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Abstract: To clarify the advantages of using soft robots in all aspects of life, the effective behaviour of
the pneumatic muscle actuator (PMA) must be known. In this work, the performances of the PMA
are explained and modelled with three formulas. The first formula describes the pulling force of the
actuator based on the structure parameters; furthermore, the formula presented is the generalised
contraction force for wholly-pneumatic muscle actuators. The second important model is the length
formula, which is modified to our previous work to fit different actuator structures. Based on these
two models, the stiffness of the actuator is formulated to illustrate its variability at different air
pressure amounts. In addition, these formulas will make the selection of proper actuators for any
robot arm structure easier using the knowledge gained from their performance. On the other hand,
the desired behaviour of this type of actuator will be predefined and controlled.

Keywords: contraction actuators; modelling; soft robotics; pulling force; stiffness

1. Introduction

An interaction between a robot arm and humans represents an important issue in industrial
and medical applications, which has to be safe and compliant during all probable situations, such as
control failure, human error, or any unexpected error in the robot arm itself. On the other hand,
the performance of the robot, including accuracy and rapidity, remains necessary as the task
requirement [1]. Tonietti, et al. [2] explain that the machines must be safe against all conceivable
accidents whilst they interact with humans. Another important target is their behaviour, which can
frequently be expressed as a speed of motion. The designers used to consider the safety and the
performance as two separate features [3].

To overcome this problem, many sensors are used in the rigid robot arm and an active control is
required. This solution is costly and not adequately dependable [2].

Many types of variable stiffness actuators (VSA) have been presented during the last few years.
Some of them reduced the probability of risk of injury. In spite of their excellent performance,
rigidity is the main characteristic of this type of actuator. This led to the invention of sufficiently soft,
high-stiffness actuators. In recent years there has been a substantial increase in designing, modelling,
and constructing (biologically-based) continuum robots that provide new robotic behaviours, and offer
an infinite number of robot applications [4,5]. The pneumatic muscle actuator (PMA), which is the
base of such types of robots, has numerous positives over ordinary pneumatic cylinders, such as the
high force in comparison to its weight, low workspace requirement, high flexibility to construct [6,7],
adaptable installation possibilities, minimum consumption of compressed air, accessibility of different
measurements, low cost, and being safe for human use [6,8]. For these exceptional features, the PMA
has been considered as an appropriate actuator to use behind electrical and hydraulic actuators.
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Despite its distinct positives, the PMA shows extremely nonlinear features [9]. This nonlinearity
is caused by the elastic-viscous properties of the inner rubber tube, the compressibility of air, and the
structure of the complex behaviour of the PMA outer covering [7]. Furthermore, the hysteresis
performance is due to the inner rubber tube, which results in different performances of the PMA
during different pressurizing conditions [6]. This behaviour increases the complexity of the system
model and its control [4].

Numerous studies have been done to study and model the performances and the characteristics
of such types of actuators. Among these studies, Takosoglu, et al. [10] outline the static performance
of the PMA. On the other hand, the Tondu and Lopez formula [9] and the Chou and Hannaford
model [11] are extensively used. Both models are established on the theory of the virtual works of
the cylindrical form and the zero walls of the inner rubber tube and the braided sleeve. Their force
formulas have been modified many times to reduce the error between the theoretical and exact force
values. The force formula has been enhanced by Al-Ibadi, et al. [12] by considering the amount of
the pressure required to establish the tensile force. The hysteresis has been considered by numerous
researchers [13,14]. In spite of these works, an exact force and position model do not yet exist. As a
result, the control strategies have to be modified to overcome the difficulties for the single actuator,
as well as for the multiple PMAs.

In this article, two of the major previous assumptions are considered, the thickness of the actuator
and the friction between the inner rubber tube and the braided sleeve. A general structure-based
force formula for the contraction actuator is presented, and then a modification of the previous length
formula is generalized. Furthermore, the variable stiffness of the inner tube has been clarified it is
influencing to the stiffness of the PMA at variety pressurised conditions.

2. Structure of the Pneumatic Muscle Actuator

Joseph L. McKibben, in the 1950s, developed the pneumatic muscle actuator (PMA), which is
simply made from a latex tube bounded by an expandable sleeve [11]. The simplicity of the McKibben
artificial actuator structure presented its use in many applications. Its operational basics are simple:
the bounded tension of the inner rubber tube is converted into a vertical pulling force [15]. Different air
pressure produces different pulling force values and this axial force is subject to the construction of the
PMA Figure 1 shows the general construction of the pneumatic muscle actuator.

Where L is the length of the actuator, D is the diameter, and θ denotes the braided angle, which it
is measured between braided strand (b) and the vertical line, its value varies from 0◦ to 180◦ based on
the construction and is the main aspect in the PMA’s actions. The initial values are defined as L0, D0,
and θ0, respectively.

The length, diameter, and the braided angle change with the amount of the air pressure inside
the muscle until the braided angle reaches 54.7◦, which represents the critical value at which the
contraction force is zero [9,11,12].

The contraction pneumatic muscle actuators act similarly to biological muscle: the contraction
behaviour occurs when the diameter of the inner rubber tube increases due to the air pressure, which
leads to producing a specific amount of pulling force.
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3. Operation of the PMA

The principle operation of the contraction pneumatic muscle can be fully explained in two
situations: (a) variable air pressure at a fixed, attached load; and (b) varying the load with constant air
pressure. The diameter of the braided sleeve will increase and, as a result, the diameter of the PMA
rises by incrementing the air pressure, while the actuator length will decline to reach the maximum
contraction ratio (ε). Equation (1) gives the contraction ratio expression:

ε =
L0 − L

L0
(1)

where L0 is the initial actuator length and L is the length of the PMA under the pressurised condition.
In Figure 2, n represent the total amount of strand turns for the whole actuator. n is a constant

value for each actuator and it depends on the length and specification of the braided sleeve. The other
coefficients, such as L, D, and θ, are varied due to the amount of air pressure and the construction of
the air muscle. In the first operation, as is shown in Figure 3, the actuator is fixed at the upper end and
a specific load is attached to its free end. The air pressure slowly increases from zero bar to a certain
value. Due to the similarity between the pneumatic muscle and the biological muscle, the contraction
in the first operation is called isotonic, and measuring the contraction at the second operation is called
isobaric [10].
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Figure 2. The parameters of the PMA.

At a definite pressure value P1, a contracting force will start to lift the fixed load until it reaches
the balance point; at this point the contraction force is similar to the mass weight [16].
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The volume of the PMA will rise to V1 and the length reduces to L1. An increment in the pressure
to P2 leads to an increase in the actuator’s volume and creates more contraction to L2, and the air
pressure will increase to its maximum value which is subject to the structure of the actuator.

The second action situation is pressurising the PMA at constant air pressure P. Varying the
attached load, as shown in Figure 4, leads to changes in the behaviour of the PMA. Reducing the
load from M1 to M2, and then to no load, will raise the volume and reduce the length of the
actuator [16]. The multiple lengths and volumes produced depend on the amount of the air pressure
inside the muscle.
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4. Presented Force Formula

Tatlicioglu, et al. [17] show that, in most engineering systems, it is important to have an accurate
model to improve the behaviour of the system. In recent years there have been numerous studies
conducted to mathematically model the PMAs. The work was done to relate both the air pressure and
the length of the PMA to the generated pulling force of contraction muscles. Numerous factors have
major effects on the model, such as the properties of the material used in the PMA construction, length,
diameter, braided angle, and air pressure. Understanding the relationship between these factors leads
to constructing accurate models, especially for control requirements [16].

Important work was done by Chou and Hannaford [11]. They constructed a model for the contraction
pneumatic muscle actuator under the following assumptions: (a) the shape of an actuator is cylindrical;
(b) there is always a contact between the braided sleeve and the surface of the inner tube; (c) neglecting
the friction between the tube and the braided sleeve; and (d) ignoring the latex forces of the tube.

The second widely-used model was formulated by Tondu and Lopez [9]. Their contraction force
formula was derived under the following assumptions: (a) the shape of the PMA is a perfect cylinder
with zero wall thickness; (b) there is contact between the inner rubber tube and the braided sleeve;
(c) the braided strand length is constant; (d) there is no friction between the tube and the sleeve;
and (e) the latex tube force is neglected.

Other research is being conducted to overcome the above assumptions for the presented contractor
force models. Tondu and Lopez [9] modified their model by adding the shape correction factor (q ≤ 1).

There are two options to select the correction factor: (a) the constant value, which depends on the
material, and (b) the variable value, which depends on the pressure.

Kang, et al. [18] propose a formula to the correction factor as follows:

q
(

Pg
)
= 1 + c1 e−c2Pg (2)

where c1 and c2 are positive constants. From this equation, the correction factor becomes 1 at maximum
air pressure, where the actuator shape is cylindrical.
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Al-Ibadi, et al. [12] argue that the pulling force of the contractor PMA does not generate an air
pressure value less than, or equal to, 0.45 bar.

Referring to Figure 3, and under the virtual work theory, the input work (Win) for the
McKibben’s muscle under air pressure supply is:

dWin = PgdV (3)

where dV is the volume change. The output work (Wout) occurs when the actuator shortens with the
volume change:

dWout = −FdL (4)

where F is the contractor (tensile) force and L is the axial (actuator) length. Assuming the lossless
actuator has no stored energy, the input work must equal the output work as assumed before, then:

dWout = dWin (5)

thus:
− F dL = PgdV

or:
F = −Pg

dV
dL

(6)

The authors have assumed that the braided strand (b) length fixed during the pressurising process,
and the volume of the actuator under cylindrical shape assumption is:

V =
1
4

πD2L (7)

Referring to the assumption above for the Chou and Hannaford [11], the Tondu and Lopez [9]
model, the type of material and its thickness and, as a result, its stiffness, plays a major factor in the
force production. For that reason, the volume of the actuator is defined as follows:

V =
1
4

πD2
inL (8)

and:
Din = Dout − ThD (9)

where V is the volume in m3, Din is the inner diameter in m, L is the length of the PMA in m, Dout is the
outer diameter in m, and ThD is twice the value of both the inner rubber tube and the braided sleeve
thickness. Figure 5 shows the cross-section of the actuator structure.

From Equations (8) and (9) the volume of the PMA is less than the volume of the actuator in
Equation (7). Moreover, the Win will be less and depends on the thickness of the rubber tube and the
braided sleeve. Increasing the rubber tube stiffness leads to increase its resistance and the Wout will
decrease, while the generated pulling force affects it longitudinally.
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The resistance force is defined as follows:

frs =
sr Ain

∆L
(10)

where frs is the resistance force (N) of the rubber tube, sr is the stiffness (N/m) of the rubber tube,
Ain (m2) is the inner area of the rubber cross-section, and ∆L (m) is the change of the actuator length
between the initial length and length at each pressure step.

The losses force due to a contactless between the surfaces of the rubber tube and the braided
sleeve is found experimentally as shown in Equation (11):

fc =
0.641
∆L

(11)

The experiment to find the expression in Equation (11) has been performed as follows:

1. An air pressure is applied to the actuator in Table 1 with step values from 0 to 5 bar.
2. At each step, the input work is calculated from Equations (3) and (8).
3. Subtracting the losses due to the stiffness and the changing in the inner area using Equation (10).
4. Calculating the output work by multiply the pulling force of the actuator by the length change of

Equation (4) (see Figure 6).
5. Repeat this experiment on different actuators.
6. Fixed value of work losses are found to be about 0.641 Nm and it is considered to be due to the

contactless losses between the inner tube and the braided sleeve, and the force losses decrease
when the (∆L) increases (i.e., the contact occurs when the pressure is increased).
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Under the principle of virtual work, the pulling force F can be defined as follows:

F =
Pg ∆V

∆L
− frs − fc (12)

where ∆V represents the volume change between the initial and new value each time the pressure
is changed.

To validate this equation, a 20 cm contraction actuator has been built to the specifications shown
in Table 1.

Table 1. The initial specifications of a 20 cm contraction PMA.

L0 (m) Rubber Thickness (m) Braided Thickness (m) Inner Diameter (m) Rubber Stiffness (N/m)

0.2 1.1 × 10−3 0.5 × 10−3 12 × 10−3 363.33

The actuator is pressurised from zero to 5 bar by 0.5 bar steps; at each step, the length of the PMA
is recorded. From Equation (10), the resistance force of the inner rubber tube is illustrated in Figure 7,
as a function of the input pressure.

Figure 7 shows that the resistance force is very high at low-pressure values (Pg < 0.5 bar) and its
value has been decreased dramatically at Pg = 0.5 bar.

The contactless losses at each air pressure step are also calculated and are illustrated against the
pressure in Figure 8. The friction value at Pg < 0.5 bar is significantly high.
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Figure 9 shows the force of both the experimental and theoretical pulling force and it is explained
that there is a substantial matching between them.
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Since the value of frs and fc is high at Pg < 0.5 bar, the pulling force F cannot be produced and the
generated force increases when the opposing forces are decreased.

To ensure that the Equation (12) can fit for all contraction actuators, another actuator for the
specification in Table 2 is constructed.

Table 2. The initial specifications of a high stiffness, 20 cm.

L0 (m) Rubber Thickness (m) Braided Thickness (m) Inner Diameter (m) Rubber Stiffness (N/m)

0.2 2.2 × 10−3 0.5 × 10−3 12 × 10−3 1090

The contactless losses (fc) for this muscle have the same values as the pressure seen in
Figure 8, while the resistance force (frs) is different because it is dependent on the rubber’s stiffness.
Figure 10 shows the resistance force against the air pressure. The force of this actuator is higher than
the force of the first PMA while the losses are increased because the stiffness is increased.

Increasing the stiffness of the rubber leads to increasing the resistive force, on the other hand, it
decreases the contraction ratio (ε) and, as a result, the input work will be higher.
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Figure 10. The resistance force of the high stiffness rubber tube against air pressure.

The two PMAs above are made from the same rubber tube diameter, but with different stiffness
values. Therefore, to further verification, an actuator is made to the specifications listed in Table 3.

Table 3. The initial specifications of the new contraction PMA.

L0 (m) Rubber Thickness (m) Braided Thickness (m) Inner Diameter (m) Rubber Stiffness (N/m)

0.2 1.1 × 10−3 0.5 × 10−3 26.5 × 10−3 545
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The reduced forces due to contactless losses have almost the same values because the material
types are the same for both the rubber and the sleeve, whereas the resistance force is different because
of the differences in diameter and stiffness of the actuators. From Equation (10) the frs can be given
as in Figure 11. The mean square error (MSE) is listed in Table 4 and gives the error between the
experimental and the proposed force formula to the actuators understudy for the pressure steps from
0 to 0.5 bar and it is calculated according to Equation (13):

MSE =
1
k

k

∑
0

e2 (13)

where k is the sample numbers and e is the error between the experimental and the theoretical values.

Table 4. The MSE of the three actuators.

Actuator MSE

1 7.23
2 9.31
3 22.68

Figure 9 and the Table 4 verify that the proposed force formula in Equation (12) can be used for a
variety of actuators, which differ in rubber stiffness and inner diameter.
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5. Structure-Based Length Formula for Contraction PMAs

The length of the contraction PMA decreases, while the applied pressure is raised. However, the
contraction ratio (ε) is not fixed for all actuators and it depends on the type of inner rubber tube, the
diameter of the PMA, and the maximum diameter of the braided sleeve. Al-Ibadi, et al. [12] proposed
a length formula as in Equation (14).

Their formula is derived for a range of actuator lengths, from 0.15 m to 0.4 m. Furthermore,
similar rubber tube and actuator diameters have been used:

L = a +
b

[1 + (
Pg
c )

d
]
e − 0.009L0

√
Pg (14)

where:


a
b
c
d
e

 =


0.4351 0 0.0183 −0.0003
0.5649 0 −0.0183 0.0003
−0.0141 0 0.0031 −0.00006
0.5487 0 −0.0136 0.00007

0 0.3694 0 0




L0

L−0.248
0
L2

0
L3

0


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where: the parameters a, b, c, d, and e are constants for each L0 and they represent the coefficients of
Equation (14).

To present an efficient length formula that is able to track the actual length of the PMA, the initial
length (L0), initial diameter (D0), and the rubber stiffness must be considered. While the contraction
ratio increases as a pressure increase, and the highest rubber stiffness sr leads to the lowest stretchable
ability, then:

L α
1
Pg

(15)

L α
1
sr

(16)

and to avoid dividing by zero, an exponential form will be considered as follows:

L = L0 −
aL0

(1 + e−b Do
sr Pg)

6.214 (17)

where a and b are constants for a fixed structure and the expression to find them depends on the
diameter and stiffness of the PMA.

[
a
b

]
=

[
0.0126 14882 −2 × 108

2 × 10−5 −0.5375 11777

]
1(

D0
sr

)(
D2

0
s2

r

)
 (18)

To improve the efficiency of this equation, four actuators are made to the specifications listed in
Table 5 and Figure 12 illustrates the theoretical and the experimental data according to Equation (17).

Table 5. The specifications of the contraction PMAs.

PMA L0 (m) Actuator Diameter (m) Rubber Stiffness (N/m)

A 0.2 0.0152 363.33
B 0.2 00.0174 1090
C 0.2 0.0297 545
D 0.3 0.0152 363.33
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Figure 12. The experimental and theoretical length of the PMAs. (A–D) represent the length for the
PMAs in Table 5 respectively.

While the experimental length is recorded as an average for the length during contraction and
elongation, the small deviation remains inside the whole curve.

As an example, Figure 13 shows the length of the actuator B with a contraction and
elongation curve.

The length formula in Equation (17) can be used in Equation (12) at any air pressure value to
detect the contractor force. Furthermore, the position of a single actuator can be defined at any time
for all PMAs under their structure specification.

Sárosi, et al. [19] argue that the maximum contraction ratio is about 25%. However, from Equation (17),
and as illustrated in Figure 12, the contraction ratio depends on the stiffness and diameter of the actuator
and is not fixed. Table 6 lists the contraction ratio of the actuators (A, B, C, and D), which are according to
the specifications given in Table 5.
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Table 6. The contraction ratio of the PMAs.

PMA Contraction Ratio (ε)

A 29%
B 19.5%
C 24.3%
D 28.6%

Table 6 shows that the contraction ratio has an inverse relationship with the stiffness of the inner
rubber tube, where both A and D actuators have similar values of the contraction ration, while it
decreased for the actuator C, whereas actuator B has the minimum contraction ratio (see Table 5).

Since Equation (17) is derived from fitting the length of the actuator at no-load, Table 7 lists the
MSE at different load values for the 20 cm contraction PMA, fit for centimetres, for 11 steps of pressure
from 0 to 0.5 bar.

Table 7. The MSE of the 20 cm contraction PMA at different loads.

Load (kg) MSE

0.0 0.01982
0.5 0.1405
1.0 0.1995
2.0 0.2363
3.0 0.431
4.0 0.9697

6. The Stiffness of the Contraction PMA

One of the major advantages of the PMA is the variable stiffness performance [20] where the
stiffness of this type of actuator is changing with the applied pressure. The stiffness is defined as the
length change due to changes in the applied force.

From Equations (12) and (17) the stiffness can be defined as in Equation (19):

s =
Pg ∆V
∆L2 − frs

∆L
− fr

∆L
(19)

While both the length and the force of the actuator depending on the structure of the PMA,
the stiffness (s) is determined by the structure of the PMA, correspondingly. Figure 14 above describes
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the stiffness for the actuators (A, B, and C) in Table 5 as a function of air pressure. The stiffness of
actuator D is similar to the stiffness of actuator A because it has the same material specifications and
contraction ratio.
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Figure 14. The experimental and theoretical stiffness of the three different PMAs. (A–C) represent the
stiffness for the PMAs in Table 5 respectively.

7. Conclusions

Modelling the nonlinear system, such as that of the pneumatic muscle actuator (PMA) is
a challenge and has three major performances; contraction, pulling force, and variable stiffness.
An efficient model must describe the full mechanical behaviour. Since the McKibben artificial muscle
is applicable for structure differences, the most effective model has to be based on the structure
coefficients, such as initial length, initial inner diameter, the thickness of both the inner rubber tube
and the braided sleeve and the stiffness of the rubber tube or, in other words, its ability to extend.

In this article, numerous contraction actuators are built with different structural factors.
The presented force model, which is based on these parameters, is validated. Moreover, the results
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show that this model might be considered a general force formula to the contraction PMA, whatever
the structure. On the other hand, it overcame two of the previous assumptions: the zero wall thickness,
and ignoring the friction. These have a significant impact on the actuator force, especially at low air
pressure values.

The contraction length formula has been generalised in this paper in comparison with the previous
work in [12], which depended on the initial actuator length for similar inner tube performances.
The new formula is validated to different contraction actuators and it has been formulated to fit various
constructions. The proposed actuator length formula has been derived from the no-load condition,
then, it is validated to different load values.

A general stiffness formula for the contraction PMA has been defined and verified for the PMAs
under study. The result has proved the effectiveness of the structure on the PMA stiffness.

These models cause the control of force, contraction length (end position) and the stiffness to easily
and clearly describe the behaviour of the contraction PMAs under pressurised conditions, which helps
in choosing a suitable structure for the required application.

As a future project, a suitable structure will be selected to design and build an efficient continuum
arm for different applications, as well as design the proper control system which depends on the
muscle parameters.
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