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Abstract: Implementation, experimental evaluation and stability analysis of an admittance-controlled
teleoperated pneumatic system is presented. A master manipulator navigates a pneumatic slave
actuation, which interacts with a human arm as an environment. Considering the external force in
the position control loop in the admittance control, enables the slave to handle the external force
independent of the master. The proposed control system is evaluated experimentally using the
admittance models with different settings. Stability of the control system is analyzed using the
concept of Lyapunov exponents. Parametric stability analysis is conducted to show the effect of
changing system parameters on stability.

Keywords: admittance control; sliding mode control; pneumatic actuator; stability analysis;
Lyapunov exponents

1. Introduction

Teleoperated robotic systems have been widely employed in various industrial applications [1,2].
A teleoperated robotic system incorporates a master manipulator (hand-controlled device) operated by
an operator, a slave manipulator that emulates the master and, a central controller that coordinates
the system through a communication channel [2]. If the slave sends the interaction force with the
environment (external force) back to the master, the teleoperation system is called bilateral; otherwise,
it is called unilateral [3].

Bilateral teleoperation provides a sense of the remote site to the operator. Thus, the operator can
deal with the external force by moving the master manipulator [1,2,4]. In unilateral teleoperation,
however, the external force is managed by the slave manipulator [5]. Therefore, control of the slave
manipulator can be more challenging. On the other hand, applying unilateral teleoperation eliminates
the complexity of rendering the external force on the master and makes the overall teleoperation
system more stable [6]. It also helps the operator to focus on navigating the slave by eliminating the
burden of dealing with the external force on the master side. The focus of this paper is on unilateral
teleoperation of pneumatic actuators. Pneumatic actuators are simple and cost-efficient. However, due
to nonlinearities inherent in pneumatic systems caused by compressibility of air and friction, accurate
positioning of pneumatics is difficult [7].
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Stability is a major challenge in operation of teleoperated systems in general. Due to undefined
nature of the external force, stability of the force interaction between the slave and the environment
is not always guaranteed [8] without a complete stability analysis. There is limited research on
stable teleoperation of pneumatic systems. Among the stability analysis methods applied to nonlinear
systems, Lyapunov direct method is the most popular one. However, its application is limited because
of the difficulty of finding a proper Lyapunov function [9].

Le et al. [4] used a pneumatic slave manipulator following another pneumatic master manipulator
in bilateral manner. Stability of the system was studied using the Hannaford closed-loop model of the
bilateral system [10], which presumes that the combination of master and slave can be approximated,
by a linear model [11]. This assumption may not be always accurate since it does not consider the
nonlinearity of pneumatic actuator dynamics. Stability of this platform was studied using Sliding Mode
Control (SMC) condition of stability in that the external force is assumed to be a model uncertainty [12].
Another research [13] showed that this assumption is not always dependable, especially when the
system modeling changes due to the effect of external force. Durbha and Li [14] used pneumatic slave
and master manipulators in a bilateral way. Stability analysis was based on a theory, which guarantees
the stability of the closed-loop interaction of two systems where one is passive and the other is strictly
passive [15]. This approach that considered the environment and the control system passive [16] was
also implemented on a bilateral pneumatic rescue crawler navigated by a phantom haptic device [17].
Comparing to pneumatic master manipulator, using phantom haptic device as the master provides
a different dynamic system [17]. Phantom haptic device is electrically-actuated and does not have
the air compressibility challenge. The mass of phantom device is less than the mass of a pneumatic
actuator. Tadano and Kawashima [5] and, Li et al. [18] used a haptic device to navigate a pneumatic
artificial muscle.

Considering the benefits of unilateral teleoperation, the goal of this paper is to experimentally
evaluate the performance of a unilateral teleoperated system composed of a pneumatic actuator
navigated by a master device and analyze the stability of the system. The control system is based
on admittance models with different settings. The admittance model adds an element to the desired
position trajectory that corresponds to the external force [19]. The external force is measured using
a load cell to provide more accurate feedback of environmental force to the admittance model.
Experimental evaluations include arbitrary force profiles applied to the slave actuator by a human.
Since experiments only verify stability of the system for the few tested cases, theoretical stability
analysis of the entire system for a wider range of system parameters and trajectories is imperative.
Due to the expected challenges in construction of Lyapunov function needed as part of using Lyapunov
direct method, the concept of Lyapunov exponents (LEs) is used here as an alternative method [9].
This method has shown promising results for stability analysis of dynamic systems such as positioning
of a hydraulic actuator [20] and balancing control of a biped robot [9]. In this paper, stability of
the entire unilateral pneumatic system is analyzed by employing the concept of LEs. It is worth
mentioning that while, the concept of admittance control is not new and has been applied to many
applications, its application to a pneumatically-actuated arm interacting with a human is still a new
area. The stability treatment of the entire system using the concept of LEs, is very new to this field.

The rest of this paper is organized as follows. The experimental setup and modeling of a unilateral
pneumatic system is presented in Section 2. Section 3 describes the admittance control architecture
followed by simulation studies in Section 4. Section 5 presents the results of the system stability
analysis using the concept of Lyapunov exponents. Experimental evaluation results are presented in
Section 6.

2. Experimental Setup

Figure 1 shows the experimental setup of the system under study. A PHANTOM joystick is
used as the master manipulator. It is capable of serial communication using a high speed IEEE1394
communication protocol (FireWire), which is available on many computers. The slave manipulator is a



Actuators 2020, 9, 103 3 of 16

single degree-of-freedom pneumatic actuator, which interacts with the environment (a human subject)
through a handle. A computer with Quanser data acquisition board facilitates the connection of the
master and the slave through a local network with negligible delay.
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Figure 1. (a) Test setup of unilateral admittance-controlled of the pneumatic actuator; (b) schematic 
diagram of pneumatic system [21]. 
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Figure 1. (a) Test setup of unilateral admittance-controlled of the pneumatic actuator; (b) schematic
diagram of pneumatic system [21].

The pneumatic setup, shown in Figure 1b, is a double rod (FESTO DNC) with 500 mm stroke.
The bore and rod diameter are 40 mm and 16 mm respectively. A proportional directional flow control
valve (FESTO MPYE) sends the pressurized air to the cylinder to move it according to the movement
of the master. The maximum flow capacity of the control valve is 700 L/min at 7 bar (100 psi) absolute
supply pressure. The master, force sensor (ARTECH S type load cell), position encoder (BOURNS
incremental rotary encoder) and pressure sensors (by Durham Industries) also send data to the control
station. The above components are connected to a local network, which is assumed ideal, meaning the
network characteristics such as time delay and packet loss are negligible. The sampling frequency is
500 Hz.

Referring to Figure 1b, the equation of motion of the actuator is defined as:

m
..
xs = A(P1 − P2) + Fext − (F f + b

.
xs) (1)

where m is the mass of the moving parts, xs is the actuator position, P1 and P2 are the air pressures at
of the actuator chambers, and A represents the piston area. b is the viscous friction coefficient and Fext

is the externally applied load. The dry friction, F f , is adopted from LuGre friction model [22] without
its viscous friction term as viscous friction is already included as a separate term in (1):

F f = σ0z + σ1
.
z (2)
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where σ0 is the equivalent spring constant and σ1 is the damping coefficient of bristles. The variable z,
average bristle deflection, can be achieved by solving the following equation [22]:

.
z =

.
xs −

σ0
∣∣∣ .
xs

∣∣∣z
Fc + (Fs − Fc)e−(

.
xs/vsv)

2 (3)

where Fc and Fs are the Coulomb friction and static friction, respectively, and vsv is the Stribeck velocity.
To move the actuator, air pressure should be charged or discharged into chambers. The air pressure is
related to the air mass flows,

.
m1 and

.
m2, as follows [21,23]:

.
P1 = γRT

.
m1

V1
− αγA

.
xsP1

V1
(4)

.
P2 = −γRT

.
m2

V2
+ αγA

.
xsP2

V2
(5)

V1 = V0 + Axs (6)

V2 = V0 + A(L− xs) (7)

In (4) and (5), R is the ideal gas constant, γ is the ratio of specific heats, α is compressibility
correction factor and T is air temperature [24]. V1 and V2 are the volumes of each actuator chambers,
which are functions of the actuator position as expressed in (6) and (7). L is the length of the actuator

stroke and V0 presents cylinder inactive volume. By defining γ =

√
γ(2/(γ+ 1))(γ+1)/(γ−1)/R,

the mass flow rate of air through control valve orifice can be expressed as [25]:

.
m1 = wxv

.
∅1 =



wxv CdPs
√

T
γ,

P1

Ps
≤ Pcr

wxv CdPs
√

T
γ

√
1−

(
P1/Ps − Pcr

1− Pcr

)(γ−1)/γ

,
P1

Ps
> Pcr

.
m2 = wxv

.
∅2 =



wxv CdP2
√

T
γ,

Pa

P2
≤ Pcr

wxv CdP2
√

T
γ

√
1−

(
Pa/P2 − Pcr

1− Pcr

)(γ−1)/γ

,
Pa

P2
> Pcr



xv ≥ 0

.
m1 = wxv

.
∅1 =



wxv CdP1
√

T
γ,

Pa

P1
≤ Pcr

wxv CdP1
√

T
γ

√
1−

(
Pa/P1 − Pcr

1− Pcr

)(γ−1)/γ

,
Pa

P1
> Pcr

.
m2 = wxv

.
∅2 =


wxv CdPs
√

T
γ,

P2

Ps
≤ Pcr

wxv CdPs
√

T
γ

√
1−

(
P2/Ps − Pcr

1− Pcr

)(γ−1)/γ

,
P2

Ps
> Pcr



xv < 0

(8)

where w and
.
∅i (i = 1, 2) are orifice area gradient and mass flow per area unit, respectively. xv represents

the displacement of the valve spool, Cd is discharge coefficient of the valve, Pcr is the valve critical
pressure ratio, and Pa and Ps are the absolute downstream and upstream pressures, respectively.
The valve orifice area gradient, w, is related to the control signal by the following equation:

.
xv =

1
τ
(−xv + Kvu) (9)
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where u is the control signal, Kv is the valve spool position gain and τ is the valve time constant.
The values of the parameters of the test rig are shown in Table 1 that are either provided by the
manufacturers or obtained experimentally through previous research [26].

Table 1. Parameters of Pneumatic Actuator [26].

Parameter Symbol (Unit) Value

Actuator stroke L (m) 0.5
Piston annulus area A (cm2) 10.6
Valve time constant τ (ms) 4.2

Valve orifice area gradient w
(
mm2/mm

)
22.6

Supply pressure Ps (bar) 5
Valve coefficient of discharge Cd 0.7

Static friction Fs (N) 38.5
Coulomb friction Fc (N) 32.9

Ratio of specific heats γ 1.4
Ideal gas constant R (J/kgK) 287

Valve critical pressure ratio Pcr 0.2
Valve spool gain Kv (mm/V) 0.25

Damping coefficient of bristle σ1(N/m/s) 93.13
Spring constant of bristle σ0 (N/m) 4500

Mass of moving parts m (kg) 1.91
Compressibility correction factor α 1.2

Temperature of air T (K) 300
Atmospheric pressure Pa (bar) 1

Viscous damping coefficient b (Ns/m) 70
Stribeck velocity vsv (m/s) 0.02

Cylinder inactive volume V0
(
m3

)
1.64× 10−4

3. Control Architecture

3.1. Admittance Control

Admittance control simultaneously maintains the desired force and position in the same
direction [13,27]. It provides the system with a function which converts the external force, Fext,
to a corresponding position called external position, xext. Figure 2 shows the general block diagram of
admittance control where xext is added to the primary desired position, xm, determined by the master
manipulator. In this approach, the position controller tracks a modified desired trajectory, xd, that is the
combination of the primary desired trajectory, xm, and the displacement correspondent to the external
force, xext (xd = xm + xext). The relationship between the external force, Fext, and the corresponding
displacement, xext, is usually defined by a second-order linear mass-spring-damper model as follows:

xext

Fext
=

1
Ms2 + Bs + K

(10)

where M, B and K are admittance parameters corresponding to inertia, damping and stiffness
characteristics and s is the Laplace operator. Response of the manipulator to the external force can be
tuned by tuning admittance parameters.

Actuators 2020, 9, x FOR PEER REVIEW 5 of 17 

 

Table 1. Parameters of Pneumatic Actuator [26]. 

Parameter Symbol (Unit) Value 
Actuator stroke 𝐿𝐿 (m) 0.5 

Piston annulus area 𝐴𝐴 (cm2) 10.6 
Valve time constant 𝜏𝜏 (ms) 4.2 

Valve orifice area gradient 𝑤𝑤 (mm2/mm) 22.6 
Supply pressure 𝑃𝑃𝑠𝑠 (bar) 5 

Valve coefficient of discharge 𝐶𝐶𝑑𝑑 0.7 
Static friction 𝐹𝐹𝑠𝑠 (N) 38.5 

Coulomb friction 𝐹𝐹𝑐𝑐 (N) 32.9 
Ratio of specific heats 𝛾𝛾 1.4 

Ideal gas constant 𝑅𝑅 (J/kgK) 287 
Valve critical pressure ratio 𝑃𝑃𝑐𝑐𝑐𝑐 0.2 

Valve spool gain 𝐾𝐾𝑣𝑣 (mm/V) 0.25 
Damping coefficient of bristle 𝜎𝜎1(N/m/s) 93.13 

Spring constant of bristle 𝜎𝜎0 (N m⁄ ) 4500 
Mass of moving parts 𝑚𝑚 (kg) 1.91 

Compressibility correction factor 𝛼𝛼 1.2 
Temperature of air 𝑇𝑇 (K) 300 

Atmospheric pressure 𝑃𝑃𝑎𝑎 (bar) 1 
Viscous damping coefficient b(Ns/m) 70 

Stribeck velocity 𝑣𝑣𝑠𝑠𝑠𝑠 (m/s) 0.02 
Cylinder inactive volume 𝑉𝑉0 (m3) 1.64 × 10−4 

3. Control Architecture  

3.1. Admittance Control 

Admittance control simultaneously maintains the desired force and position in the same 
direction [13,27]. It provides the system with a function which converts the external force, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒, to a 
corresponding position called external position, 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒. Figure 2 shows the general block diagram of 
admittance control where 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒  is added to the primary desired position, 𝑥𝑥𝑚𝑚 , determined by the 
master manipulator. In this approach, the position controller tracks a modified desired trajectory, 𝑥𝑥𝑑𝑑, 
that is the combination of the primary desired trajectory, 𝑥𝑥𝑚𝑚, and the displacement correspondent to 
the external force, 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 (𝑥𝑥𝑑𝑑 =  𝑥𝑥𝑚𝑚 + 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒). The relationship between the external force, 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒, and the 
corresponding displacement, 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒, is usually defined by a second-order linear mass-spring-damper 
model as follows: 

𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒

=
1

𝑀𝑀𝑀𝑀2 + 𝐵𝐵𝐵𝐵 + 𝐾𝐾
 (10) 

where 𝑀𝑀 , 𝐵𝐵  and 𝐾𝐾  are admittance parameters corresponding to inertia, damping and stiffness 
characteristics and 𝑠𝑠 is the Laplace operator. Response of the manipulator to the external force can 
be tuned by tuning admittance parameters. 

 

Figure 2. General block diagram of admittance control. 
Figure 2. General block diagram of admittance control.



Actuators 2020, 9, 103 6 of 16

3.2. Position Controller

To position the pneumatic actuator, Sliding Mode Control (SMC) scheme is employed. SMC is
a model-based scheme that provides a robust performance despite model uncertainties [21,28,29].
It is the most popular position controller for pneumatic actuators [7,29]. In order to design an SMC
algorithm, an integral sliding surface is defined as:

S = (
d
dt

+ δ)
3 ∫ t

0
e dτ (11)

where δ is a positive constant and e is the position error, defined as follows:

e = xs − xd = xs − (xm + xext) (12)

The SMC control law is obtained by summing up an equivalent control component formulated
based on the dynamic model, Aveq, with a robustness control component, Avrb:

u =
(
Aveq + Avrb

)
/(wKv) (13)

where Kv is the valve spool position gain and w is the valve orifice area. Dynamics of the system on the
sliding surface can be expressed as [15]:

.
S =

...
e + δ3e + 3δ2 .

e + 3δ
..
e = 0 (14)

By replacing
...
e with

...
x s −

...
x d and then obtaining

...
x s from (14) and applying it to (1), the following

expression for the equivalent component is achieved:

Aveq =

...
x d − δ

3e− 3δ2 .
e− 3δ

..
e− Fx

Px
(15)

In (15), Px and Fx are derived as:

Px =
γRTA

m

( .
∅1

V1
+

.
∅2

V2

)
(16)

Fx = −
K

.
xs −

.
Fext + b

..
xs +

.
F f

m
(17)

where

K = αγA2
(

P1

V1
+

P2

V2

)
(18)

Considering the slow dynamics of the system, the rate of changes in dry friction, F f , is slow. Thus,
.
F f in (17) can be neglected. Same assumption was made in previous studies [7,28,29]. The role of
the robust part of SMC, Avrb, is to provide robustness despite this assumption. Avrb is formulated
as follows:

Avrb =
−Krb
Px

sign (S) (19)

where Krb is a positive gain. Because the discontinuouty of sign function in (19) is not ideal for practical
implementation, it is approximated by the continuous tanh function as follows:

sign(S) ≈ tanh(aS) (20)

where a is a large positive number.
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4. Simulation Studies

The performance of the proposed unilateral pneumatic system is first evaluated through
simulations. Referring to Figure 1, the teleoperated control system receives the displacement of the
master, xm, and the external force imparted to the slave from the environment, Fext. The environment
is considered spring-dominant which means Fext is proportional to the slave position:

Fext = −Kextxs (21)

where Kext is the stiffness coefficient of the environment.
A simplified admittance model is employed whereby the external force is related to the external

position by a virtual spring:
xext = Fext/Kadm (22)

In (22), Kadm is a positive coefficient corresponding to the stiffness term in the admittance model.
The step tracking simulation results for the admittance control are shown in Figure 3. The system
step input, xm, is 0.1 m as shown in Figure 3a. Considering Kext = 100 N/m, the external force, Fext, is
shown in Figure 3b. The external position, xext, is derived from (22), considering Kadm = 2000 N/m,
and shown in Figure 3c. The modified desired trajectory, xd, is obtained by adding the primary desired
trajectory, xm, and the external position, xext and shown in Figure 3d.
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Figure 4 shows the corresponding slave manipulator variables. The controller parameters are 
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that there is a reasonable agreement between motions of slave and master actuators. 
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Figure 3. Admittance control variables pertaining to step tracking: (a) primary desired trajectory
provided by the master manipulator, xm; (b) external force, Fext; (c) displacement corresponding to the
external force, xext; (d) desired trajectory achieved from admittance model, xd.

Figure 4 shows the corresponding slave manipulator variables. The controller parameters are
δ = 80 rad/s and Krb = 2000 m/s3. The numerical value of a in (20) is chosen as 104. The slave position,
xs, is shown in Figure 4a. The air pressures in cylinder chambers are shown in Figure 4b. The control
signal applied to the slave actuator is shown in Figure 4c and does not saturate. The control signal of
this system changes within the range of 0–10 V. Hence, with the 5 V control signal, the valve is fully
closed. The position tracking error, defined by (12), is shown in Figure 4d. It is seen that there is a
reasonable agreement between motions of slave and master actuators.
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Figure 4. Step tracking with SMC: (a) piston position; (b) chamber pressures; (c) control signal;
(d) position error.

5. Stability Analysis

The concept of Lyapunov exponents (LEs) is a well-established numerical approach to study
nonlinear systems [9,20]. LEs indicate stability of a nonlinear system by monitoring the long-term
behaviour of adjacent state-space trajectories as time evolves. The total number of LEs is equal to
the dimension of the state space and the sign of the LEs is used to deduce the stability property of
the system. A positive LE corresponds to chaotic or unstable behavior. When all of the exponents
are negative, all of the neighboring trajectories converge as time evolves indicating that the system
is exponentially stable with a fixed equilibrium point. If there is one zero exponent and the other
exponents are negative, we have a stable system with one-dimensional equilibrium [30]. Presenting the
required conditions for employing the Lyapunov exponent method is avoided to keep the focus of the
paper. More details can be found in [23].

5.1. Calculation of Lyapunov Exponents

Consider the following smooth nonlinear system in an n-dimensional state space:

.
x = f (x) (23)

where x ∈ Rn, is the state vector and f (x) is continuous and differentiable. To calculate LEs, a “fiducial”
trajectory is found by solving (23) using initial condition x(0) = x0. Orthogonal principal axes, δx, are
then defined on the fiducial trajectory. The asymptotic behaviour of the nonlinear system could be
determined by monitoring the length of each principal axis over time. To find the length of the i-th
(i = 1, . . . , n) principal axis, a linear equation of motion is formed as:

.
ψt = F(t)ψt (24)

where F(t) is the Jacobian matrix:

F(t) =
∂ f
∂xT

∣∣∣∣∣ x=x(t) (25)
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Each principal axis is a column of ψt. Since the resulting principal axes tend to fall along the
direction of the fastest growing axis, Gram-Schmidt reorthonormalization scheme is applied to make
the axes orthogonal to each other and then normalize their lengths in every iteration [31]. The i-th LE
is obtained using the following key equation [31]:

λi = lim
t→∞

1
T

ln
‖δxi(t)‖
‖δxi(t0)‖

(26)

where T is the total duration of the observance. [23] details a simple example of calculating LEs.

5.2. Stability Analysis of the Proposed Control System

The stability analysis of the entire control system described in Section 3 is conducted. The state
space model is formed by defining the state space vector as:

→
x = [x1 x2 x3 x4 x5 x6 x7]

T = [xs vs P1 P2 xv z
∫ t

0
e dτ]

T

(27)

where xs and vs are displacement and the velocity of the piston, P1 and P2 are air pressures in each
actuator chamber, xv is the displacement of spool valve as a result of the control signal, z is average
bristle deflection and

∫ t
0 e dτ is the integral of the position error as defined by (12). Using the state

variables, (27), and Equations (1)–(9), (21) and (22), the state space model is constructed as

.
x1 = x2
.
x2 =

1
m
[A(x3 − x4) −Kextx1 − bx2−

(σ0x6 + σ1(x2 − (σ0|x2|x6/Fc + (Fs − Fc)e−(x2/vs)2
)))]

.
x3 = γRT

(
wx5

.
∅1/(V0 + Ax1)

)
− αγA(x2x3/(V0 + Ax1))

.
x4 = −γRT

(
wx5

.
∅2/(V0 + A(L− x1))

)
+ αγA(x2x4/(V0 + A(L− x1))

.
x5 = (−x5 + Kvu)/τ

.
x6 = x2 −

(
σ0|x2|x6/Fc + (Fs − Fc)e−(x2/vs)2

)
.
x7 = e

(28)

The control signal in terms of state space variables is obtained by substituting (15) and (19)
into (13):

u =
1

wKv
(

...
x d − δ

3e− 3δ2 .
e− 3δ

..
e− Fx−Krb tanh(S)

γRTA
m

( .
∅1

V0 + Ax1
+

.
∅2

V0 + A(L− x1)

) ) (29)

The associated variables in (29) are defined as:

...
x d =

−Kext

Kadmm
(A

( .
x3 −

.
x4

)
−

b
m

(
A(x3 − x4) −Kextx1 − bx2 − F f

)
−Kextx2) (30)

Fx = −
αγA2

m

(
x3

V0 + Ax1
+

x4

V0 + A(L− x1)

)
x2 −

Kext

m
x2 −

b
m2

(
A(x3 − x4) −Kextx1 − bx2 − F f

)
(31)

S = δ3x7 + 3δ2e + 3δ
.
e +

..
e (32)

e = (1 +
Kext

Kadm
)x1 − xm (33)
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.
e = (1 +

Kext

Kadm
)x2 (34)

..
e =

1
m
(1 +

Kext

Kadm
)

.
x2 (35)

The dry friction in the state space is as follows:

F f = σ0x6 + σ1x2 −
σ0σ1|x2|x6

Fc + (Fs − Fc)e−(x2/vsv)
2 (36)

The mass flow rate per area unit in state space is defined as:

.
∅1 =



CdPs
√

T
γ,

x3

Ps
≤ Pcr

CdPs
√

T
γ

√
1−

(
x3/Ps − Pcr

1− Pcr

)(γ−1)/γ

,
x3

Ps
> Pcr

.
∅2 =



Cdx4
√

T
γ,

Pa

x4
≤ Pcr

Cdx4
√

T
γ

√
1−

(
Pa/x4 − Pcr

1− Pcr

)(γ−1)/γ

,
Pa

x4
> Pcr

x5 ≥ 0

.
∅1 =



Cdx3
√

T
γ,

Pa

x3
≤ Pcr

Cdx3
√

T
γ

√
1−

(
Pa/x3 − Pcr

1− Pcr

)(γ−1)/γ

,
Pa

x3
> Pcr

.
∅2 =


CdPs
√

T
γ,

x4

Ps
≤ Pcr

CdPs
√

T
γ

√
1−

(
x4/Ps − Pcr

1− Pcr

)(γ−1)/γ

,
x4

Ps
> Pcr

x5 < 0

(37)

The equilibrium point of (28) is:

→
x eq = [

xm

1 +
Kext

Kadm

, 0, xss
3 , xss

4 , 0, xss
6 , 0]

T
(38)

where
A(x3

ss
− x4

ss) −Kext
xm

1 +
Kext

Kadm

− σ0x6
ss = 0 (39)

To study the stability of the control system, the LEs are calculated and summarized in Table 2.
Note that theoretically, Lyapunov exponents are defined when t→∞ . In practice however, we calculate
them over limited time duration and the adequate calculation time can be determined by observing
the exponents variation over time. As an example, time evolution of λ6 is shown in Figure 5.

Table 2. Values of Lyapunov Exponents for Step Tracking Task.

λ1 λ2 λ3 λ4 λ5

0.0 0.0 −0.1 −17.8 −18.0
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The signs of Lyapunov exponents determine the stability property of the dynamic system.
Negative exponents correspond to exponential stability. The first largest exponent being zero indicates
stable system with one-dimensional attractor. To understand the physical meaning of the results in
Table 2, (38) and (39) are revisited. According to these equations, x1

ss, x2
ss and x5

ss will eventually
reach fixed values where the combination of x3

ss, x4
ss and x6

ss will not hold fixed points but satisfy (39).
Having three unknowns (x3

ss, x4
ss, x6

ss) and one equation, (39) will have a 2-dimentional solution;
i.e., the equilibrium of (28) is 2-dimentional. This explains the two zero LEs in Table 2. Therefore,
the stability of the proposed control system in presence of external force and model uncertainties is
proven, as seen in Table 2.

5.3. Parametric Stability Analysis

Parametric stability analysis is the stability analysis of a dynamic system as its parameters change.
It is beneficial when some parameters of the system are unknown, inaccurate or varying. The concept
of Lyapunov exponents can be used for this reason. Because it provides a quantitative measurement
of the stability, one can find the stability region of a system by changing the values of the physical
parameters of the system or the controller gains [30]. Not only the concept of LEs can assure the
stability of a system when the parameters are varying, it can be used to measure the effect of changing
parameters on overall stability.

Parametric stability analysis of the teleoperation system under investigation is conducted using
the concept of LEs. The stiffness coefficient of the environment denoted by Kext, and controller gain, δ,
were considered for this purpose. Table 3 shows the numerical values of LEs for admittance unilateral
teleoperation as Kext varies. It is evident that changing Kext does not change the values of LEs notably.
Table 4 shows the numerical values of LEs while the SMC bandwidth gain, δ, varies. The system is
stable for the values of δ ≤ 120. However, for δ = 140, the first LE is positive which denote that the
system is chaotic.

Table 3. Numerical results of LEs for admittance unilateral teleoperation as Kext varies.

Kext (N/m) λ1 λ2 λ3 λ4 λ5 λ6 λ7

10 0.0 0.0 −0.1 −17.7 −18.0 −75.7 −229.3
50 0.0 0.0 −0.1 −17.8 −18.0 −75.7 −229.3
100 0.0 0.0 −0.1 −17.8 −18.0 −75.5 −229.4
150 0.0 0.0 −0.1 −17.8 −18.1 −75.5 −229.5
200 0.0 0.0 −0.1 −17.9 −18.1 −75.4 −229.6
300 0.0 0.0 −0.1 −17.9 −18.1 −75.3 −229.7
600 0.0 0.0 −0.1 −18.1 −18.6 −74.8 −230.1
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Table 4. Numerical results of LEs for admittance unilateral teleoperation as δ varies.

δ (rad/s) λ1 λ2 λ3 λ4 λ5 λ6 λ7

20 0.0 0.0 −0.1 −19.8 −64.6 −64.7 −191.4
30 0.0 0.0 −0.1 −26.0 −56.1 −56.1 −202.3
40 0.0 0.0 −0.1 −34.3 −47.8 −47.8 −210.7
60 0.0 0.0 −0.1 −31.7 −31.9 −55.0 −222.2
80 0.0 0.0 −0.1 −17.8 −18.1 −75.5 −229.4
100 0.0 0.0 −0.4 −13.2 −14.5 −83.2 −230.0
120 0.0 0.0 −0.7 −7.5 −34.4 −70.9 −228.0
140 56.6 - - - - - -

6. Experimental Results

Experiments were performed to evaluate the performance of the teleoperated pneumatic system
under real test scenarios. Different admittance parameter settings were tested. Two experimental
scenarios are presented to show the performance of the admittance control in conjunction with SMC.
In the first experiment, the admittance parameters are set to study soft reaction to an external force.
In the second experiment, an external force is applied to the actuator and the goal of the admittance
model is a stiff actuator reaction.

Experiment 1: In this experiment, the operator moves the master and, at the same time, a human
subject located at the slave side applies a force to the pneumatic actuator. The external force
passes through the admittance model (10), having parameters set as M = 10 Kg, B = 50 Ns/m and
K = 250 N/m. The desired position trajectory originating from the master, xm, is shown in Figure 6a.
Figure 6b shows the external force. The modified desired trajectory is shown in Figure 6c. It is evident
that the admittance control module effectively adjusts the primary desired trajectory according to
the imposed external force. This figure also compares the modified desired trajectory with the actual
position of the actuator and illustrates their reasonable agreement. Figure 6d shows the control signal,
which is also reasonable and unsaturated. This experiment shows successful application of admittance
control with soft stiffness.

Experiment 2: In this experiment, the parameters of the admittance model are set to M = 10 Kg,
B = 50 Ns/m and K = 104 N/m. The goal is to study the behaviour of the system when the stiffness
of admittance model is set high. The actuator is subject to an external force with the magnitude of
100 N applied by a human subject. As Figure 7a shows, the primary desired position is fixed during
the experiment. The external force is shown in Figure 7b. The admittance model in (10) converts the
external force to small displacement as shown in Figure 7c. For external force with 100 N magnitude,
the change in primary desired trajectory is about 0.01 m. By comparing Figures 7c and 6c, the effect of
changes in the parameters of the admittance control module can be studied. Figure 7c also shows the
actual position of slave actuator, xs. Figure 7d shows the control signal corresponding to the position
tracking shown in Figure 7c.

The above experiments show the proposed unilateral control system can successfully control
the slave actuator desired position in the presence of the external force. The stability of the actuator
motion was evident in the experiments. The SMC position controller worked effectively despite the
non-idealities such as friction and air compressibility.

The positioning accuracy of the admittance method presented in this paper is now compared
with the accuracy of the impedance method, previously developed by the authors on the same system.
The comparison is done by calculating the average position error for the same experiments. The results
are summarized in Table 5:
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Table 5. Comparison of the position errors.

Method Avg. Position Error (mm) Refer to

Admittance Unilateral 1.3 Figures 6 and 7

Impedance Unilateral [32] 9.1 Figures 6–8 of Reference [32]Actuators 2020, 9, x FOR PEER REVIEW 13 of 17 
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Figure 6. Experimental study of low Stiffness admittance model while tracking a human-guided
trajectory: (a) primary desired position by master manipulator, xm; (b) external force, Fext; (c) modified
desired trajectory, xd, versus position of actuator, xs; (d) control signal, u.
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Figure 7. Experimental study of high stiffness admittance model while tracking a human-guided
trajectory: (a) primary desired position by the master manipulator, xm; (b) external force, Fext;
(c) modified desired trajectory, xd, versus position of actuator, xs; (d) control signal, u.

According to Table 5, admittance unilateral teleoperation provides higher tracking accuracy.
This is expected since admittance unilateral teleoperation utilizes an SMC position controller. Whereas,
in impedance unilateral, an SMC force controller is in charge of tracking the position.
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7. Conclusions

In this paper, a unilateral teleoperation system was analyzed, and successfully implemented
on a pneumatic actuator. Admittance control, coupled with a sliding mode position controller, was
employed to manage actuator position and external force in the slave side. The proposed control
system not only inherited the structural advantages of the unilateral teleoperation system with no
need for highly skilled operator, but also displayed satisfactory performance in scenarios involving
various levels of environmental stiffness and interactions. Both simulation and experimental results
showed the effectiveness of the proposed unilateral teleoperation system in position tracking and
handling the external force. Meanwhile, stability of the entire control system was evaluated using the
concept of Lyapunov exponents. Parametric stability analysis showed the system remains stable for a
wide range of the environmental stiffnesses whereas increasing the controller gain leads to system
instability. Future work can focus on extension of the controller presented here to multi-degree of
freedom pneumatic manipulators, and the stability analysis of the entire system.
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