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Abstract: This study develops a progressive optimal fault-tolerant control method based on insuf-
ficient fault information. By combining passive and active fault-tolerant control manners during
the process of fault diagnosis, insufficient fault information is fully used, and optimal fault-tolerant
control effect is achieved. In addition, the fault-tolerant control method based on guaranteed robust
cost control is introduced. The proposed progressive optimal fault-tolerant control method considers
two aspects. First, as the amount of fault information continually increases, the performance index of
the progressive optimal fault-tolerant controller improves. Second, at each moment, based on the
corresponding insufficient fault information and prior knowledge, optimal fault-tolerant control is
achieved according to current fault information. The process of progressive optimal fault-tolerant
control converges to active fault-tolerant control when the fault is completely identified, and the
optimal fault-tolerant controller is no longer reconfigured until no more useful fault information can
be provided. Furthermore, a progressive optimal fault-tolerant control algorithm based on the grid
segmentation in the parameter uncertainty domain and the selection of different auxiliary center
points is introduced. Simulation results verified the feasibility of the proposed algorithm and the
validity of the proposed theory.

Keywords: passive fault-tolerant control; active fault-tolerant control; progressive optimal
fault-tolerant control; guaranteed robust cost control

1. Introduction

In industrial systems, fault diagnosis (FD) and fault-tolerant control (FTC) are closely
related. In recent years, there have been many studies on fault diagnosis and fault-tolerant
control in various fields, including aerospace [1–3] and fields associated with power sys-
tems [4–6], high-speed rail systems [7–11], and satellites [12,13]. Based on previous research,
fault diagnosis will inevitably develop in a faster and more accurate way in the future. Ob-
taining fast and accurate fault information is an essential requirement of active fault-tolerant
control (AFTC) to ensure safe system operation; otherwise, AFTC performance cannot be
guaranteed, and its implementation cannot even be guaranteed. As is well known, passive
fault-tolerant control (PFTC) is relatively conservative. However, unlike AFTC, PFTC does
not require real-time fault information, which represents its inherent advantage. Traditional
fault diagnosis is predominantly based on mathematical models [14–16]; however, model-
based methods for fault diagnosis require an accurate system model, and the majority of
these methods can only provide only two types of results (i.e., fault undiagnosed or fault
diagnosed). Unfortunately, such approaches do not provide continuous fault information
which is insufficient but crucial for effective fault-tolerant control. In recent years, there
have been many studies on non-model-based methods (e.g., data-driven methods for fault
diagnosis), especially artificial intelligence-based algorithms [17–19]. Fault diagnosis using
artificial intelligence-based algorithms which include neural networks have a common
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problem: the behavior inside the “black box” is difficult to determine [20]. Thus, both
model-based and non-model-based fault diagnosis methods have their own advantages
and disadvantages. However, the development of a more accurate and faster fault diagnosis
method remains a challenge.

When fault information cannot be rapidly and accurately obtained, a fault-tolerant
control strategy which performs PFTC before the fault is fully identified and then switches
to the AFTC after the fault has been completely diagnosed seems to be a good choice. This
idea was proposed in [21]. However, its main disadvantage is the failure to utilize incom-
plete fault information, which is still valuable. Mechanically combining two fault-tolerant
control methods is not ideal due to their respective shortcomings [22–24]. Therefore, a
perfect solution could be generated if the advantages of AFTC and PFTC were to be com-
bined under the condition of insufficient fault information. Existing research has indicated
that PFTC and AFTC are typically applied independently, with fewer studies exploring
the combination of these two methods. Although hybrid fault-tolerant control [25] com-
bines AFTC and PFTC to a certain extent, these two control types are used separately
depending on whether a fault has been fully diagnosed. In [26], a fault-tolerant control
system (FTCS) design based on imprecise fault identification and robust reconfigurable
control is proposed. This method reduces the time delay between the onset of a fault and
the controller reconfiguration so that the system’s stability after the fault occurrence can
be recovered rapidly. However, this method mainly emphasizes system stability rather
than performance optimization. Moreover, the control object of this method does not have
generality. In [27], actuator faults were considered as additive faults, and a combined
passive-active FTC method based on reliable control was proposed, achieving a balance
between performance and complexity. However, the predefined control laws were obtained
offline rather than online by designing bottom-up extensible controllers with a minimal
acceptable configuration, and the nominal performance remained at a sub-optimal level
after a fault.

Although the above-mentioned methods combining the PFTC and AFTC methods are
mostly mechanical, they have been valuable, but insufficient fault information was not fully
used in the above-mentioned studies. Moreover, the concept of progressive performance
optimization has not been adequately explored, according to which, as fault information
increases, the fault-tolerant control effect improves. In view of this, this study examines
how to fully use insufficient fault information and combine the PFTC and AFTC methods
efficiently to achieve optimal performance. This idea was partly introduced in [28].

A comparison of the existing fault diagnosis methods has indicated that the parameter
interval algorithm shows superiority over other algorithms [29]. The parameter interval
algorithm can continuously obtain increasingly accurate fault information during the
fault diagnosis process. The smaller the parameter interval, the more accurate the fault
identification. From the moment of fault occurrence to the moment of complete fault
identification, the obtained fault information can be fully used to reconfigure the controller
to ensure optimal fault-tolerant control performance.

The pursuit of achieving a robust and optimal control effect while addressing the
limitations of practical methods and ensuring system stability, even at the expense of some
system performance, has long been a research focus [30–33]. Robust control methods are
often applied to stabilize system uncertainty [34]. Meanwhile, using robust control methods
as fault-tolerant control methods to accommodate system faults is another application.
Notably, Xue’s study [35] on robust and optimal control, which considers both robustness
and the control system’s effectiveness, holds significant value as a reference. Since a system
fault can be viewed as system uncertainty, the results of Xue’s research on robust and
optimal control can be applied to the field of fault-tolerant control for faulty systems.

The process of a progressive optimal fault-tolerant control method combines the
PFTC and AFTC manners, as explained in this article. When a fault occurs, the maximum
uncertainty domain can be determined based on prior knowledge. Moreover, the more
fault information obtained, the smaller the uncertainty domain of the faulty system. The
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progressive optimal fault-tolerant control method based on robust guaranteed cost fault-
tolerant control has been used to reconfigure the controller and ensure the optimal fault-
tolerant control effect with the improving fault information. When a fault is completely
identified, the process of progressive optimal fault-tolerant control converges to active
fault-tolerant control, and the optimal fault-tolerant controller is no longer reconfigured
until no more useful fault information can be provided. The essence of the progressive
optimal fault-tolerant control method lies in combining active and passive fault-tolerant
control manners by using continuously improving fault information.

The rest of this article is structured as follows: In Section 2, the necessary preliminaries
and the problem formulation of progressive optimal fault-tolerant control are provided.
Section 3 explores a progressive optimal fault-tolerant control method in a linear uncertain
system. A case study is presented in Section 4. Finally, Section 5 concludes this article.

2. Preliminaries and Problem Formulation

A system fault can be considered as a deviation of the system parameters [36]. There-
fore, a faulty system can be modeled as an uncertain dynamic system with parameter
uncertainty. The area where an actual value point of the system parameter vector might
exist is called the uncertainty domain.

An uncertain dynamic system is defined by (1), and its control law is given by (2).
.
x = f (x,θ, u)

y = Cx
θ = θ0 + ∆θ

(1)

u = −Kx (2)

In (1) and (2), x ∈ Rn represents the system’s state parameter vector, u ∈ Rp represents
the control input, and y ∈ R represents the output; f (•) is a non-linear function of x and
u parameterized by a vector θ; C represents the output matrix with a proper dimension;
∆θ denotes the uncertainty of the parameter vector related to the uncertainty domain Ω,
i.e., θ0 + ∆θ ∈ Ω. In this study, it is assumed that the uncertainty domain Ω surrounds
the nominal value θ0 of the system parameter vector θ, and K ∈ Rq is the controller
parameter vector.

The selection of the controller parameter vector K is called controller configuration. It
is assumed that this selection is related to the cost function (3).

J = F(x, u) (3)

Furthermore, assume that p1(x, u), p2(x, u), . . . pr(x, u) . . . pg(x, u) are g parameters
of a closed-loop system with certain constraint conditions. These g parameters can take
eigenvalues of the closed-loop system (1) or other values depending on the application
context. The constraint condition of the controller parameter vector K can be defined by (4).

pr(x, u) ∈ Λr, ∀r = 1, 2, . . . , v, ∀K ∈ Ψ(Ω), ∀θ ∈ Ω (4)

The constraint condition (4) implies a set of crucial indexes that should be satisfied
and represents the basic constraint condition of the controller parameter selection. In (4),
Λr represents a certain domain in a complex plane. For instance, if pr is an eigenvalue, then
Λr can be a left-half s plane. The closed-loop system (1) is considered to have good stability
if condition (4) is satisfied.

Definition 1. All values of controller vector K under constraint condition (4) form a feasible
domain Ψ(Ω) corresponding to an uncertainty domain Ω [28].
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Then, the objective of controller configuration is that the closed-loop system (1) satisfies
the following condition:

minJ = minF(x, u) (5)

where minJ can be an analytic or non-analytic expression; for instance, in the general case,
it can be a minimizing operation of a quadratic function of system state variables. Alterna-
tively, it could be described non-analytically—“the controller is the simplest to obtain”.

For the state feedback controller (2), (6) is selected as one of the constraint conditions.

J ≤ J∗ (6)

In (6), J∗ is a positive number and denotes the upper bound of the performance index J.
For the closed-loop system (1) and performance index (3), all controller parameter

values K corresponding to the uncertainty domain Ω that satisfy condition (6) form a
feasible domain Ψ(Ω). Therefore, progressive optimal fault-tolerant control is discussed in
the feasible domain Ψ(Ω) corresponding to the uncertainty domain Ω.

With the narrowing of the uncertainty domain Ω of a fault, the fault information
becomes increasingly sufficient; intuitively, there exists the following relation: Ω ⊃ Ω1 ⊃
Ω2 ⊃ . . . ⊃ Ωi ⊃ . . . ⊃ Ωj, where Ωi denotes the uncertainty domain at the ith moment.
And the jth moment is after the ith moment if j > i. This indicates that the uncertainty
domain Ω of a fault and its narrowed sub-domains exhibit the nested property.

With the continuous increase in and improvement of fault information, the uncertainty
domain of the fault shrinks.

To illustrate the progressive optimal fault-tolerant control method, we first introduce
Lemma 1.

Lemma 1. For an uncertain dynamic system (1), the smaller the range of uncertainty domain Ω of
a fault, the lower the upper bound of the performance index.

Proof. Consider an arbitrary sub-domain Ωi of an uncertainty domain Ω of a fault. For
uncertain system (1), suppose that the upper bounds J∗(Ω) and J∗(Ωi) of the performance
index corresponding to Ω and Ωi, respectively, satisfy the following condition:

J∗(Ωi) > J∗(Ω) (7)

As long as the actual system parameter value satisfies θ ∈ Ω, it holds that J ≤ J∗(Ω).
Under the condition of Ωi ⊂ Ω, the actual system parameter value θ locates in Ωi, but it
also locates in Ω simultaneously due to the nested property. Therefore, the performance
index J corresponding to Ωi satisfies the condition of J ≤ J∗(Ω) according to (6). Thus, the
upper bound of the performance index J∗(Ωi) corresponding to Ωi satisfies the condition
of J∗(Ωi) ≤ J∗(Ω), and (7) is not true. □

Based on Lemma 1, J∗(Ωi) ≤ J∗(Ω) is valid, and in accordance with the nested
property, when the range of the uncertainty domain is narrowing (i.e., Ωj ⊂ Ωi), then it
holds that

J∗(Ωj) ≤ J∗(Ωi), j ≤ i (8)

It should be noted that J∗(Ωj) = J∗(Ωi) indicates that regardless of the sub-domain
where an actual system parameter value can be located, the upper bound of the performance
index will not change. This also means the fault has been identified or the fault diagnosis
procedure cannot provide more useful fault information.

Definition 2. With each narrowing of the uncertainty domain Ωi ⊂ Ωj ⊂ Ω of a fault, depending
on the progressively sufficient fault information, the controller with the minimum upper bound of
the performance index can be defined as follows:
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u = Kix (9)

Ki = argmin(J∗(Ωi)), ∀θ ∈ Ωi (10)

min(J∗(Ωi)) ≤ min(J(Ωi)), Ω ⊃ Ω1 ⊃ Ω2 ⊃ . . . ⊃ Ωj ⊃ . . . ⊃ Ωi, ∀j < i, ∀j = 1, 2, 3 . . . (11)

Controller Ki, which satisfies (10) and (11), corresponding to the uncertainty sub-
domain Ωi of a fault, represents a progressive optimal fault-tolerant controller, and the
whole control process is progressive optimal fault-tolerant control.

Theorem 1. When dynamic system (1) satisfies the following three conditions in a different and
continuously narrowing uncertainty domain Ωi of a fault,

(1) J(Ωi) ≤ J∗(Ωi), ∀Ki ∈ Ψ(Ωi), Ω ⊃ Ω1 ⊃ Ω2 ⊃ . . . ⊃ Ωj ⊃ . . . ⊃ Ωi, ∀j < i,
∀j = 1, 2, 3 . . .;

(2) Ki = argmin(J∗(Ωi));
(3) min(J∗(Ωi)) ≤ min(J∗(Ωj));

then, system (1) is a progressive optimal fault-tolerant control system, where Ψ(Ωi) is the
feasible domain formed by controller parameter vectors Ki that satisfy constraint condition (1) for
the uncertainty domain Ωi.

Proof of Theorem 1. According to Definition 2, with the narrowing of the uncertainty
sub-domain Ωi of a fault, a progressive optimal fault-tolerant controller Ki is currently
optimal with min(J∗(Ωi)).

When the uncertainty sub-domain Ωi of a fault decreases with the gradually improving
fault information, in accordance with Lemma 1 and the nested property of the uncertainty
domain, the upper bound of the performance index decreases, i.e.,

J∗(Ωi) ≤ J∗(Ω) (12)

Then, it holds that

min(J∗(Ω)) ≥ min(J∗(Ωj)) ≥ min(J∗(Ωi)), Ω ⊃ Ω1 ⊃ Ω2 ⊃ . . . ⊃ Ωj ⊃ . . . ⊃ Ωi, ∀j = 1, 2, 3 . . . (13)

□

From (13), it is obvious that the narrower the uncertainty domain of a fault, the better
the control effect achieved during the process of progressive optimal fault-tolerant control.
In the current uncertainty domain, a fault-tolerant controller with a minimum upper bound
min(J∗(Ωi)) of the performance index is optimal. Progressive optimal fault-tolerant control
is performed until the fault is fully identified or the diagnosis process cannot provide more
useful fault information.

3. Progressive Optimal Fault-Tolerant Control in a Linear Uncertain System

Consider a linear system defined as follows:

.
x = Ax + Bu, y = Cx (14)

Assume that there is a parameter fault in a linear uncertain system (14), which can be
expressed by

.
x = (A+∆A)x + (B + ∆B)u, y = Cx (15)

where A and B represent the state matrix and control matrix, respectively, and
A ∈ Rn×n, B ∈ Rn×m; C is the output matrix. The possible deviation domains of the
faulty parameters are considered to be uncertainty domains; ∆A and ∆B denote the pa-
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rameter uncertainties caused by a fault of the controlled plant and actuator, respectively,
and these two types of fault are reflected in changes in the matrices A and B. ∆A and ∆B
denote uncertain real-value matrices with appropriate dimensions. According to [35], it
can be written that

∆A = MF1(t)E1 (16)

∆B=MF2(t)E2 (17)

∥∆A∥ ≤ α, ∥∆B∥ ≤ β (18)

where M ∈ Rn×r, E1 ∈ Rq×n, E2 ∈ Rq×m, and they are all rational real matrices; α and β
are known scalars, which means ∆A and ∆B are norm-bounded; F1(t), F2(t) ∈ Rr×q are
uncertainty function matrices that represent the time degeneration of a parameter fault.

Assume that matrices F1(t), F2(t) belong to a set Θ as defined below [35]:

Θ =
{

Fz(t)
∣∣∣Fz

T(t)Fz(t) ≤ I, ∀z = 1, 2, ∀t
}

(19)

Consider a progressive optimal fault-tolerant control method for a linear uncertain
system, as discussed below. With the constraint condition of guaranteed robust cost control,
the progressive optimal fault-tolerant control method is achieved by searching for a feasible
domain on the uncertainty domain of the fault.

3.1. Progressive Optimal Fault-Tolerant Control from the Perspective of Guaranteed Robust
Cost Control

According to Theorem 8.3.2 in [35], which defines that for system (15) and performance
index (20), the sufficient and necessary condition for a linear state feedback controller (21)
to make a closed-loop system (15) guaranteed robust cost is that there exists a symmetric
matrix X, matrix Y, and a suitable constant ε > 0, which make the linear matrix inequality
(22) hold. The analysis of guaranteed robust cost control is based on a Lyapunov function
V(x(t)) = xT(t)Hx(t).

J = E
{∫ ∞

0
(xTQx + uTRu)dt

}
(20)

u = −Kx = −YX−1x (21)
ψ M XET

1 −YTET
2 X YT

∗ −ε−1I 0 0 0
∗ ∗ −εI 0 0
∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ −R−1

 < 0 (22)

where:
X = H−1;
Y = KH−1;
ψ = AX + XAT − BY − YTBT;
I is a unit matrix;
∗ is a transpose matrix with the corresponding term.
Furthermore, the corresponding upper bound of performance index (20) is defined by

J ≤ J∗= tr(H) (23)

From the above, there is an implicit precondition that the uncertainty domain sur-
rounds the normal system parameter value, that is, the nominal parameter value is used to
design a guaranteed robust cost controller, as shown in Figure 1.
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As more fault information becomes available, the uncertainty domain of a fault where
the value point of the system parameter vector can be located will become narrower.
According to Theorem 1 of progressive optimal fault-tolerant control, the minimum upper
bound of performance index (23) continuously decreases until a fault is fully identified or
no more fault information can be provided. Furthermore, due to the currently insufficient
fault information, the fault-tolerant controller should, at this time, be optimal.

Obviously, after a fault occurs, a system must deviate from the nominal state, and if the
nominal parameter value is used to design a progressive optimal fault-tolerant controller,
the fault-tolerant control can be conservative or even invalid. Therefore, in this study,
domain segmentation is introduced for the uncertainty domain of a fault to obtain the
auxiliary center point to design a progressive optimal fault-tolerant controller.

At each time, the uncertainty domain Ωi of a fault can be determined according to the
current and insufficient fault information. Then, domain segmentation is performed on
the uncertainty domain Ωi of the fault. Each sub-domain Ωiw, w = 1, 2, 3, . . . s, i = 1, 2, 3 . . .
of uncertainty domain Ωi satisfies the condition of Ωi = Ωi1 ∪ Ωi2 ∪ . . . ∪ Ωiw ∪ . . . ∪ Ωis,
w = 1, 2, 3 . . . s, i = 1, 2, 3 . . ., where s represents the number of sub-domains. Then, the
center point for each sub-domain Ωiw is selected as an auxiliary center point.

For the auxiliary center points, the farthest distance from each auxiliary center point
to the boundary of the current uncertainty domain of a fault is used as the maximum
uncertainty magnitude of that point. At each segmentation part for Ωi, there is a different
uncertainty domain iw, w = 1, 2, 3 . . . s, i = 1, 2, 3 . . . for each auxiliary center point for each
sub-domain Ωiw. Meanwhile, s is also the number of auxiliary center points. For instance,
for the rectangle uncertainty domain Ω1 in Figure 2, grid segmentation is performed on
the uncertainty domain, dividing it into four uncertainty sub-domains Ω1w, w = 1, 2, 3, 4.
Next, the center point Tw, w = 1, 2, 3, 4 is selected for each uncertainty sub-domain Ω1w,
w = 1, 2, 3, 4 as an auxiliary center point. Then, the length lw, w = 4, 3, 2, 1 from the auxiliary
center point Tw, w = 1, 2, 3, 4 to the farthest boundary point Ow, w = 4, 3, 2, 1 in the whole
rectangle uncertainty domain is denoted as the maximum amplitude of square uncertainty
domain 1w, w = 1, 2, 3, 4. Furthermore, controller (21) is designed with the corresponding
auxiliary center for each uncertainty domain 1w, w = 1, 2, 3, 4. Finally, the controllers for
all uncertainty domains 1w, w = 1, 2, 3, 4 form the feasible domain Ψ(Ω1).
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Theorem 2. For the guaranteed robust cost controller vectors K designed for each uncertainty
domain iw, w = 1, 2, 3 . . . s, i = 1, 2, 3 . . ., the controller with the minimum upper bound of the
performance index represents a progressive optimal fault-tolerant controller.

K = argmin(J) =argmin(tr(H)) = YX−1 (24)

Proof of Theorem 2. It is obvious that controller K in (21), designed for each uncertainty
domain iw, w = 1, 2, 3 . . . s, i = 1, 2, 3 . . . is also feasible for Ωiw, w = 1, 2, 3 . . . s, i = 1, 2, 3 . . .
due to the fact that Ωi = i1 ∩ i2 ∩ . . .∩ iw ∩ . . .∩ is, w = 1, 2, 3, . . . s, i = 1, 2, 3 . . .. Namely,
controllers K in (21), corresponding to the auxiliary center points of iw, w = 1, 2, 3 . . . s,
i = 1, 2, 3 . . ., form a feasible domain Ψ(Ωi) on Ωi. Thus, controller (24), with the minimum
upper bound of performance index (23) in the feasible domain Ψ(Ωi), denotes the current
progressive optimal fault-tolerant controller. □

As the uncertainty domain of a fault decreases with the progressive increase in the
sufficiency of the fault information, the aim is to find a progressive optimal fault-tolerant
controller corresponding to (24) in the feasible domain Ψ(Ωi) to achieve progressive optimal
fault-tolerant control. The progressive optimal fault-tolerant control process based on a
guaranteed robust cost control considers both stability and performance simultaneously.

3.2. Progressive Optimal Fault-Tolerant Algorithm

From the above, it is necessary to segment the uncertainty domain of a fault and set
the auxiliary center point to design a progressive optimal fault-tolerant control algorithm
according to the aforementioned control method. Furthermore, to determine the center
point for each segmented domain as an auxiliary center point more easily, grid segmentation
is selected as a division method for the uncertainty domains of a fault. The number of grids
to be divided is determined according to the specific uncertainty domain. Then, the center
points of each grid are regarded as auxiliary center points to design a controller. For the
rectangle uncertainty domain Ω of a fault, as shown in Figure 3, the uncertainty domain Ω
is divided into four grids, denoted by Ω1, Ω2, Ω3, and Ω4. The grid center points D1–D4 of
each grid are used as auxiliary center points.
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The pseudo-code of the progressive optimal fault-tolerant control (Algorithm 1) is
presented below.

Algorithm 1. Progressive optimal fault-tolerant control algorithm from the perspective of
guaranteed robust cost control.

Input: A,B
for i from the first time to the nth time with an increment of 1

for w form 1 to s with an increment of 1
Assure uncertainty domain Ωi of faults and perform the grid segmentation on Ωi, dividing it into
s uncertainty sub-domains denoted by Ωiw, i = 1, 2, 3, . . . , n, w = 1, 2, 3, . . . , s, i = 1, 2, 3 . . .. Use
the center points of the grids as auxiliary center points. The farthest distance from the center
points of each grid to the boundary of Ωi is as a maximum uncertainty magnitude of that point.
Determine ∆Aiw and ∆Biw of each uncertainty domain iw, w = 1, 2, 3 . . . s, i = 1, 2, 3 . . . and
realize the singular value decomposition of ∆Aiw = MF1w(t)E1w, ∆Biw = MF2w(t)E2w;

Solve linear matrix inequality (22) for each grid.
All guaranteed robust cost controllers (21) for each grid form a feasible domain Ψ(Ωi) on Ωi.
end for
Find the controller K satisfying (24) in Ψ(Ωi) as the current progressive optimal fault-tolerant

controller.
return controller K

if no more useful fault information is provided
end for
end if

return controller K
end for

4. Simulations

In the simulation part, the progressive optimal fault-tolerant control of a DC motor
with the state space model is considered [37]:

.
x = (A + ∆A)x + Bu + Dd
y = Cx

(25)
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with x =
[
ia ω

]T and ∆A being the uncertainty caused by the parameter fault. The
disturbance d = − Tl

Ji
.

A =

[
− Ra

La
−Kv

La
Km
Ji

−G
Ji

]
, B =

[ 1
La
0

]
,

D =

[
0
1

]
, C =

[
1 0
0 1

]
, ∆A =

[
0 −σv

La
σm
Ji

0

] (26)

u = Kx = [k1, k2]x (27)

where ia, ω, and va denote the armature current, angular velocity, and armature voltage,
respectively. Ra is the armature resistance, and La is the inductance of the DC motor. Kv and
Km are the voltage and motor constants, which are supposed to have parameter variations
of |σkv| ≤ 2 and |σkm| ≤ 2, respectively, due to the fault. Ji is the moment of inertia, and G
is the friction coefficient. K ∈ R1×2 is the controller parameter vector. Tl is the unknown
load torque.

The purpose of the simulation is to regulate the output error of y, which represents
the armature current and angular velocity error, to be near zero under a fault. The normal
parameter values used in the simulations are presented in Table 1.

Table 1. Parameter values [38].

Parameter Value

Ra 1.2 Ω
La 0.05 mH
Kv 0.6
Km 0.6
Ji 0.1352 m4

G 0.3

The faulty system (28) is considered.

Af =

[
− Ra

La
−Kv−0.4

La
Km+0.6

Ji
−G

Ji

]
, B =

[ 1
La
0

]
, D =

[
0
1

]
, C =

[
1 0
0 1

]
(28)

Then, the below algorithm is performed:
Case 1: After a parametric fault occurs, the maximum uncertainty domain can be

assured according to prior knowledge, and ∆A1 =

[
0 − |2|

La
|2|
Ji

0

]
. σkv = 0, σkv = 2,

σkv = −2, σkm = 0, σkm = 2, σkm = −2 are used to perform grid segmentation on the
uncertainty domain, as shown in Figure 4. The center points of the grids, H1–H4, are used
as auxiliary center points. The calculation results corresponding to each auxiliary center
point are shown in Table 2, which includes the optimization performance index min(J∗)
corresponding to the feasible domain of the controller parameter and the progressive
optimal fault-tolerant controller.
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Table 2. The progressive optimal fault-tolerant controller parameters in Case 1.

Auxiliary
Center Point σkv,σkm ∆A1r(r = 1,2,3,4) Kn(n = 1,2,3,4) J*

1 min(J*
1)

Progressive
Optimal

Controller

(1,1) −3 ≤ σkv ≤ 1
−3 ≤ σkm ≤ 1

[
0 −−3

La−3
Ji

0

]
K1 =

[−0.0912,0.0020] 15.2337

15.2337 K1 =
[−0.0912,0.0020]

(−1,1) −1 ≤ σkv ≤ 3
−3 ≤ σkm ≤ 1

[
0 − 3

La−3
Ji

0

]
K2 =

[0.2630,0.5141] 36.4675

(−1,−1) −1 ≤ σkv ≤ 3
−1 ≤ σkm ≤ 3

[
0 − 3

La
3
Ji

0

]
K3 =

[0.0084,−0.0503] 32.9878

(1,−1) −3 ≤ σkv ≤ 1
−1 ≤ σkm ≤ 3

[
0 −−3

La
3
Ji

0

]
K4 =

[0.2203,−1.7682] 34.5717

The fault-tolerant control result of Case 1, obtained using fault-tolerant controllers K1,
K2, K3, and K4, is shown in Figure 5. Based on Table 2, the optimal progressive optimal
fault-tolerant controller is K1, with a minimum upper bound of optimization performance
index of min(J∗1 ) = 15.2337, compared to K2 with J∗1 = 36.4675, K3 with J∗1 = 32.9878, and
K4 with J∗1 = 34.5717. As shown in Figure 5, controller K1 performs better than controllers
K2, K3, and K4, with less overshooting and better comprehensive performance.

Case 2: In this case, it is assumed that the uncertainty domain narrows with the

increase in the amount of fault information, and ∆A2 =

[
0 − |1|

La
|1|
Ji

0

]
. Furthermore, σkv = 0,

σkv = 1, σkv = −1, σkm = 0, σkm = 1, σkm = −1 are used to perform grid segmentation
on the uncertainty domain, as shown in Figure 6. The center points of the grids, D1–D4,
are used as auxiliary center points. The calculation results corresponding to each aux-
iliary center point are shown in Table 3, which includes the optimization performance
index min(J∗) corresponding to the feasible domain of the controller parameter and the
progressive optimal fault-tolerant controller.
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Table 3. The progressive optimal fault-tolerant controller parameters in Case 2.

Auxiliary
Center Point σkv,σkm ∆A2r(r = 1,2,3,4) Kn(n = 5,6,7,8) J*

2 min(J*
2)

Progressive
Optimal

Controller

(0.5,0.5) −1.5 ≤ σkv ≤ 0.5
−1.5 ≤ σkm ≤ 0.5

[
0 −−1.5

La−1.5
Ji

0

]
K5 =

[−0.2389,−0.1059] 9.7222

9.7222 K5 =
[−0.2389,−0.1059]

(−0.5,0.5) −0.5 ≤ σkv ≤ 1.5
−1.5 ≤ σkm ≤ 0.5

[
0 − 1.5

La−1.5
Ji

0

]
K6 =

[0.1685,0.1665] 18.8913

(−0.5,−0.5) −0.5 ≤ σkv ≤ 1.5
−0.5 ≤ σkm ≤ 1.5

[
0 − 1.5

La
1.5
Ji

0

]
K7 =

[0.0547,0.0400] 22.6618

(0.5,−0.5) −1.5 ≤ σkv ≤ 0.5
−0.5 ≤ σkm ≤ 1.5

[
0 −−1.5

La
1.5
Ji

0

]
K8 =

[0.0187,0.0543] 44.2438

The fault-tolerant control result of Case 2, obtained using fault-tolerant controllers K5,
K6, K7, and K8, is shown in Figure 7. Based on Table 3, the optimal progressive optimal
fault-tolerant controller is K5, with a minimum upper bound of optimization performance
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index of min(J∗2 ) = 9.7222, compared to K6 with J∗2 = 18.8913, K7 with J∗2 = 22.6618, and
K8 with J∗2 = 44.2438. As shown in Figure 7, controller K5 performs better than controllers
K6, K7, and K8, with less overshooting and better comprehensive performance.
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Case 3: In this case, it is assumed that the uncertainty domain decreases with the
increase in the amount of fault information and that a fault parameter has been identi-

fied, that is, σ3v = 0. Then, it follows that ∆A3 =

[
0 0

|0.8|
Ji

0

]
. Furthermore, σkv = 0.4,

σkm = 0, σkm = 0.8, σkm = −0.8 are used to perform grid segmentation on the uncertainty
domain, as shown in Figure 8. The center points of the grids, G1 and G2, are used as
auxiliary center points. The calculation results corresponding to each auxiliary center point
are shown in Table 4, which includes the optimization performance index min(J∗) corre-
sponding to the feasible domain of the controller parameter and the progressive optimal
fault-tolerant controller.

Actuators 2024, 13, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 7. The control result of Case 2. 

Case 3: In this case, it is assumed that the uncertainty domain decreases with the 

increase in the amount of fault information and that a fault parameter has been identified, 

that is, 
3 =0v  . Then, it follows that 

3

0 0

= 0.8
0

iJ

 
 
 
  

A  . Furthermore, 

0.4, 0, 0.8, 0.8kv km km km   = = = = −  are used to perform grid segmentation on the un-

certainty domain, as shown in Figure 8. The center points of the grids, 
1G  and 

2G , are 

used as auxiliary center points. The calculation results corresponding to each auxiliary 

center point are shown in Table 4, which includes the optimization performance index 
*min( )J  corresponding to the feasible domain of the controller parameter and the pro-

gressive optimal fault-tolerant controller. 

 

Figure 8. The grid segmentation in Case 3. 

Table 4. The progressive optimal fault-tolerant controller parameters in Case 3. 

Auxiliary Cen-

ter Point 
,kv km   

3 ( 1, 2)r r =A  ( 9,10)n n =K   *

3J  *

3min( )J  
Progressively Opti-

mal Controller 

(0.4,0.4) 
=0kv  

1.2 0.4km−    

0 0

1.2
0

iJ

 
 
− 
  

 =K9  
[−0.4347,−0.2762] 

6.8313  6.8313 
=K9  

[−0.4347,−0.2762] 

Figure 8. The grid segmentation in Case 3.



Actuators 2024, 13, 150 14 of 16

Table 4. The progressive optimal fault-tolerant controller parameters in Case 3.

Auxiliary
Center Point σkv,σkm ∆A3r(r = 1,2) Kn(n = 9,10) J*

3 min(J*
3)

Progressively
Optimal

Controller

(0.4,0.4) σkv = 0
−1.2 ≤ σkm ≤ 0.4

[
0 0

−1.2
Ji

0

]
K9 =

[−0.4347,−0.2762] 6.8313

6.8313 K9 =
[−0.4347,−0.2762]

(0.4,−0.4) σkv = 0
−0.4 ≤ σkm ≤ 1.2

[
0 0

1.2
Ji

0

]
K10 =

[−0.2968,−0.2409] 10.2335

The fault-tolerant control result of Case 3, obtained using fault-tolerant controllers
K9 and K10, is shown in Figure 9. Based on Table 4, the optimal progressive optimal
fault-tolerant controller is K9, with a minimum upper bound of the performance index of
min(J∗3 ) = 6.8313, compared to K10 with J∗3 = 10.2335. As shown in Figure 9, controller K9
performs better than controller K10, having less overshooting and better comprehensive
performance.
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According to the data presented in Tables 2–4 the minimum upper bound min(J∗)
of the performance index decreases as the uncertainty domain becomes narrower. It is

min(J1
∗) = 15.2337 for ∆A1 =

[
0 − |2|

La
|2|
Ji

0

]
, min(J2

∗) = 9.7222 for ∆A2 =

[
0 − |1|

La
|1|
Ji

0

]
,

and min(J3
∗) = 6.83134 for ∆A3 =

[
0 0

|0.8|
Ji

0

]
, which meets the theory of progressive

optimal fault-tolerant control. After each grid segmentation of the uncertainty domain, the
progressive optimal fault-tolerant controller can be obtained. In addition, the corresponding
progressive optimal fault-tolerant controller is optimal before the uncertainty domain stops
narrowing, that is, before the amount of useful fault information stops increasing or the
fault is identified. The above simulation results also verify the feasibility of the algorithm.

5. Conclusions

This paper presents the progressive optimal fault-tolerant control method, combining
the AFTC and PFTC manners by fully using insufficient fault information. In this study,
a system fault is considered as system uncertainty. A progressive optimal fault-tolerant
control method based on guaranteed robust cost control has been proposed. The proposed
method addresses two aspects. First, as the uncertainty domain of the fault parameter
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becomes narrower, the fault-tolerant effect improves. Second, at each time, based on
the uncertainty domain of the corresponding fault information, a currently optimal fault-
tolerant controller is determined. In the process of progressive optimal fault-tolerant
control, the optimal fault-tolerant controller is no longer reconfigured until no more useful
fault information can be provided. Finally, the process of progressive optimal fault-tolerant
control converges to active fault-tolerant control once the fault is completely identified.
A progressive optimal fault-tolerant control algorithm based on the grid segmentation of
the uncertainty domains of a fault and the selection of auxiliary center points has been
introduced. The proposed method is validated by a theoretical analysis and simulation.
The proposed method has potential application value in practical control systems. In future
work, attention will be focused on exploring progressive optimal fault-tolerant control with
weaker conservatism and lower computational complexity.
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