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Abstract: This paper presents tube-based Model Predictive Control (MPC) for the path and velocity
tracking of an autonomous articulated vehicle. The target platform of this study is an autonomous
articulated vehicle with a non-steerable axle. Consequently, the articulation angle and wheel torque
input are determined by the tube-based MPC. The proposed MPC aims to achieve two objectives:
minimizing path tracking error and enhancing robustness to disturbances. Furthermore, the lateral
stability of the autonomous articulated vehicle is considered to reflect its dynamic characteristics.
The vehicle model for the MPC is formulated using local linearization to minimize modeling errors.
The reference state is determined using a virtual controller based on the linear quadratic regulator to
provide the optimal reference for the MPC solver. The proposed algorithm was evaluated through a
simulation study with base algorithms under noise injection into the sensor signal. Simulation results
demonstrate that the proposed algorithm achieved the smallest path tracking error, compared to the
base algorithms. Additionally, the proposed algorithm demonstrated robustness to external noise for
multiple signals.

Keywords: autonomous articulated vehicle; tube-based model predictive control; robust control

1. Introduction

The scope of autonomous driving has expanded beyond passenger vehicles to include
commercial vehicles [1]. Trucks and buses, among other commercial vehicles, share similar
steering and driving mechanisms with passenger cars, and achieving satisfactory driv-
ing performance typically involves adapting supplementary algorithms to meet specific
requirements [2,3]. For example, autonomous buses experience notable variations in ve-
hicle mass depending on passenger load, a factor not as pronounced in autonomous cars.
Consequently, real-time estimation of mass and center of gravity becomes crucial, with
these factors needing incorporation into the controller [4]. Similarly, self-driving trucks
exhibit mass and center of gravity variations based on cargo load, necessitating the use of
estimators akin to those used for autonomous buses [5]. Therefore, both passenger cars,
which have served as primary platforms for autonomous driving research, and commercial
vehicles with comparable steering and driving mechanisms can share the basic structure of
the vehicle controller. However, significant differences in the actuation mechanism would
require the development of a distinct control algorithm, separate from that of passenger
autonomous vehicles.

In addition to the conventional front wheel steering mechanism, ground vehicles
utilize various steering mechanisms, including four wheel steering [6], skid steering [7],
and articulated frame steering [8]. These steering mechanisms are commonly employed
alongside front wheel steering. The four-wheel steering mechanism, being an extension of
front wheel steering, allows for a similar controller application to determine both front and
rear steering angles for path tracking [9,10]. However, skid and articulated frame steering
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employ significantly different actuation mechanisms, compared to front wheel steering.
Skid steering has traditionally been prevalent in construction heavy equipment like wheel
loaders, but, in recent years, it has been gradually replaced by articulated steering-based
vehicles, due to several advantages offered by articulated steering. Articulated steering
vehicles provide benefits such as a wider viewing angle, improved maneuverability, re-
duced tire wear, and enhanced fuel efficiency, compared to skid vehicles [11]. Consequently,
there is an increasing demand for articulated vehicles beyond current usage. As articu-
lated structures are primarily employed in commercial vehicles, there is a growing need
for the autonomous driving of articulated vehicles to enhance operational efficiency and
minimize manual labor requirements. Therefore, research on a path tracking controller that
accommodates the unique steering structure of articulated vehicles is imperative.

An analysis of the articulated vehicle was conducted prior to designing the path
tracking controller. The dynamic characteristics of articulated vehicles can be summarized
in three key aspects. Firstly, the front and rear bodies exhibit distinct dynamic behavior.
As the front body of the vehicle serves as the steering mechanism, it typically experiences
greater lateral acceleration and yaw rate, compared to the rear part [12]. Secondly, the
articulation structure is more susceptible to lateral instability. Specifically, snaking insta-
bility and jackknife phenomena are more likely to occur in articulated vehicles than in
front wheel-steering vehicles [13]. This tendency becomes more pronounced at higher
driving speeds or when the articulation angle is large, due to traveling on roads with sharp
curvature [14]. Additionally, the center of gravity of articulated vehicles is higher than that
of passenger cars, as articulated vehicles are primarily used in commercial applications.
This elevated center of gravity contributes to reduced lateral stability. Finally, the hydraulic
actuator for articulation exhibits a relatively slower response. compared to the electric
power steering used in passenger cars [15].

Path tracking controllers for articulated vehicles are classified based on the presence
of steering wheels. When a steering wheel is present on the front body of the articulating
vehicle, an actuator controlling the articulation of the vehicle body is generally not used.
Therefore, the articulation angle becomes a vehicle state determined by front wheel steering
and is not used as a control input for path tracking [16–19]. In this scenario, a nonlinear
kinematic equation is employed to represent the relationship between front wheel steering
and the articulation angle. The kinematic equation is linearized to design a circular path
tracking controller [16]. However, since this approach relies on exact linearization, the
tracking controller is defined only for straight and circular paths, limiting its applicability to
other path geometries. Similarly, a linear vehicle model and a potential field approach are
utilized to plan the optimal path for an articulated vehicle with two trailers [17]. However,
the potential field implementation as a sigmoid function may struggle to respond effectively
in the presence of complex obstacles. Additionally, since the articulation angle is passively
determined by front steering in both approaches, snake oscillation or jackknife phenomena
can occur if the steering control input is not properly limited based on the vehicle’s state.
To address the stability problem of articulated vehicles with steerable wheels, phase plane
analysis is introduced to maintain lateral stability [18]. However, phase planes depend
on the path radius and the vehicle’s current state, making them challenging to employ
in real-time when following arbitrary paths. This lateral stability issue arises because
the articulation angle cannot be actively controlled by front wheel steering. To mitigate
this, a steering function is added to the rear body axle of the articulated vehicle to actively
control the articulation angle during path tracking [19]. Nevertheless, application to diverse
driving situations is challenging, due to the utilization of a fuzzy controller with a complex
activation function to determine the appropriate amount of rear wheel steering based
on driving conditions. A path tracking controller for articulated vehicles with a front
steering axle was proposed using a tube-based MPC [20]. This controller is based on error
dynamics using a bicycle model and a planned path to determine the plant model for MPC.
Furthermore, the role of tube-based MPC is more about compensating for model error than
disturbance to the signal.
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In the absence of a steering axle, the articulation angle serves as a steering mechanism,
known as Articulated Frame Steering (AFS). Consequently, the goal of the path tracking
controller is to determine the articulation angle. Similar to the path tracking problem
of front wheel-steering vehicles, error dynamics-based approaches have been proposed
for articulated vehicles without steerable wheels. For articulated vehicles, the error state
comprises three components: displacement error, heading error, and curvature error. The
kinematic model is used to derive error dynamics based on these three errors [21–26].
Typically, a simple PID controller is employed to regulate these errors [21]. The Linear
Quadratic Regulator (LQR) is introduced to determine the optimal feedback gain [22].
Additionally, a feedback controller considering lateral and heading errors is proposed to
reduce the number of gains [27]. However, since both PID and LQR are feedback controls,
there is a disadvantage in that the performance deviation is large, depending on the gain
tuning and the disturbance, and the actuator constraints are not explicitly considered in
the controller. However, the AFS mechanism has greater inertia than the conventional
steering system, so actuator dynamics should be considered to enhance path tracking
performance. The Model Predictive Control (MPC) approach is utilized to account for
state and input constraints [23–26]. The reference path for MPC is updated to avoid newly
detected obstacles [24]. However, in this case, the model of the MPC controller was derived
under the assumption that road curvature was constant. However, since the reference path
is updated in real time for obstacle avoidance, the constraints of the articulation angle were
set tightly to prevent the divergence of the controller. Since the AFS mechanism causes
a large slip angle, a switching MPC is designed based on predefined constraint sets to
address the varying slip angle caused by articulation steering [25,26]. However, since it is
difficult to set the thresholds of the slip angle that distinguish each mode and determine
the optimal MPC constraints for each, its use in various conditions is limited.

A geometrical relationship is defined to determine the articulation angle input, similar
to front wheel-steering vehicles. The pure pursuit method is introduced to design the path
tracking controller for articulated vehicles, akin to its application for front wheel- steering
vehicles [28]. To accommodate the characteristics of articulated vehicles, an input map
with a predefined global map is utilized to calculate future heading and turning radius. As
the pure pursuit method is a feedforward controller, it is susceptible to disturbances. To
address this, an integrated controller is designed by incorporating a feedback controller
that utilizes lateral and heading errors in conjunction with the pure pursuit controller [29].
The geometrical path tracker may exhibit a large steady-state error as speed increases,
potentially leading to performance degradation with changes in speed. When the feedback
gain is increased to reduce the steady-state error, control stability is compromised. An
MPC for posture tracking is proposed to follow an arbitrary desired path by minimizing
errors in longitudinal position, lateral position, the heading angle of the front body, and
the heading angle of the rear body [30]. However, the MPC was designed based on the
kinematic model, so model errors due to slips were not considered. The virtual terrain
field method is suggested to account for the effect of sideslip angles in the kinematic model
by generating virtual lateral forces [31]. Since this method is based on the potential field,
obtaining a solution in complex road geometries is challenging. To consider the inclined
angle of the road, a Udwadia–Kalaba equation-based trajectory tracking controller was
proposed to determine the required lateral tire force to track the reference path [32]. In
this case, an accurate tire model for converting the lateral force into a steering angle or a
refraction angle is required.

Based on a thorough review of previous research, various approaches have been
proposed to design path tracking controllers for articulated vehicles without a steerable
axle. In this scenario, the articulation angle assumes the same role as the steering angle,
leading to the adoption of path tracking algorithms designed for front wheel-steering
vehicles. For instance, methods like pure pursuit and Stanley are typical examples of
geometry-based controllers. Additionally, error dynamics are derived from the relationship
between the kinematic model of the articulated vehicle and the circular reference path.
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These defined errors are regulated using feedback controllers, including PID, sliding
mode control, and LQR. MPC is introduced to explicitly account for constraints in path
tracking. Given the susceptibility of articulated vehicles to rollovers when speed is not
properly controlled, an integrated controller specifically designed for articulated vehicles is
necessary to address their unique characteristics. Furthermore, previous approaches are
susceptible to disturbances and modeling errors. Rapid steering inputs due to disturbances
can significantly impact the lateral stability of articulated vehicles. Notably, inaccuracies in
the kinematic model and disturbances in sensor signals can lead to a decrease in control
performance. Consequently, tube-based MPC for multi-input systems is introduced to
develop an integrated controller for the path tracking of articulated vehicles.

The contributions of this paper can be summarized as follows:

1. Integration of controllers for both path tracking and velocity tracking aims to account for
the correlation between lateral and longitudinal motion, thereby enhancing lateral stability.

2. The design of a reference tracking-based controller addresses the limitations of point
tracking-based controllers and error dynamics defined for a fixed planned path,
enabling the proposed controller to be applied to arbitrary desired paths.

3. The utilization of tube-based MPC enhances robustness against external disturbances
of sensors and modeling errors.

The remainder of the paper is organized as follows: The overall architecture of the
proposed path tracking algorithm is described in Section 2. Section 3 outlines the vehicle
model and the process of local linearization. Section 4 consists of two sub-sections: reference
state determination and tube-based MPC formulation. Section 5 summarizes the simulation
results of the proposed algorithm, compared with base algorithms. The conclusion and
avenues for future research are presented in Section 6.

2. Overall Architecture

The overall architecture of the proposed path tracking controller is depicted in Figure 1.
The controller utilizes signals from external modules to gather the necessary information
for path tracking. Sensors on the Autonomous Articulated Vehicle (AAV) provide vehicle
information, including dynamic state and position. In this study, the measured dynamic
state includes longitudinal velocity, acceleration, and yaw rate, while position encompasses
both global position and heading angle, relative to a fixed coordinate system. Based on
the AAV’s position, a target path module extracts a segment from a global target path
for use in path tracking. The global path is predefined in this study to establish a route
towards the destination. The robust path tracking controller employs tube-based MPC
to determine hydraulic piston pressure for articulation and traction torque for driving
axle operation. The proposed controller consists of two sub-modules. The first module,
“reference state decision”, determines an appropriate vehicle state to follow the segment
from the target path module. To determine the reference state, a virtual controller using
LQR is utilized to calculate the virtual input within the prediction horizon. The second
module, “tube-based MPC”, optimizes control input to track the reference states using a
linearized kinematic AAV model and the CVXGEN solver. The proposed MPC determines
the hydraulic pressure for the articulation actuator and the required wheel torque for motor
and brake actuator. With this structure in place, the controller has the freedom to decide its
reference state, regardless of the tracker. Furthermore, since control input optimization is
performed by tube-based MPC, our algorithm exhibits robustness against modeling errors
and disturbances.
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3. Vehicle Model

The target platform for this study is an articulated vehicle with non-steerable axles.
The transient behavior of such a vehicle mirrors that of a skid-steered wheeled vehicle.
However, creating a dynamic model for the skid-steered wheeled vehicle necessitates
complex and nonlinear modeling of each wheel’s slip dynamics. Furthermore, the nonlinear
model increases the computational load on the MPC. Therefore, this study focuses on
simplifying the vehicle model for tube-based MPC by concentrating on the characteristics
of the AFS mechanism and the Operational Design Domain (ODD) in AAVs. Firstly, the
AFS mechanism employs a hydraulic cylinder to amplify small hydraulic pressure into
significant articulation torque. Additionally, given that an AAV’s body frame inertia is
considerably greater than its steering mechanism, its articulation angle rate is slower
than that of vehicles with steering capabilities. Secondly, due to structural characteristics
susceptible to rollover, an AAV’s ODD is set to operate within low-speed ranges. Given
that an AAV operates under these low-speed conditions and has a small articulation angle
rate, it makes sense to model its behavior as a kinematic model without needing complex
tire force models.

The parameters of the AAV’s kinematic model are depicted in Figure 2. The AAV is
assumed to behave like a bicycle, similar to the commonly used bicycle model for front
wheel-steering vehicles. Since each body of the AAV has a non-steerable axle, the steering
angle for each axle is set to zero. Instead of the steering angle, the articulation angle γ is
defined as a relative heading angle of the front body with respect to the rear body. The
global position of the vehicle is represented by the position of the front and rear axles,
Pf(xf, yf) and Pr(xr, yr), respectively. The heading angle of the front and rear bodies are
de-noted as θf and θr, respectively. The distances from the articulation joint to each axle
are defined as Lf and Lr. The velocities of each body are represented by vf and vr. Since the
vehicle model is defined under the assumption of the zero slip, the direction of vf and vr is
the same, with θf and θr, respectively.

As previously mentioned, the kinematic model is derived under the assumption of
zero slip. Thus, the change rate of the Pf(xf, yf) and Pr(xr, yr) is calculated, as follows:{ .

x f = v f cos θ f.
y f = v f sin θ f{ .
xr = vr cos θr.
yr = vr sin θr

(1)
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Since the articulation angular rate is relatively slower than the controller’s sampling
time, the change in the heading angle in (1) is negligible. The proposed controller’s
sampling time is set to 100 ms. By eliminating vf and vr, Equation (1) can be transformed
into a motion equation for each body, as follows:

.
x f sin θ f −

.
y f cos θ f = 0

.
xr sin θr −

.
yr cos θr = 0

(2)

γ is defined by the difference between θf and θr. Thus, the change rate of γ is calculated,
as given in (3).

.
γ =

.
θ f −

.
θr (3)

The change rate of vf and vr is the same because the front and rear bodies of the AAV
are connected rigidly by the articulation joint. By using these characteristics, (1), and (3),
the vf and vr, can be represented, as follows:

v f = vr cos γ +
.
θrLr sin γ

vr =
.
θ f L f sin−1 γ +

.
θrLr tan−1 γ

(4)

The yaw rate of the front body can be represented as a function of γ by substituting (3)
into (4). Similarly, the yaw rate of the rear body is also calculated, as follows:

.
θ f =

v f sin γ+Lr
.
γ

L f cos γ+Lr.
θr =

v f −vr cos γ

Lr sin γ

(5)

The actuator model is defined as a first-order delay model with proportional gain. As
mentioned in Section 2, the lateral actuator is a hydraulic piston responsible for generating
hydraulic pressure to adjust the articulation angle. For longitudinal motion, the wheel
torque on the axle is generated by the AAV’s powertrain and brake system. This produced
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wheel torque modifies the AAV’s acceleration. Consequently, the equation for the actuator
can be derived, as follows:

..
γ = − 1

τγ

.
γ +

kγ

τγ
pdes

.
a f = − 1

τa
a f +

ka
τa

τdes
(6)

where, τγ and τa are the time delay of the hydraulic piston and longitudinal actuator.
Generally, the powertrain and brake system have different time delays. However, the larger
time delay of the two systems was used as τa to prevent the model switching between
acceleration and deceleration. kγ and ka are the proportional gain for each actuator.

To derive the state equation of the vehicle model, the state and input vectors are defined.
The state vector comprises seven states: x position, y position, yaw, velocity, acceleration,
articulation angle, and rate. The input vector has a hydraulic pressure, pdes, of the articulation
cylinder and wheel torque, τdes. The state and input vectors are defined, as follows:

x =
[

x f y f θ f v f a f γ
.
γ
]T

u =
[

pdes τdes
]T (7)

The state equation of the front body is derived by combining (1), (5), and (6).

.
x =



v f cos θ f
v f sin θ f

v f sin γ

L f cos γ+Lr

a f
− 1

τa
a f.

γ

− 1
τγ

.
γ


+



0 0
0 0
0 Lr

L f cos γ+Lr

0 0
ka
τa

0
0 0
0 kγ

τγ


u = f (x, u) (8)

The position and heading angle of the rear body can be derived from the state of the
front body, due to their connection through a rigid articulation joint. The position and
heading of the rear body are calculated, as follows:

xr = x f − L f cos θ f − Lr cos θr
yr = y f − L f sin θ f − Lr sin θr
θr = θ f − γ

(9)

As stated in the introduction, the proposed controller is formulated based on tube-
based MPC employing a linear model. Moreover, the designed algorithm is tailored for a
digital controller. Thus, in order to configure the tube-based MPC algorithm, Equation (8)’s
state equation necessitates both linearization and discretization. Initially, local linearization
is applied to linearize (8) in proximity to the current state of the AAV, thereby minimizing
linearization errors. Given that local linearization must be performed for each control sampling
interval, the resultant linearized model becomes time-varying, as described below:

.
x(t) = A(t)x(t) + B(t)u(t)

=

(
∂ f (x,u)

∂x

∣∣∣
x(t),u(t−1)

)
x(t) +

(
∂ f (x,u)

∂u

∣∣∣
x(t),u(t−1)

)
u(t)

(10)

The first order Taylor polynomial is used to approximate the (10) to discrete time model.

x(k + 1) = Ad(k)x(k) + Bd(k)u(k)
where Ad(k) = I + A(t)∆T

Bd(k) = B(t)∆T
(11)

where ∆T is the sampling time of the controller. In this study, the MPC uses the ∆T of
100 ms.
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4. Robust Path Tracking Controller

The tube-based MPC framework is employed to configure both the path tracking
and velocity controllers for the AAV. As illustrated in Figure 1, the proposed controller
comprises two distinct sub-modules: the reference state decision and the tube-based MPC.
The reference state decision module is specifically designed to provide the reference state
vector, guiding the AAV along the desired path. Given that constraints are explicitly
accounted for within the MPC framework, the reference state decision module primarily
focuses on determining the theoretical optimal states only considering the constraints
for the maximum control input. On the other hand, the tube-based MPC module is
responsible for optimizing the vehicle’s trajectory to adhere closely to this reference state,
while concurrently computing control inputs that satisfy both state and input constraints.
Further elaboration of this proposed robust path tracking controller for AAV is provided in
the subsequent sub-sections.

4.1. Reference State Decision

The reference state serves as a replacement for the error dynamics typically utilized in
defining the path tracking controller. To mitigate computational overhead, the proposed ref-
erence state decision module relies on a kinematic vehicle model augmented with a virtual
controller. This virtual controller computes virtual lateral and longitudinal inputs aimed
at tracking the path segment provided by the target path module. The kinematic vehicle
model, expounded in Section 3, integrates these virtual inputs to forecast the AAV’s future
state at the subsequent sampling instance. Subsequently, this virtual input is re-evaluated
concerning the AAV’s most recent state and utilized to derive its forthcoming state. This
iterative procedure persists within the prediction horizon of the MPC. Consequently, any
form of control algorithm can be employed to ascertain virtual inputs for the reference state
decision. Specifically, as optimal inputs, accounting for various constraints, are determined
using MPC; employing a straightforward virtual controller that minimizes path tracking
error to the utmost extent is deemed more efficacious.

The virtual controller is formulated based on the LQR controller to compute the
optimal control input for regulating path tracking error. In contrast to the design of
actual controllers, the reference state decision module ideally accesses state variables and
accurately predicts vehicle behavior through the linear kinematic model. Hence, employing
linear optimal controllers proves more efficient in minimizing computational burden and
determining optimal inputs, compared to other robust control techniques. To delineate the
LQR controller for path tracking, the error dynamics of the vehicle model are derived from
the disparity between the reference state and the vehicle state. Initially, the error e(k) is
defined for the reference state decision, as follows:

e(k) = xre f (k)− x(k) (12)

where xref(k) is the reference state. Under the assumption of the constant reference, the error
dynamics is derived, as follows:

.
e(k) =

.
xre f (k)−

.
x(k)

= − .
x(k)

= −A(k)x(k)− B(k)u(k)
= −A(k)

(
xre f (k)− e(k)

)
− B(k)u(k)

= A(k)e(k)− B(k)u(k)− A(k)xre f (k)

(13)

The control input u(k) in (13) is divided into two parts, feedforward input uff(k) and
feedback input ufb(k). The uff(k) is defined, as follows:

u f f (k) = B−1(k)A(k)xre f (k) (14)
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After applying the feedforward input, the error dynamics is summarized, as follows:

.
e(k) = A(k)e(k)− B(k)

(
u f f (k) + u f b(k)

)
− A(k)xre f (k)

= A(k)e(k)− B(k)u f b(k)
(15)

To apply the (15) into the simulation environment, the error dynamics is discretized
based on the Euler approximation, as follows:

e(k + 1) = e(k) +
.
e(k) · ∆T

= e(k) +
(

A(k)e(k)− B(k)u f b(k)
)
· ∆T

= (I + A(k) · ∆T)e(k)− B(k) · ∆T · u f b(k)
= (I + A(k) · ∆T + B(k) · ∆T · K)e(k)

u f b(k) = −Ke(k)

(16)

As the dynamics provided in (16) represent a time-varying system, the finite horizon
LQR approach is employed to compute the feedback gain K [33]. Given that the system is
discrete, the reference state xref(k + 1) is determined by the ufb(k) and uff(k). In other words, the
control input relied on the xref(k). Consequently, it becomes feasible to compute the reference
state by advancing the system and controller within the prediction horizon of the MPC.

4.2. Tube-Based MPC

The core concept of tube-based MPC revolves around partitioning the control au-
thority into two components: the initial segment steers the noise-free system towards the
origin, while the subsequent segment offsets deviations from the ideal system [34]. The
representation of the actual system incorporating noise is formulated, as follows:

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)
s.t. x(k) ∈ X

u(k) ∈ U
w(k) ∈ W

(17)

where x(k) is the actual state vector and w(k) is a bounded disturbance vector. Following
the core concept of tube-based MPC, the control input comprises two constituent parts,
delineated as follows:

u(k) =
–
u(k) + K(x(k)− z(k)) (18)

where
–
u(k) is the control input determined by the MPC based on the noise-free system. z(k)

denotes the state vector of the noise-free system, and K signifies the state feedback gain
utilized to manage the discrepancies between the actual system and the ideal one. In other
words, the second term of (18) denotes the control input aimed at addressing the disparity
between the actual and ideal systems. When defining the error e(k) = x(k) – z(k), the error
dynamics of the system can be expressed, as follows:

e(k + 1) = x(k + 1)− z(k + 1)
= A(k)x(k) + B(k)u(k) + w(k)− A(k)z(k)− B(k)

–
u(k)

= A(k)x(k) + B(k)
–
u(k) + B(k)K(x(k)− z(k))

+w(k)− A(k)z(k)− B(k)
–
u(k)

= (A(k) + B(k)K)(k)(x(k)− z(k)) + w(k)
= (A(k) + B(k)K)(k)e(k) + w(k)

(19)

If the dynamics (A(k) + B(k) K) are stable and the set W is bounded, there is some set
E that e(k) remains inside for all time. In other words, if a bounded disturbance is applied
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to a stable closed loop system, e(k) does not diverge. In this case, the constraints for the
MPC based on the noise free system are tightened, as follows:

z(k) ∈ X ⊖ E
–
u(k) ∈ U ⊖ KE (20)

The state feedback control is designed to regulate the e(k), so the MPC based on the
actual system can satisfy the tightened constraints. Initially, the invariant set E should
be defined to derive these tightened constraints. In this study, the uncertainties of the
state variables are modeled as a combination of modeling errors and sensor noise, which
are employed to measure the position and dynamic states of the AAV. Specifically, the
noise characteristics of the Differential Global Positioning System (DGPS) determine the
standard deviation of the position and heading angle errors in the state vector, as presented
in Equation (7). For velocity, the characteristics from a commercial vehicle’s wheel speed
sensor are utilized. Gaussian white noise is considered for acceleration measurements,
based on the noise characteristics of the Inertial Measurement Unit (IMU). Additionally,
noise levels for articulation angle and rate measurements are determined by magnetic
encoder characteristics. Table 1 provides a summary of the standard deviations for Gaussian
white noise for each component of the state vector.

Table 1. Noise specification.

Variable Standard Deviation Variable Standard Deviation

xf 0.5 m vf 1 m/s
yf 0.5 m af 0.2 m/s2

θf 5 deg γ 0.5 deg

The MPC problem for the ideal system is formulated to calculate the
–
u(k). Considering

that the primary objective of the proposed algorithm is to follow the reference state, the cost
function is defined to minimize the tracking error of the reference state, presented as follows:

J =
Np

∑
k=1

 (
x(k)− ~

xre f (k)
)T

Q
(

x(k)− ~
xre f (k)

)
+

–
u(k)TR

–
u(k)

+ ρε,

Np = Tp/∆T

(21)

where Tp represents the prediction horizon of the MPC, while ∆T denotes the MPC’s
sampling time, as utilized in (11). Thus, the maximum prediction step Np is derived by
dividing Tp by ∆T. ε stands for a slack variable, introduced to prevent optimization failure.
The slack variable is instrumental in reconciling constraints and the cost function. In
cases where optimization without a slack variable fails to converge, the slack variable
alleviates one of the constraints, facilitating the MPC in finding an optimal solution. A
weight ρ adjusts the extent of constraint relaxation. To mitigate risks associated with the
slack variable, a modification is implemented to utilize it in establishing a lower bound for
longitudinal acceleration constraints. The weight matrices for reference state tracking and
input minimization are denoted as Q and R, respectively.

Q =



Qx
Qy

Qθ

Qv
Qa

Qγ

Q .
γ


, R =

[
Rp

Rτ

]
(22)
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The off-diagonal term of the Q and R is zero. The diagonal terms of Q are tuned to reflect
the scale and importance of each variable of the state vector. Similarly, Rp and Rτ are the
weights for each control input and adjusted to account for the difference scales of the inputs.

The proposed MPC integrates constraints categorized into three groups: state, input,
and dynamic constraints. State constraints are instituted to uphold the vehicle’s state
within predetermined bounds, thereby averting excessive motion of the AAV. These state
constraints entail defining a margin around the reference state for the position and heading
angle of the AAV. Additionally, minimum and maximum values are stipulated as constraints
for velocity, acceleration, articulation angle, and its rate. The state constraints can be
summarized, as follows:

x f ,re f (k)− xmgn ≤ x f (k) ≤ x f ,re f (k) + xmgn
y f ,re f (k)− ymgn ≤ y f (k) ≤ y f ,re f (k) + ymgn
θ f ,re f (k)− θmgn ≤ θ f (k) ≤ θ f ,re f (k) + θmgn

v f ,min ≤ v f (k) ≤ v f ,max
a f ,min ≤ a f (k) ≤ a f ,max
−γmax ≤ γ(k) ≤ γmax
− .

γmax ≤ .
γ(k) ≤ .

γmax

(23)

The input constraints are defined with the maximum values of each, as follows:

−pmax ≤ pdes(k) ≤ pmax
−τmax ≤ τdes(k) ≤ τmax

(24)

The vehicle model derived in Section 3 serves as a dynamic constraint for the MPC.
The discretized linear model is employed within the prediction horizon to delineate the
dynamic constraint, presented as follows:

x(2) = Ad(1)x(1) + Bd(1)
–
u(1)

...
x(Np) = Ad(Np − 1)x(Np − 1) + Bd(Np − 1)

–
u(Np − 1)

(25)

where Np is the maximum prediction step. Table 2 provides a summary of the parameters
for the MPC. Among the parameters listed in Table 2, there are a total of nine elements
comprising Q and R, making manual tuning challenging. Therefore, an automated param-
eter search method becomes necessary. Given that the number of variables exceeds that
of typical optimization problems, a grid search approach was employed [35]. The search
range for each element was determined considering the dimensions of each state variable
and input, with lateral error serving as the criterion for optimal judgment.

Table 2. Parameters for AAV and the proposed algorithm.

Parameter Value Parameter Value

Lf 0.605 m ∆T 0.1 s
Lr 0.895 m Np 20
τf 0.2 s τa 0.05 s
Qx 1 xmgn 0.5 m
Qy 75 ymgn 0.5 m
Qθ 100 θmgn 3 deg
Qv 10 vf,min 0 m/s
Qa 20 vf,max 5 m/s
Qγ 100 af,min −3 m/s2

Q .
γ 150 af,man 1 m/s2

Rp 0.1 γman 50 deg
Rτ 0.01

.
γmax 90 deg/s

pmax 50 bar τmax 1500 Nm
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After determining the
–
u(k), the feedback gain K regulating the model deviation is

determined using the LQR, designed to regulate the dynamics A(k) + B(k)K in (19). Finite
horizon LQR is employed to compute the feedback gain K for the time-varying dynam-
ics [33]. Given that the purpose of state feedback control is to regulate model error, the error
dynamics are defined by utilizing the difference between the predicted states from the MPC
and the measured states of the AAV. According to the error defined in (19), the measured
state at k step is used as x(k), while the predicted states of the MPC are represented as
z(k). Since the predicted states of the MPC are determined at step k − 1, a coordinate
transformation is necessary to align the local coordinate system between steps k − 1 and
k. The change in position and heading angle between adjacent timestamps is computed
under the assumption of constant motion, utilizing Euler approximation. The position and
heading relationships between steps k − 1 and k are calculated, as follows:

 x f (k)
y f (k)
θ f (k)

 =


x f (k − 1) + d(k − 1) cos

(
θ f (k − 1) + ∆T

.
θ f (k − 1)

+ 1
2 ∆T2

..
θ f (k − 1)

)

y f (k − 1) + d(k − 1) sin

(
θ f (k − 1) + ∆T

.
θ f (k − 1)

+ 1
2 ∆T2

..
θ f (k − 1)

)
θ f (k − 1) + ∆T

.
θ f (k − 1) + 1

2 ∆T2
..
θ f (k − 1)


d(k − 1) = v f (k − 1)∆T + 1

2 ∆T2a f (k − 1)

(26)

where ∆T is the sampling time of the MPC given in Table 2. A coordinate transformation
matrix T(k) between k − 1 and k step are defined, as follows:[

dx f (k) dy f (k) dθ f (k)
]

=
[

x f (k)− x f (k − 1)y f (k)− y f (k − 1)x f (k)− x f (k − 1)
]

T(k) =


cos
(

dθ f (k)
)

− sin
(

dθ f (k)
)

0 dx f (k)

sin
(

dθ f (k)
)

cos
(

dθ f (k)
)

0 dy f (k)
0 0 1 0
0 0 0 1


(27)

To define the error e(k), the z(k) is defined, by using the T(k) and the predicted states of
the MPC, which is determined at step k − 1. To prevent confusion between the measured and
predicted states, a lower subscript p is employed to denote the predicted states of the MPC.

z(k) =



p1(k)
p2(k)

θ f (k
∣∣∣k − 1)− dθ f (k)

v f ,p(k
∣∣∣k − 1)

a f ,p(k
∣∣∣k − 1)

γp(k
∣∣k − 1)

.
γp(k

∣∣∣k − 1)



p(k) = T(k) ·


x f (k

∣∣∣k − 1)

y f (k
∣∣∣k − 1)
0
1



(28)

where p1(k) and p2(k) mean the first and second element of p(k), which are the x and y position.
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4.3. Vehicle Model Validation

A validation of the vehicle model for MPC should precede any simulation study.
Experimental results from a right-turn scenario are used to assess the modeling error of
the vehicle model. Experimental data were obtained using an autonomous electric road
sweeper developed jointly by the Korea Institute of Industrial Technologies (KIIT) and
AM Special Vehicle (AMSV) in 2019 [36]. This autonomous electric road sweeper utilized
the AFS mechanism for vehicle steering, while IMU and DGPS systems were employed to
measure the vehicle’s accurate states. Additionally, an encoder was incorporated into the
articulation joint to measure the articulation angle. Figure 3 illustrates both the experimental
and simulation results for this right-turn scenario. As depicted in Figure 3, the simulation
results obtained from the kinematic vehicle model closely match the experimental results.
However, there are phase delays in speed and articulation angle between the experiment
and simulation, as shown in Figure 3b,c. Yaw rate and lateral acceleration, illustrated in
Figure 3d,e, exhibit errors resembling white noise. Therefore, we model the yaw rate and
acceleration modeling errors as Gaussian white noise.
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4.4. Base Algorithms

In this study, base algorithms were employed. Given that the AFS mechanism can be
approximated as front wheel steering, both the pure pursuit and Stanley methods were selected
as base algorithms. The outputs from these two methods are utilized as desired articulation
angles for the plant model. However, conventional path tracking algorithms are typically
designed under the assumption of front wheel steering. Consequently, parameters for these
base algorithms had to be redefined to align with the characteristics of an AAV. As illustrated
in Figure 4, the AFS mechanism can be transformed into a front wheel-steering vehicle with a
variable wheelbase. Pf,v(xf,v, yf,v) represents the position of the virtual front axle.

Thus, the instance wheelbase Linst with articulation angle γ, is calculated, as follows:

Linst =
L f

cos γ
+ Lr (29)

When applying the (29) in pure pursuit controller, the articulation angle of the previous
sampling time is used to approximate Linst to avoid the recursive formula. The Stanley
method for the AAV employs the modified cross-track error, defined as the minimum
distance between the target path and Pf,v(xf,v, yf,v). Further details of the pure pursuit and
Stanley methods are provided in [37,38].

The distinctive mechanism and structure of the AAV could potentially lead to performance
degradation in path tracking algorithms originally designed for front wheel steering. Conse-
quently, an adaptive controller is chosen as another base algorithm to address the limitations
associated with approximating front wheel steering. This adaptive controller, operating indepen-
dently of a vehicle model, is referred to as a model-free controller. The design of this model-free
controller is based on the assumption that changes in yaw rate in response to the vehicle’s
steering angle can be modeled as a first-order delay system. Essentially, lateral dynamics are
assumed to follow a first-order delay model, as follows:

.
θr =

λ

τs + 1
γ (30)
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Figure 4. The virtual front axle.

To consider the structure of the AAV, the
.
θr and γ are used as the yaw rate and steering

angle of the vehicle, respectively. λ and τ are the adaptive yaw rate gain and time constant of
the yaw rate generation delay. As shown in (30), the simplified lateral dynamics does not take
the vehicle model into account. Instead, λ is adapted to minimize the

.
θr error, as follows:

λ̂ = −k · γ ·
( .

θr,des −
.
θr

)
(31)

where
.
θr,des is the desired yaw rate of the AAV’s rear body. Based on (31), the articulated

angle command is calculated, as follows:

γ =
1
λ̂

( .
θr,des + τ ·

..
θr,des

)
(32)

The
.
θr,des should be defined first to apply the model-free path tracking controller. In

this study, the results of the reference state decision module were utilized to define the
.
θr,des. Since the reference state decision module determined the reference state of the front
body, the relationship between front and rear bodies given in (9) was used to derive the
.
θr,des. The final base algorithm, denoted as ‘MPC’ in subsequent results, is designed using
the same linear MPC framework as the proposed algorithm. However, this MPC controller
is configured without the robust control method. In other words, no uncertainty tube is
defined for the state vector. Thus, the base MPC only used

–
u(k) to track the same reference

state of the tube-based MPC.
The pure pursuit, Stanley method, and model-free controller all calculate the desired

articulation angle. As discussed earlier in Section 5.1, the actuator for the articulation angle
is modeled as a hydraulic cylinder. Consequently, an additional lower-level controller is
introduced to determine the pressure command for this hydraulic cylinder. The pressure
command is computed using a PID controller to minimize the articulation angle error. For
longitudinal motion, the base algorithms require an additional controller to track the desired
velocity. This velocity error is also regulated by a PID controller. Therefore, the actuator input
required to track the output of these base algorithms can be determined, as follows:

eγ =
.
γdes −

.
γ

pdes = KP,γeγ + KI,γ
∫

eγdt + KD,γ
.
eγ

ev = vdes − v f
τdes = KP,vev + KI,v

∫
evdt + KD,v

.
ev

(33)
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5. Results
5.1. Simulation Model and Environment

The effectiveness of the proposed path tracking controller has been assessed through a
simulation study. Simulations were conducted in two scenarios: one with sensor measurement
noise and one without, to evaluate the robustness of the proposed method. To collectively
consider the impact of model errors, a different model, distinct from the vehicle model used in
MPC, was employed as the plant model for simulation. This plant model is designed based
on the nonlinear dynamic bicycle model, incorporating the STI tire model. The actuator for
the articulation joint is modeled with second-order dynamics to account for the stiffness and
damping of the hydraulic cylinder. For longitudinal motion, the longitudinal tire force from
the STI model served as an input for wheel dynamics at each axle [39]. In this case, first-
order dynamics were added to the wheel dynamics input to account for the actuation delay
of the powertrain and brake system. Additional details about this simulation model can be
found in [40]. The simulations of the plant model and controller were implemented using
MATLAB/Simulink. Since the proposed MPC is designed using linearized discrete vehicle
models, it formulates an MPC problem as a linear quadratic problem. For this study, the
CVXGEN solver was utilized to implement this MPC problem within the MATLAB/Simulink
environment [41].

5.2. Simulation Results

A simulation study was conducted to assess the robustness of the proposed algorithm. The
target path for this study was designed as an S-shaped path, comprising straight lines and arcs.
Path tracking algorithms typically face challenges when encountering sudden changes in road
curvature. To examine the algorithm’s response to such scenarios, segments of the target path
were directly connected, creating discontinuous curvature changes. Specifically, two arcs with
a radius of 4 m were linked to form the S-shaped path, with a straight road connected before
and after these arc segments. The point where these two arcs meet exhibits the most abrupt
curvature change. This target path is represented as a solid black line in Figure 5a.
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The desired velocity for longitudinal motion was set at 4 m/s, a speed at which an
AAV is prone to rollovers. To assess the potential for rollovers in AAVs, a Load Transfer
Ratio (LTR) is employed as an index. LTR is computed from each tire’s vertical force,
making it applicable to various vehicle types. Rollovers can occur if either of the two bodies
of the vehicle rolls over; therefore, LTR was calculated for both bodies, as follows:

LTRi =
|Fzi,L − Fzi,R|
Fzi,L + Fzi,R

, i = f , r (34)

where Fzi,L and Fzi,R means the vertical tire force of the left and right tires, respectively.
The subscribe f and r indicate the front and rear bodies. A total of eight Key Performance
Indices (KPIs) are defined to evaluate the path tracking performance. These include the
mean, standard deviation, and maximum value of the lateral and heading errors, as well as
the maximum of the lateral acceleration and LTR.

Figure 5 illustrates the simulation results for a noise-free scenario. The road friction
coefficient is set to 0.85, simulating conditions where a rollover could potentially occur.
In cases of low road friction coefficients, sufficient tire force to cause a rollover cannot
be generated. Figure 5a describes the trajectory of each algorithm, showing the history
of Pf(xf, yf). All algorithms used in this study successfully followed the target path, with
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trajectories closely matching the target path, except for the pure pursuit method. The pure
pursuit controller exhibited significant overshooting, deviating outside the target path
due to its inherent vulnerability to different AAV structures. As mentioned in Section 4.4,
an AAV’s effective wheelbase depends on its articulation angle, making pure pursuit
controllers less effective on high-curvature roads that require large articulation angles for
the desired yaw motion. In contrast, both the Stanley method and model-free controllers do
not consider wheelbase when determining the articulation angle, and they outperformed
pure pursuit in this scenario. Both pure pursuit and Stanley methods, relying on single
preview points, often resulted in vehicles driving along the inner corners of their target
paths. However, actuation delays resulted in slow responses in articulation, causing vehicle
trajectories to deviate outward from their paths when following second arcs. In contrast,
by adjusting the yaw rate gain, model-free controllers significantly improved path tracking
performance, compared to both pure pursuit and Stanley methods.

The simulation results for both the MPC and the proposed algorithm were quite
similar. This similarity arises because no noise was introduced into the simulation, making
it challenging for these two MPC-based controllers to exhibit performance differences
related to robustness. As a result, as depicted in Figure 5b–d, the lateral and heading
errors, as well as the articulation angle, displayed similar values, except for those from the
pure pursuit method. However, both the MPC and the proposed algorithm experienced
slight deceleration when navigating curvy roads, as illustrated in Figure 5e,f. This occurred
because the lateral acceleration reached the MPC constraints, as shown in Figure 5i,j. An
examination of the LTR values in Figure 5k,l reveals that all controllers, except those based
on MPC, had an LTR value exceeding 1, indicating a potential rollover. This is because
the pure pursuit and Stanley methods are geometry-based path trackers. In other words,
the dynamic behavior of the AAV, such as rollover, is not considered in the pure pursuit
and Stanley methods. Even if the steering input is applied to the level that the vehicle will
rollover, the steering input does not decrease. Similarly, the model-free controller only
considers the relationship between yaw rate and steering input as a first-order delay model.
Therefore, dynamic behaviors are not considered the same as geometry-based controllers
in model-free controllers. In addition, an articulated vehicle without a steering axle cannot
be restored to a stable condition without proper steering or velocity control, unlike a front
wheel-steering vehicle. This also explains a situation in which the base algorithm cannot
recover in a situation where a rollover is about to occur. Therefore, addressing AAVs’
vulnerability to rollovers becomes challenging without appropriate longitudinal controllers
working in tandem. Nevertheless, under ideal simulation conditions, both the MPC and
the proposed algorithm demonstrate similar performance, with constraints applied within
the MPC to prevent rollovers.

The simulation results of the noise injection case are summarized in Figure 6. In contrast
to the simulation results without noise, the results of the base algorithms, except for MPC,
were omitted due to their lack of robustness against disturbances, leading to controller
divergence. Consequently, Figure 6 displays the results of MPC and the proposed algorithm
for cases where noise was applied to the sensor measurement and the case where it was not.
In Figure 6a, both MPC and the proposed algorithm can be observed to follow the target
path without divergence, even with disturbances injected. Notably, the proposed algorithm
exhibited a nearly identical driving trajectory to the noise-free case. However, MPC, which
demonstrated similar performance to the proposed algorithm in the absence of noise, proved
vulnerable to disturbances, resulting in significantly degraded performance in the noise case.
This phenomenon becomes more pronounced in Figure 6b,c, which depict lateral and heading
errors. The injected noise caused both algorithms to exhibit some level of vibration, but the
proposed algorithm managed to keep the error within a range similar to that in the noise-
free case. Similar trends were observed in parameters such as speed, yaw rate, and lateral
acceleration. Nevertheless, when examining the LTR in Figure 6k,l, it becomes apparent that
MPC, used as the base algorithm, exceeded a value of 1 in both LTRf and LTRr at the first
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corner. In contrast, the proposed algorithm effectively controlled the input to prevent rollover,
even when exposed to high disturbances, confirming its robust control performance.
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Figure 6. Simulation results of noise case: (a) driving trajectory; (b) lateral error; (c) heading angle
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acceleration of the rear body; (k) LTR of the front body; (l) LTR of the rear body.

KPIs from the simulation results are summarized in Table 3. When considering
scenarios without noise injection, the proposed algorithm showed KPIs related to lateral
error compared to other base algorithms, except for pure pursuit. Notably, pure pursuit
exhibited a mean and standard deviation of the lateral error nearly three times larger than
the other algorithms. Regarding heading errors, the Stanley method showed the smallest
mean and standard deviation, while the model-free controller and proposed controller
exhibited similar values. Similar to lateral error, pure pursuit also showed the largest
heading error, compared to other algorithms. Only considering the lateral and heading
errors, the Stanley method provided the best performance among the base and proposed
algorithms. However, when considering all KPIs, the proposed algorithm emerged as the
top performer. For lateral stability and pure pursuit, the Stanley method and the model-
free controller exhibited larger lateral acceleration, compared to MPC and the proposed
algorithm. In comparison with MPC-based algorithms, the maximum lateral acceleration
of other methods reached approximately 1.3 to 2 times that of MPC. This phenomenon
stems from the limitation of determining control input by considering only a single position
on the target path, unlike MPC, which factors in future vehicle motions. As indicated in
Table 3, the increase in lateral acceleration corresponded to an increase in LTR. Even with
no noise injection, only MPC and the proposed algorithm successfully kept the maximum
LTR within 1, preventing rollovers.

Table 3. KPIs of the simulation results.

Criteria Noise Pure Pursuit Stanley Model- MPC Proposed

Mean (SD) of lateral error [m]

Off 0.1660
(0.1975)

0.0422
(0.0585)

0.0389
(0.0530)

0.0696
(0.0893)

0.0447
(0.0568)

On - - - 0.1286
(0.0983)

0.0863
(0.0702)

Max of lateral error [m]
Off 0.6983 0.1770 0.1901 0.2470 0.1429

On - - - 0.4093 0.3022
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Table 3. Cont.

Criteria Noise Pure Pursuit Stanley Model- MPC Proposed

Mean (SD) of heading error [deg]
Off 4.3795

(4.8417)
0.9832

(1.6004)
1.3902

(2.7911)
2.2949

(3.1920)
1.7151

(2.6232)

On - - - 4.8468
(3.8542)

3.7865
(2.4860)

Max of heading error [deg]
Off 17.4951 9.3390 15.7492 14.4686 12.3413

On - - - 16.2658 11.0544

Max of ay [m/s2]
Off 5.8621 4.6436 4.2733 3.0435 2.9409

On - - - 5.5699 4.3923

Max of LTR
Off 1.7861 1.4252 1.2565 0.9139 0.8942

On - - - 1.2175 0.9284

KPIs for simulations with noise injection are also summarized in Table 3. Due to
the divergence of the pure pursuit, Stanley, and model-free controllers when signal cor-
ruption occurred, their results are not included in Table 3. Comparing MPC and the
proposed algorithm, the KPIs of the proposed algorithm delivered superior results. Hence,
the proposed algorithm demonstrates robust path tracking performance while adhering
to constraints.

6. Conclusions

An integrated controller for path tracking and velocity control is proposed to address
the lateral stability of the AAV and enhance its resilience to external disturbances. This
robust path tracking controller comprises two key modules: the reference state decision and
tube-based MPC. In contrast to conventional approaches, the reference state decision mod-
ule replaces error dynamics. It computes the reference state within the prediction horizon
by integrating the kinematic vehicle model with the control input from the virtual controller.
An LQR controller is employed to provide the optimal reference state. Tube-based MPC,
the second component, calculates the optimal control input to track the reference state
while adhering to state, input, and dynamic constraints. These constraints take into account
factors like lateral stability and actuation limits, which can significantly affect performance.
To evaluate the performance of the proposed robust path tracking controller, a simulation
study was conducted. White noise was introduced to the measured signals from the plant
model to assess robustness. The results demonstrated improved robustness and path
tracking performance for the proposed algorithm, even under scenarios with measurement
noise for multiple signals.

The motion control algorithm for the AAV can be improved in three ways. Firstly,
replacing the kinematic vehicle model with a nonlinear dynamic model can significantly
improve performance. Given that the AAV has non-steerable wheels, accounting for the
non-negligible slip angle becomes crucial, especially as driving speeds increase. Therefore,
designing a robust nonlinear controller is essential to extend the operational design domain
of the AAV. Secondly, expanding the system to include more bodies is another potential
improvement. For instance, adding an additional trailer to the rear body of the AAV
requires the inclusion of a passive articulation joint. As a result, it becomes imperative to
extend the applicability of the proposed algorithm to multi-trailer scenarios. Lastly, the
implementation of the MPC and its testing on an actual AAV is a crucial step. This practical
implementation allows for the validation and fine-tuning of the algorithm, ensuring that it
works effectively in real-world AAVs.
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