F1-score, a commonly used
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comprehensive metric, considers both precision and recall and can be represented as the
following formula:

F1 = 2×precision×recall
precision+recall (19)

In addition to these two evaluation metrics, we also introduced confusion matrices for
each experiment. Confusion matrices are tools used to visualize model prediction results
by comparing the true classes with the predicted classes, enabling a better understanding
of the model’s performance across different classes. Table 8 presents the results of each
experiment, while Figures 9–11 depict the corresponding confusion matrices.

Table 8. Performance comparison of methods on different transfer tasks.

Method
0 hp → 3 hp 600 rpm → 1000 rpm 20 HZ-0V → 30 HZ-2V

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

MCD 91.83 89.62 96.25 96.25 81.56 81.84
MCD+CORAL 94.33 93.84 98.19 98.19 91.44 91.52

MCD+SCL 97.25 97.20 98.75 98.75 93.89 93.88
DCASCL 100.0 100.0 100.0 100.0 100.0 100.0

In Table 8 of the experimental results, it is evident that the MCD method consistently
achieves the lowest accuracy and F1-score in each transfer task. However, upon incor-
porating the CORAL and SCL losses into the MCD method separately, we observed im-
provements in accuracy and F1-score across all transfer tasks. Particularly notable is the
significant enhancement in accuracy, with increases of 9.88% and 12.33% observed in the
20 HZ-0V → 30 HZ-2V transfer task. Our proposed method, DCASCL, integrates both
these components, resulting in the highest accuracy and F1-score in each transfer task, both
reaching 100%.

Further examination of the confusion matrices in Figures 9a and 10a reveals that the mis-
classification of the MCD method is not severe in the 0 hp → 3 hp and 600 rpm → 1000 rpm
transfer tasks. In the 0 hp → 3 hp transfer task, some confusion exists primarily in the third
category, wherein samples are incorrectly classified into multiple classes. Similarly, in the
600 rpm → 1000 rpm transfer task, only a small number of misclassification occurs between
classes 1 and 4. However, from Figure 11a, it is evident that the misclassification of the
MCD method is more pronounced in the 20 HZ-0V → 30 HZ-2V transfer task, particularly
between classes 3 and 4, where samples are erroneously classified into multiple classes.
After incorporating the CORAL and SCL components, we observed some improvements
in the misclassification situation from Figures 9–11. We attribute this misclassification to
the inadequate consideration of global domain alignment and the absence of class-specific
information in the MCD method. The lack of such information may lead to ambiguous
target samples being incorrectly matched to the wrong classes. Given that the CORAL
component strengthens knowledge transfer between domains and the SCL component
leverages class-discriminative information to enhance the network’s ability to differentiate
between different fault classes, both components contribute to improved fault diagnosis
accuracy. Therefore, our method integrates both these components, effectively resolving
the misclassification issue across the three transfer tasks, with all classes being correctly
classified. These analytical results further validate the superior performance and robustness
of our method in fault diagnosis.
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Figure 9. Confusion matrix of combinations between different components on the 0 hp → 3 hp
transfer task:(a) MCD; (b) MCD+CORAL; (c) MCD+SCL; (d) DCASCL.

Figure 10. Confusion matrix of combinations between different components on the 600 rpm → 1000 rpm
transfer task: (a) MCD; (b) MCD+CORAL; (c) MCD+SCL; (d) DCASCL.



Actuators 2024, 13, 93 17 of 21

Figure 11. Confusion matrix of combinations between different components on the 20 HZ-0V →
30 HZ-2V transfer task: (a) MCD; (b) MCD+CORAL; (c) MCD+SCL; (d) DCASCL.

4.2. Feature Visualization

To provide a more intuitive visualization of the impact of different components on
the feature extraction capabilities of DCASCL, we employed t-SNE [45] technology. T-SNE
is a commonly used technique for dimensionality reduction and visualization, aiming to
map high-dimensional data to two-dimensional or three-dimensional space, allowing for
easier interpretation. Figure 12 illustrates the effect of utilizing different components on
the model’s feature extraction. Figure 12a visually illustrates the effects of training the
model using the conventional MCD method on the extracted features from samples in
both the source and target domains. From the visualization, it is evident that there are
significant overlapping regions among the features of the three categories, and there is a
noticeable separation between the features extracted from the source and target samples.
In Figure 12b, after incorporating the CORAL loss for global alignment, the overlapping
regions of category features are reduced, and the distance between the features of the
source and target domains is relatively minimized but not sufficiently compact. However,
there are still some individual samples that are close to the class boundaries of different
categories. When only the supervised contrastive learning loss is added, as shown in
Figure 12c, the feature distances between samples of the same category from the source
and target domains show a more compact arrangement, whereas the distances between
samples of different categories increase. In Figure 12d, after incorporating both the CORAL
and SCL losses, the aforementioned issues are addressed. The class boundaries become
clearer, and the feature distances between different domains are highly compact. The results
from the ablation experiments indicate that both domain distribution alignment (achieved
through the CORAL loss) and class distribution alignment (achieved through MCD and
the SCL loss) play a vital role in enhancing the model’s fault diagnosis performance across
diverse domains.
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Figure 12. Feature visualization of combinations between different components in the 20 HZ-0V →
30 HZ-2V transfer task of the SEU dataset: (a) MCD; (b) MCD+CORAL; (c) MCD+SCL; (d) DCASCL.

4.3. Parameter Analysis

In this study, we conducted a trade-off parameter analysis of model performance.
Our model has two main trade-off parameters: α and λ. Among them, α is a dynamically
changing trade-off parameter, as defined in Equation (15). Therefore, we focused on
analyzing the impact of the trade-off parameter λ on model performance. We conducted
experiments on the λ trade-off parameter across all transfer learning tasks on the JNU
dataset to observe its effect on model performance. From Figure 13, it can be seen that,
as λ gradually increases from a small value of 0.1 to 0.8, the model’s accuracy shows a
gradually increasing trend. The highest classification accuracy across all six tasks on the
JNU dataset was achieved at λ = 0.8. Around this value, the model’s performance exhibits
relative stability. However, as the value of λ continues to increase, surpassing 1, the model’s
accuracy begins to decline. Therefore, we set the hyperparameter λ to 0.8. Overall, λ has
a significant impact on model performance, and selecting an appropriate value of λ can
enhance model performance, while avoiding excessively large values of λ that may lead to
performance degradation.
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Figure 13. The impact of the trade-off parameter λ on the JNU dataset.

5. Conclusions

This paper proposes a method named DCASCL to diagnose rotating mechanical
equipment failures across different operating conditions. Unlike most existing approaches,
our method simultaneously conducts the alignment of feature distributions on global
domain and class-level scales to cope with the differences in domains and classes present
in cross-domain scenarios. We initially utilize the correlation alignment loss to measure the
distance between feature distributions of source and target domains in the high-dimension
feature space. We then minimize this loss to bring the feature distributions of the two
domains closer to each other, achieving feature representations that are domain-invariant
and robust to the domain disparity. Moreover, we align the feature distributions class-
wisely by incorporating supervised contrastive learning loss and classifier discrepancy
loss into our model. The supervised contrastive learning loss leverages the class-label
information of target domain samples obtained through the double-confirmation (DC)
strategy, along with labeled source domain samples. This enables it to effectively cluster
samples of the same class in the feature space and to effectively separate samples of
different classes in the feature space, regardless of whether these samples come from the
source domain or the target domain. By computing the supervised contrastive learning
loss between target domain and source domain samples, the feature extractor is updated,
thereby enhancing the performance of DCASCL. Additionally, we experimentally validate
our proposed DCASCL approach on three publicly available datasets. The results obtained
from these experiments show the capability of the DCASCL in diagnosing machine faults
under various operating conditions, surpassing many works carried out in the field of
domain adaptation fault diagnosis.

Although our method has achieved significant results in diagnosing faults in rotating
mechanical equipment, especially in bearing and gear faults, we also recognize some
limitations. Firstly, our method has shown good performance in diagnosing faults in
rotating mechanical equipment under certain specific conditions. However, there may be
challenges when facing working conditions or fault types that have not been previously
encountered. Additionally, our model has not addressed the issue of data imbalance, which
may affect its performance in certain scenarios. Therefore, we will focus on addressing these
limitations in future research and further improve our method to enhance its robustness
and applicability in various scenarios.
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