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Abstract: Langevin transducers are employed in several applications, such as power 

ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects 

can influence their performance, especially at high vibration amplitude levels. These 

nonlinear effects produce variations in the resonant frequency, harmonics of the excitation 

frequency, in addition to loss of symmetry in the frequency response and “frequency domain 

hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of 

power ultrasound transducers requiring only two parameters for simulating the most relevant 
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nonlinear effects. One parameter reproduces the changes in the resonance frequency and the 

other introduces the dependence of the frequency response on the history of the system. The 

piezoelectric constitutive equations are extended by a linear dependence of the elastic 

constant on the mechanical displacement amplitude. For introducing the frequency 

hysteresis, the elastic constant is computed by combining the current value of the mechanical 

amplitude with the previous state amplitude. The model developed in this work is applied 

for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of 

theoretical and experimental responses, obtained at several input voltages around the tuned 

frequency, shows a good agreement, indicating that the model can accurately describe the 

transducer nonlinear behavior. 

Keywords: Langevin transducers; nonlinear model; Rayleigh law 

 

1. Introduction 

Popular power ultrasonic transducers, called Langevin transducers, are constructed by sandwiching a 

stack of piezoelectric rings between two metal masses [1]. Originally introduced by Paul Langevin 

during the First World War, these transducers were primarily developed for sonar systems [2]. From its 

early days up until now, Langevin transducers have been employed in many industrial applications, such 

as high-displacement actuators and power ultrasound generators [3,4]. A typical Langevin transducer, 

illustrated in Figure 1, is formed by 4 piezoelectric rings, which are pre-stressed between two metal 

masses through a central bolt. Depending on the application, the transducer is connected to a mechanical 

amplifier, which increases the displacement amplitude at its end face. In power ultrasound applications, 

the Langevin type transducer and the mechanical amplifier are designed for operating at the same 

resonance frequency, forming a tuned assembly. 

 

Figure 1. A typical Langevin transducer. 

In power ultrasonic applications, the transducer is usually driven by a continuous sinusoidal wave 

source tuned to the resonant frequency of the device. For low voltage amplitudes, the transducer 

resonance frequency is independent of the applied voltage. However, for larger amplitudes, the 

resonance frequency depends on the applied voltage, and the electronic power source must be adjusted 

in order to maintain the frequency as close as possible to the resonant frequency of the transducer. A 

challenge in designing an efficient control system for these transducers consists in the ability of tracking 

the changes in the resonance frequency during its operation. These changes may be produced by 

temperature variation, as well as by changes in the amplitude of the oscillations [5]. In order to 
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characterize the behavior of the transducer around the tuned frequency, the relationship between voltage 

and mechanical displacement must be evaluated at each excitation level. At moderate amplitude levels, 

the resonant frequency decreases with the excitation voltage; when the amplitude is further increased, 

the previous effects become more evident, producing different response paths. As illustrated in  

Figure 2, the transducer presents one response curve when the frequency is increased and another curve 

when the frequency is decreased, a phenomenon usually referred as frequency response hysteresis [6]. 

Figure 2a shows the decrease in the resonance frequency of the transducer with the voltage amplitude, 

while Figure 2b illustrates frequency response hysteresis. 

 

Figure 2. Nonlinear effects on high power ultrasonic transducers (a) decrease in the 

resonance frequency of the transducer with voltage amplitude; and (b) frequency response 

hysteresis. 

An additional nonlinear effect may be associated with the generation of harmonics of the excitation 

frequency [7], which is not considered in this paper. All experimental results in the literature show a 

similar frequency dependence behavior, presenting a decrease on the resonance frequency with applied 

voltage amplitudes. 

Although the metal masses can present a nonlinear behavior for large deformations, the nonlinearities 

in Langevin transducers are mainly due to the inherent nonlinear behavior of the piezoelectric ceramics. 

Some authors extend the piezoelectric constitutive equations for reproducing these nonlinear effects [8,9]. 

The resulting nonlinear equations can be solved by applying analytical approximations or by numerical 

integration. Blackburn and Cain [10,11] presented a technique for simplifying this problem, which 

assumes that the quadratic term in the mechanical stress can be replaced by a linear term, by using the 

maximum stress value as a coefficient. This maximum stress value is interpreted as the vibration 

amplitude when a sinusoidal excitation is applied to the modeled system. Recently, Guyoumar et al. 

presented a comprehensive model employing a scaling law, which correlates the electric field and the 

mechanical stress to the electrical polarization. This model was applied on a Langevin transducer in 

order to reproduce the nonlinear behavior [12]. 
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Recently, short pulse techniques in the time domain have been applied to characterize the transducer 

nonlinear behavior [13,14]. These techniques are an alternative to the use of sinusoidal bursts in the 

frequency domain and provide a reliable method for predicting the transducer nonlinear behavior [15]. 

In these models, only one nonlinear parameter was considered and it was able to predict the frequency 

shift and the symmetry breaking at high excitation levels. 

This work presents an evolution of the previous models allowing the prediction of the most relevant 

nonlinear effects through only two parameters, with one parameter reproducing the changes in the 

resonance frequency and the other introducing the dependence on the direction in the frequency sweep 

shown in Figure 2b. The model is developed entirely in the frequency domain, relating the input voltage 

V() to the mechanical displacement X() obtained at the front surface of the transducer. The proposed 

model assumes a similar hypothesis to the one presented by Blackburn and Cain [10,11]. In the present 

case, the strain is considered as the dependent variable in the constitutive equations, instead of the stress. 

The practical objective is developing a simple model for reproducing the evolution of the resonant 

frequency under input voltage increases; therefore, providing means of assisting the external control of 

the transducer dynamics. 

The model presented allows the prediction of the most relevant nonlinear behavior of Langevin 

transducers at a wide amplitude range. The model is adjusted by applying the experimental response  

for two different amplitude levels, and is capable of predicting the transducer behavior for other  

operation levels. 

2. Theoretical Background 

2.1. Nonlinear Constitutive Equations 

In this section, the linear piezoelectric constitutive equations are extended in order to consider the 

nonlinear behavior. The piezoelectric constitutive equations involve two mechanical variables (strain S 

and stress T) and two electrical variables (electric field E and electric displacement D). Using the Voigt 

matrix notation, the mechanical variables are reduced to six component vectors. The constitutive 

equations employed in this work consider the electric field and the strain as the independent variables. 

The first order linear equations, valid for low displacements and electric fields, can be written in matrix 

notation as follows [16]: 

𝑇𝑝 = 𝑐𝑝𝑞
𝐸 𝑆𝑞 − 𝑒𝑘𝑝𝐸𝑘 (1a) 

𝐷𝑖 = 𝑒𝑖𝑞𝑆𝑞 + 𝜀𝑖𝑘
𝑆 𝐸𝑘 (1b) 

where 𝑐𝑝𝑞
𝐸  is the elastic matrix, 𝜀𝑖𝑘

𝑆  is the dielectric permittivity matrix and 𝑒𝑘𝑝  is the piezoelectric 

matrix. The displacement distribution at the transducer face is assumed to be homogeneous. For this 

reason the three-dimensional model can be reduced to one-dimension and the matrix notation can be 

omitted. 

To model the hysteresis phenomenon in ferroelectric materials, Lord Rayleigh [17] introduced a 

phenomenological hypothesis to describe the relation between the magnetic field B and the intensity of 

magnetic field H. In the absence of a material medium, both fields are linearly related through the 

magnetic permittivity of the free space µ0. This proportionality is also observed in diamagnetic and 

paramagnetic materials. However, in ferromagnetic materials the B-H curves exhibit hysteresis and 
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saturation. In low field conditions, the Rayleigh law introduces a magnetic permittivity µ depending on 

the H-field. 

𝜇 = 𝜇0 + 𝛼𝐻 (2) 

In Equation (2), H is the amplitude of a sinusoidal H-field and α can be interpreted as a 

phenomenological coefficient to link the permittivity to the field amplitude. Ferroelectric ceramics used 

in power ultrasound transducers present numerous similarities to ferromagnetic materials. The influence 

of the matter in both cases is obtained by taking the local mean value of the dipole moment. 

Macroscopically, this is represented by the polarization field P in ferroelectric ceramics and by the 

magnetization field M in ferromagnetic materials. In the 1990s, Damjanovic proposed the use of an 

analogy of the Rayleigh law for piezoelectric ceramics for unifying the study of ferromagnetic, 

ferroelectric, and ferroelastic materials [18]. 

The first hypothesis for extending the constitutive equations to the nonlinear regime consists in 

assuming that the elastic constant c33 in the polarization direction follows a Rayleigh law, so that: 

𝑐33 = 𝑐0 + 𝛼 · 𝑋 (3) 

where X is the amplitude of a sinusoidal displacement generated in the piezoelectric ceramics, then, the 

model is stated in the sinusoidal regime. In the case of a transducer driven by a sinusoidal voltage vext(t), 

the mechanical displacement follows a sinusoidal law: 

𝑥(𝑡) = 𝑋 · 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) (4) 

In Equation (4),  is the phase between the input voltage and the mechanical displacement. Applying 

this hypothesis, only the nonlinear effects showed in Figure 1, associated with the frequency shift and 

the symmetry of the frequency response, can be reproduced. In order to introduce the frequency 

hysteresis, an additional hypothesis is introduced: the amplitude in Equation (3) depends on a linear 

combination of the current state named X0, with the previous state of the system, named X−1. This linear 

combination is computed as: 

〈𝑋〉 =
𝛽𝑋−1 + 𝑋0

2
 (5) 

Here a second nonlinear parameter β is introduced. If the actual state has more influence in the elastic 

constant than the previous state, then β ≤ 1. If the responses do not depend on the past state, β is equal 

to zero. Applying this definition, the elastic constant is computed as: 

𝑐33 = 𝑐0 + 𝛼〈𝑋〉 = 𝑐0 + 𝛼 (
𝛽𝑋−1 + 𝑋0

2
) (6) 

2.2. Nonlinear Model of the Langevin Transducer 

For simplifying the model, schematically represented in Figure 3, the transducer is reduced to a  

one-dimension mass-spring-damper system, excited by external forces Fext [17]. Using a pair of 

symmetric external forces, the barycenter remains unchanged. 
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Figure 3. Simplified electromechanical model of a Langevin transducer. 

The external forces are originated in the piezoelectric ceramics and are proportional to the input 

voltage. The force Fext can be expressed as the mechanical stress T multiplied by the transducer area A: 

𝐹𝑒𝑥𝑡 = −𝑇𝐴 (7) 

Newton equations of the coupled system can be reduced to an equivalent spring-mass-damper system, 

where x is the deformation of the structure, showed in Figure 3. Therefore, the equivalent application of 

Newton’s law can be written as: 

𝑚𝑥̈ = −𝑏𝑥̇ − 𝑇𝐴 (8) 

The stress term in Equation (8) can be replaced by the using the linear expression given by  

Equation (1a): 

𝑚𝑥̈ = −𝑏𝑥̇ − 𝐴(𝑐𝑆 − 𝑒𝐸) (9) 

where m is the mass of the metallic end elements of the transducer, c is the elastic constant in the 

longitudinal direction, and b involves the energy losses. Here, the elastic constant c and the piezoelectric 

coefficient e correspond to c33 and e33, respectively. 

A steady state condition is assumed and both amplitudes, X0 and X−1, are considered as known 

constants, depending only on the angular frequency ω. Replacing Equation (6) in Equation (9) derives: 

𝑚𝑥̈ = −𝑏𝑥̇ − 𝐴[(𝑐0 + 𝛼〈𝑋〉)𝑆 − 𝑒𝐸] (10) 

Considering the proportionality between the electric field and the external voltage, in addition to the 

proportionality between the strain and the mechanical deformation x(t) the following equation is 

obtained: 

𝑥̈ + 𝐵𝑥̇ + 𝜔0
2𝑥 + 𝐾 · 〈𝑋(𝜔)〉𝑥 = 𝐶𝑣𝑒𝑥𝑡 (11) 

The coefficients of Equation (11) are defined as follows: 

𝐵 =
𝑏

𝑚
 (12.1) 

𝜔0
2 =

𝑐0𝐴

𝑚𝑙
 (12.2) 

𝐾(𝜔) =
𝛼𝐴

𝑚𝑙
 (12.3) 

𝐶 =
𝐴𝑒

𝑚𝑙
 (12.4) 
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For simplifying the model, the end-masses are considered as punctual bodies and l is the thickness of 

the piezoceramic stack. Assuming that ˂X(ω)˃ is a constant for the sinusoidal steady state,  

Equation (11) can be solved as an ordinary differential equation. However, this hypothesis is valid only 

for the analysis in the sinusoidal steady state. A third hypothesis is that the displacement x(t) is 

sinusoidal, with the same angular frequency ω as the input voltage, as in Equation (4). This frequency 

domain model does not take into account the generation of harmonics due to the nonlinear behavior. By 

grouping the terms, the Equation (11) can be rewritten as: 

𝑥̈ + 𝐵𝑥̇ + 𝜔𝑥
2𝑥 = 𝐶𝑣𝑒𝑥𝑡 (13) 

The relation between the nonlinear resonance frequency ωx and the natural frequency ω0 is given by 

the following equation: 

𝜔𝑥
2 = 𝜔0

2 + 𝐾 · 〈𝑋(𝜔)〉 (14) 

The term 𝐾〈𝑋(𝜔)〉 contains both nonlinear parameters α and β, introduced in the previous section. 

Solving Equation (13) for a monochromatic input of angular frequency ω, we obtain: 

𝑋(𝜔) =
𝐶

√(𝜔𝑥
2 −𝜔2)2 + 𝐵2𝜔2

∙ 𝑉 (15) 

This dependence can be verified experimentally and the parameters [C, B, 𝜔0
2, K, β] can be adjusted 

with a minimization algorithm. As ωx
2 depends on X, Equation (15) must be solved iteratively. Assuming 

that all parameters are known, the process for obtaining the amplitude X can be summarized in three 

steps: First, introduce the value for the previous step, X−1, and the initial value for the actual amplitude, 

X, for each angular frequency ω. Second, calculate the ωx
2 value by using Equation (14), and finally 

calculate the new value of the amplitude X. 

 

Figure 4. Iterative scheme for solving the model. 

If the difference between two consecutive values of X is higher than a desired threshold (0.1% in this 

example), the previous step calculation is repeated (Figure 4). At the end the process, a steady state 

solution is converged. This algorithm solves the model only for single-valued frequency responses and 

fails in the case of frequency responses presenting multiple solutions for each frequency. This  

problem occurs only at regimes presenting extremely high amplitudes, imposing a limitation on the 

model application. 
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The output of the model is the amplitude X(ω), as in Equation (15). However, sometimes experimental 

data is given as velocity. This can be easily obtained by multiplying the amplitude X(ω) by the angular 

frequency ω. 

In order to adjust the parameters, the Nelder-Mead algorithm was employed [19]. It is implemented 

using the fminsearch function in Matlab and its purpose is to find the optimal values of the set [C, B, 

0
2, K, β]. The objective function of the minimization is the sum over the frequency spectra of the 

quadratic error. The error is computed as the mean square root of the difference between the experimental 

data and the outputs from the models for each parameter set. 

Figure 5 illustrates an example for the calculated response results obtained considering the 

parameters: B = 600 s−1, C = 4 ms−2V−1, 0 = 167 krad/s, K = −1.5 × 109 m−1s−2, and β = 1. This set of 

values is the initial condition for the minimization described in the next section. The negative sign for 

the coefficient K is expected, as the frequency decreases with the amplitude X. 

 

Figure 5. Velocity response curve obtained by the model. Here, the input voltage was 

increased from 1 V to 5 V, with steps of 1 V. Black curves were obtained by increasing the 

frequency, whereas gray curves are associated with those responses obtained during 

frequency decreases. 

The model can predict a linear relationship between the square of the frequency and the amplitude 

neighboring the linear solution 0. In order to obtain this approximation, Equation (15) must be 

differentiated in respect to , which is equivalent to: 

𝜔𝑚𝑎𝑥
2 = 𝜔0

2 − 𝐵2 + 𝐾𝑋𝑚𝑎𝑥 (16) 

3. Experimental Results 

In order to verify the proposed model, the vibration velocity response of a 26 kHz transducer (Mectron 

Medical Technology, Via Loreto, Italy) is measured, using an optical interferometer, for frequencies 

neighboring the main resonance frequency. The experiment is repeated for the five voltage levels 

between 1 V and 5 V, sweeping the driving frequency up and down in each case. A LabView program 

was developed for externally driving a signal generator (Agilent 33220a, Santa Clara, CA, USA), 

connected to a power amplifier (QSC Audio, RMX 4050HD, Costa Mesa, CA, USA), used for exciting 

the ultrasonic transducer. A single point Laser Doppler Vibrometer (Polytec, OFV 3001, Waldbronn, 
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Germany) was used for measuring the vibration velocity at the face of the transducer. Figure 6 shows 

the schematic setup diagram. 

 

Figure 6. Experimental setup. 

The displacement amplitude of the vibration is obtained by assuming a sinusoidal response and 

dividing it by the angular frequency. Adopting the experimental results, the model was adjusted in order 

to minimize the difference between its output and the experimental data. Figure 7 shows the response 

curves for the five selected voltages, obtained from sweeping the excitation frequency up and down. 

Through a numerical implementation in Matlab, as shown in Figure 4, and by applying the Nelder-Mead 

algorithm for minimizing error, the following coefficients are obtained for a 26 kHz transducer: B = 748 s−1, 

C = 25.55 m·s−2V−1, 0 = 167.2 krad·s−1, K = −8 × 108 m−1s−2. For this case, the non-dimensional 

parameter is β = 5. 

 

Figure 7. (A) Adjusted model (continuous line), and (B) experimental data (dots). Black 

curves are obtained by sweeping the driving frequency up; gray curves are obtained when 

the driving frequency is swept down. 
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As it can be seen in Figure 7, the frequency shifts and the frequency hysteresis phenomena are both 

qualitatively represented. For evaluating the quantitative aspect of the model, the main characteristics 

from both results are summarized in Table 1. 

Table 1. Experimental and Numerical results. 

 Experimental Numerical 

Voltage 

[V] 

Maximum 

Displacement 

Amplitude 

[μm] 

Frequency of 

Maximum 

Displacement 

[kHz] 

Hysteresis 

[Hz] 

Frequency of 

Maximum 

Displacement 

[kHz] 

Maximum 

Displacement 

Amplitude 

[μm] 

Hysteresis  

[Hz] 

1 0.19 26.580 0.25 26.577 0.20 1 

2 0.40 26.544 7 26.543 0.41 3 

3 0.67 26.502 12 26.510 0.61 7 

4 0.95 26.467 15 26.477 0.82 14 

5 1.26 26.431 20 26.444 1.03 20 

In Table 1, the maximum displacement amplitudes are obtained when the frequency is swept down 

(gray curves in Figure 7). These values exhibit a significant mismatch comparing with the results 

obtained during frequency sweep up (black curves). In Table 1, the frequencies at maximum 

displacement are those excited during the sweep down case. The hysteresis values shown in Table 1 

correspond to the maximum difference between the gray and black curves. To evaluate the linear 

relationship presented in the previous section, the square of the angular frequency is plotted versus the 

displacement X in Figure 8. 

 

Figure 8. Evaluation of the theoretical model applying Equation (16). Dots are experimental 

and simulated data taken from Table 1. The continuous gray line is the interpolation of the 

numerical model, whereas the black dashed line is the linear approximation of the fist three 

elements in the experimental data. 

As it can be observed in Figure 8, the model and the experimental data are in good agreement ranging 

from 0 to 0.7 μm. For the case of higher amplitudes, the model predicts a change in the frequency greater 

than the real one. Note that the major divergence between the numerical and the experimental data is 
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during the transducer operation at high displacements. In this case, thermal effects can be important, 

changing the speed of the propagation in the materials and the value of the resonant frequency. 

4. Conclusions 

A simple model for describing the nonlinear vibration behavior of a Langevin transducer was 

presented. The model was inspired on the Rayleigh law for ferromagnetic materials and requires only 

two parameters in order to simulate the nonlinear behavior of the transducer. For verifying the proposed 

model, the frequency response of a 26 kHz Langevin transducer was measured experimentally by 

performing frequency sweeps, up and down, for different values of amplitude voltage. The comparison 

between the model and the experimental results confirms the capability of the model for predicting the 

resonance frequency shifts, breaking of symmetry of the transducer response curve and the frequency 

hysteresis phenomena for moderate amplitude levels. The proposed model can be implemented in 

frequency control systems of Langevin transducers ensuring that the transducer will operate with 

maximum displacement amplitude. 
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