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Abstract: Velocity ripple is one of the common problems of modular drive joints, which easily
induces vibration and noise and affects motion accuracy. In order to improve the motion control
accuracy, a robust method based on dual encoders to eliminate velocity ripple is proposed in this
paper. The method contains a velocity ripple elimination controller (VREC), a rigid-body velocity
solver (RBVS), and a proportional–integral (PI) controller. Feeding back the VREC output to the PI
controller based on the rigid-body velocity obtained from the weighted sum of dual encoders in the
RBVS, an equivalent system damping term was added into the system. Therefore, the velocity ripple
can be suppressed effectively with the adjustable damping term composed of control parameters.
Above all, the proposed method has only one more parameter to further eliminate velocity ripple
compared to the pure PI method and, meanwhile, has apparent advantages over the conventional
method, such as fewer parameters and full frequency ripple elimination, as well as robustness to
input disturbance and modular drive joint load inertia changes. This proposed method’s effectiveness
is verified by simulations in MATLAB and experiments in the modular drive joint platform.

Keywords: modular drive joint; velocity ripple; dual encoders; system damping; robustness

1. Introduction

Modular drive joints are now widely used in industrial robots and collaborative robots, integrating
high efficiency and high power density permanent magnet synonym motors (PMSMs), harmonic drive,
torque sensors, shafts, bearings, dual encoders, and other components [1–3]. The PMSM is widely
employed in modular drive joints due to its advantages: fast dynamics, high efficiency and reliability,
and a favorable torque to inertia ratio [4–6]. However, the torque ripple in the PMSM and the stiffness of
the modular drive joint influenced by the flexpline of harmonic drive easily induce velocity ripple [7,8].
Furthermore, the velocity ripple will result in vibration, noise, and other similar problems, which are
major factors affecting the accuracy of the motion control system [9]. In the last few years, many kinds
of research have been done on the accuracy of motion control, where the velocity ripple has been found
to be a major issue [10].

The factors that cause the velocity ripple of modular drive joints can mainly be divided into
two categories. The first category is caused by the position measuring errors because the feedback
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velocity signal is usually calculated from the measured position signal [11,12]. Many algorithms were
introduced to correct the position measuring error under certain conditions but with no systematic
description for measuring the position measuring error on the velocity ripple in the servo system [13,14].
The other category is caused by the inevitable parasitic torque ripple in the PMSM, such as cogging and
flux harmonics, leading to velocity ripples, vibrations, acoustic noise, and poor response performance
in motion control systems [5,15].

Aiming to minimize torque ripple and realize velocity ripple elimination, the methods can also
mainly be classified in two ways: one way is to optimize the design or improve the body structure
of the PMSM [16–19], and the other way is to depend on control algorithms. The former mainly
involves skewing the slot or magnet, ensuring a fractional number of slots per pole, and improving the
winding distribution. These methods are proven to be effective for eliminating the velocity ripple but
require complex production processes. Besides, once the designed and optimized body structure is
produced, the modular drive joint cannot be modified, which results in a higher production cost [20,21].
The control algorithms of the latter way mainly contain sensorless methods and sensor-based methods.
The sensorless methods control the current phase indirectly by controlling the voltage–current phase
deference based on the V/f control [22–24]. However, if the load inertia varies depending on the joint
position, such as robot posture changing, the other velocity ripple will occur easily [25].

On the contrary, the sensor-based methods are the main approaches to eliminating velocity ripple,
which mainly include traditional proportion-integral-differential (PID) methods and improved PID
methods, intelligent methods, and model-based methods. The traditional methods, such as PI velocity
control and cascade control structure (CCS) based on PI controllers, are simple and easily achieve
velocity ripple but with limited efficiency [5]. The intelligent methods include: adaptive fuzzy control
methods [2,26,27] and neural network algorithms [28] with robust performance, iterative learning
control (ILC) methods as a model-free control strategy to suppress velocity ripple and that is robust
to noise [29,30], and a linear parameter varying H∞ velocity control method with robustness against
disturbance characteristics [31]. These methods achieve robustness against velocity ripple and
disturbances, but with a large amount of data calculation and poor real-time performance. In recent
years, model-based methods have been developed, including model predictive control (MPC) methods,
observer-based control methods, sliding mode control methods, and so on. These methods have
advantages such as robustness, simple modeling, and the ability to handle control variable constraints
to ensure the system’s satisfactory performance [7].

Among the model-based methods, the methods based on the equivalent rigid-body velocity
method [32] and self-resonance cancellation (SRC) methods [33,34] are more popular. The equivalent
rigid-body velocity method aims to add system damping to eliminate velocity ripple. The SRC method
aims to achieve a rigid-body system by the weighted sum of sensor signals: dual encoders (motor-side
encoder and link-side encoder). Base on the dual encoders of the modular drive joint, the rigid-body
velocity can be obtained. The conventional method based on equivalent rigid-body velocity added an
equivalent damping term after the closed loop to suppress velocity ripple. However, it only can suppress
a limited frequency range ripple of velocity. To improve the conventional equivalent rigid-body velocity
method, a method based on a state observer to suppress velocity ripple in the full frequency range
ripple was proposed in [35]. As for the SRC methods, there are fewer control parameters but there are
high requirements for system model identification accuracy, which is challenging to apply in practical
engineering applications with the low accuracy of system identification.

A method combined with the ideas of the equivalent rigid-body velocity method and SRC method
is proposed to add system damping with fewer control parameters in this paper. The proposed method
contains a rigid-body velocity solver (RBVS), a velocity ripple elimination controller (VREC), and a
proportional–integral (PI) controller. As the feedback velocity can be motor velocity or link velocity,
the proposed method can be further classed as a motor-side controller and link-side controller. In the
proposed method, the RBVS obtains a rigid-body velocity based on the signals of dual encoders
(motor velocity measured by the motor-side encoder and link velocity measured by the link-side
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encoder) without any control parameters. The VREC is based on the RBVS to add an equivalent
system damping term and constant term, which eliminates velocity ripple and input disturbance
effectively and, meanwhile, increases the robustness to modular drive joint load inertia changes.
The added equivalent damping term consists of system parameters and control parameters, which can
be increased or decreased with the adjustment of control parameters. In this paper, the velocity ripple
suppression effects are confirmed in a modular drive joint with variable velocity tracking in simulations
and experiments with a motor-side controller and link-side controller, respectively. Furthermore,
the damped input disturbance and robustness to load inertia changes are also verified by simulations
and experiments with a motor-side controller and link-side controller, respectively.

This paper is organized as follows. The dynamic model and system identification of a modular
drive joint are described in Section 2. The proposed method is designed and the controller parameters
are analyzed in Section 3. Section 4 includes simulations and experiments of the motor-side controller
and link-side controller to verify the velocity ripple elimination effects, input disturbance suppression
effects, and the robust performance to load inertia changes. Finally, Section 5 concludes this paper.

2. Dynamic Modeling and System Identification

The modular drive joint is widely used in most collaborative robots as the core part, integrating
electronic circuits and other mechanical components. The mechanical structure is described in [35,36].
Figure 1 shows the experimental platform based on a modular drive joint together with dSpace
hardware in the loop real-time simulation platform and MATLAB real-time workspace. The actuator of
the modular drive joint is the Copley driver. This experimental platform’s power is 24 V. The weights
installed at both ends of the connecting rod act as the load inertia.
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Figure 1. Physical diagram of experimental platform.

Figure 2 shows that the gear ratio of harmonic drive in the modular drive joint is equivalent to
1 [35]. Therefore, the dynamic response of this two-inertia system can be simplified as Equation (1).

τm − τdis − τ j = Jm
..
θm + Bm

.
θm

τ j = K(θm − θl) + D
( .
θm −

.
θl

)
τ j = Jl

..
θl + Bl

.
θl

(1)

The physical meanings of Jm, Bm, Jl, Bl, K, D, τm, τ j, τdis, θm, θl,
.
θm,

.
θl,

..
θm,

..
θl are motor

inertia, motor viscous damping, load inertia, load viscous damping, joint stiffness, joint viscous
damping, input torque, joint torque, input disturbance, motor position, link position, motor velocity,
link velocity, motor acceleration, and link acceleration, respectively. The transfer function from input
torque τm to motor velocity

.
θm and link velocity

.
θl in the Laplace domain can be formulated as follows.
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Figure 2. The two-inertia model block diagram of the modular drive joint.

In order to verify that this two-inertia model can fit the actual modular drive joint well, a swept sine
current signal is utilized to estimate the joint frequency response, with a load inertia of Jl = 2.26 kg·m2.
In experiments, the sampling frequency is 1 kHz. As for the modular drive joint, the current torque
constant is tested to be 0.17 N·m/A. The input saturation current is set to 10 A. The maximum velocity
of the motor side is 2500 rpm. Moreover, the gear ratio of the harmonic drive is 160. After the
identification experiment, the joint frequency response from input torque τm to motor velocity

.
θm and

link velocity
.
θl can be obtained as shown in Figure 3a,b, respectively.
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.
θm; (b) from τm to

.
θl.

In Figure 3, the black lines are acquired by actual measurement data of the experiment. The red
lines are fitted frequency response curves of the two-inertia model. The motor-side velocity response
has a clear anti-resonance and resonance behavior from the identified results, whereas the link-side
velocity only has a resonance behavior. In fact, the actual joint dynamic model is subjected to several
nonlinear and time-varying factors, such as the nonlinear torques, frictions, and damping effects in
the motor side and transmission, and the varying efficiency of harmonic drive (60–75% depending
on ratio, velocity, and lubricant). In particular, the stiffness and damping of harmonic drive are
related to the motion velocity. Therefore, the two-inertia model cannot fit the phase of actual system
characteristics well [37]. However, the amplitude–frequency fitting accuracy can accurately fit the
system’s anti-resonance and resonance characteristics, proving that the two-inertia model can reflect
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the joint’s dynamic characteristics well. The anti-resonance frequency ωa and resonance frequency ωr

are located at 19 Hz and 21 Hz, respectively. Next, the identified parameters of this modular drive
joint are summarized in Table 1.

Table 1. Identified modular drive joint parameters.

Symbol Name Value

Jm motor inertia 7.34 kg·m2

Bm motor viscous damping 33.28 N·m·s/rad
Jl load inertia 2.26 kg·m2

Bl load viscous damping 5 N·m·s/rad
K joint stiffness 34,000 N·m/rad
D joint viscous damping 10 N·m·s/rad

3. Controller Design

The proposed method in this paper contains an RBVS, a VREC, and a PI controller, as shown in
Figure 4, and aims to eliminate velocity ripple by adding equivalent system damping. The added
equivalent damping term is developed by feeding back the velocity u of VREC output to the PI
controller. As for the RBVS, rigid-body velocity

.
θr can be obtained by the weighted sum of motor

velocity
.
θm and link velocity

.
θl. The PI controller is a proportional and integral controller for the

error between the desired velocity
.
θd and output velocity u. The VREC comprises pure ripple (m or n)

and joint velocity (motor velocity or link velocity). The pure ripple m is the error between motor
velocity and rigid-body velocity. As well as the pure ripple, n is the error between link velocity and
rigid-body velocity. Therefore, according to the joint velocity, the proposed method can be classed as
the motor-side controller and link-side controller, as shown in Figure 4a,b, respectively.
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In Figure 4, the model PM defines transfer function from input torque τm to motor velocity
.
θm.

Meanwhile, the model PML defines transfer function from motor velocity
.
θm to link velocity

.
θl, as

shown in Equation (3). 
PM =

.
θm
τm

=
(

1
Jm+Jl

·
1
s

)
·

(
s2+ωa

2

s2+ωr2 ·
ωr

2

ωa2

)
PML =

.
θl.
θm

= ωa
2

s2+ωa2

(3)

Besides, the PI controller and coefficients α and β of the RBVS are defined as follows, which will
be discussed in the next section: 

PI = Kp +
Ki
s

α = Jms+Bm
(Jm+Jl)s+(Bm+Bl)

β = Jls+Bl
(Jm+Jl)s+(Bm+Bl)

(4)
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3.1. Rigid-Body Velocity Solver Design

The rigid-body velocity
.
θr is obtained based on the weighted sum of motor velocity and link

velocity in the rigid-body velocity solver. Combined with the two-inertia model that has been given in
Equation (1), rigid-body velocity

.
θr can be derived from Equation (5). The input disturbance τdis is not

discussed at this time and is set to zero for simplicity. Among them, motor velocity is measured by the
motor-side encoder. Link velocity is measured by the link-side encoder, as shown in Figure 5a.

Jm
..
θm + Bm

.
θm = τm −K(θm − θl) + D

( .
θm −

.
θl

)
Jl

..
θl + Bl

.
θl = K(θm − θl) + D

( .
θm −

.
θl

)
τm = (Jms + Bm)

.
θm + (Jls + Bl)

.
θl.

θr =
τm

(Jm+Jl)s+(Bm+Bl)
= Jms+Bm

(Jm+Jl)s+(Bm+Bl)

.
θm +

Jls+Bl
(Jm+Jl)s+(Bm+Bl)

.
θl

(5)
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.
θr

τm
=

1
(Jm + Jl)s + (Bm + Bl)

=
Jms + Bm

(Jm + Jl)s + (Bm + Bl)

.
θm

τm
+

Jls + Bl

(Jm + Jl)s + (Bm + Bl)

.
θl
τm

(6)

From Equations (2) and (6), the Bode diagram shows the transfer function from input torque
τm to motor velocity

.
θm, link velocity

.
θl and rigid-body velocity

.
θr in Figure 5b, as the blue line,

red line, and thick black line, respectively. As the modular drive joint identified results listed in Table 1,
the motor viscous damping is higher than link viscous damping, which leads to the magnitude of
motor velocity frequency response being lower than the link velocity frequency response.

As stated by the Bode diagram from input torque τm to rigid-body velocity
.
θr, there are no

anti-resonance and resonance behaviors. Consequently, the system from input torque τm to rigid-body
velocity

.
θr is an ideal rigid-body system without any velocity ripple. The velocity obtained from the

weighted sum of motor velocity and link velocity is an ideal rigid-body velocity.

3.2. Velocity Ripple Elimination Controller Design

3.2.1. Motor-Side Controller Design

Based on the rigid-body velocity discussed in Section 3.1, the motor-side controller can be
simplified as a PI controller and a VREC. The VREC feeds back the velocity u to the desired velocity

.
θd

input to the PI controller. The pure ripple m is obtained from the error between motor velocity and
rigid-body velocity after the proportional gain K tuning, as shown in Figure 6.
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Figure 6. Block diagram of the motor-side controller.

In Figure 6, the signal m is pure the ripple of motor velocity after being controlled by K. The symbol
u is the sum of motor velocity and pure ripple m. The input disturbance τdis is not discussed for
simplicity. Then the open-loop transfer function Popen

m(s) from the desired velocity
.
θd to motor velocity

.
θm can be given in Equation (7).

Popen
m(s) =

.
θm
.
θd

=
PIωr

2

(Jm + Jl)s · (s2 +ωr2)

(
s2 +ωa

2
)

ωa2 (7)

The closed-loop transfer function Pclose
m(s) from the desired velocity

.
θd to motor velocity

.
θm can

be derived from the following equations.

( .
θd − u

)
Popen

m =
.
θm

u =
.
θm + m

m = K
( .
θm −

.
θr

)
.
θr = α

.
θm + β

.
θl.

θl =
.
θmPML

(8)

Pclose
m(s) =

.
θm.
θd

=
Popen

m

1+Popenm[1+K(1−α−βPML)]

=

PI(s2+ωa2)ωr2

(Jm+Jl)(s2+ωr2)ωa2s

1+
PI(s2+ωa2)ωr2

(Jm+Jl)(s2+ωr2)ωa2s

[
1+K

(
1−

(Jms+Bm)(s2+ωa2)−(Jls+Bl)ωa2

[(Jm+Jl)s+(Bm+Bl)](s2+ωa2)

)] (9)

In order to analyze the closed-loop transfer function performance of the motor-side controller, the
viscous damping terms Bm, Bl, D are set to zero for simplicity. Then the closed-loop transfer function
Pclose

m(s) can be simplified, as in Equation (10).
Pclose

m(s) =
.
θm.
θd

= PIωr
2

(Jm+Jl)s·(s2+2ξmωrs+ωr2)+PIωr2
(s2+ωa

2)
ωa2

ξm = PI
2

[
K
ωr

(
ωr

2

ωa2 − 1
)
+ ωr

(Jm+Jl)ωa2

] (10)

Based on the modular drive joint identified results, the resonance frequency ωr is always
larger than the anti-resonance frequency ωa, which leads to ωr

2/ωa
2 being more than 1 and ξm

being positive permanently. Compared with the open-loop transfer function given in Equation (7),
the closed-loop transfer function has an added equivalent damping term 2ξmωrs and an equivalent
natural resonance term PIωr

2, which increase system damping and system response performance,
respectively. With the control parameter K being positive, the velocity ripple can be eliminated by the
increased equivalent damping.
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3.2.2. Link-Side Controller Design

Similarly, when the pure ripple n is obtained from the error between link velocity and rigid-body
velocity, there could be a link-side controller to eliminate the velocity ripple by feeding back this error
and link velocity to the PI controller, as shown in Figure 7.
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In Figure 7, the signal n is the pure ripple of link velocity after being controlled by K. The symbol
u is the sum of link velocity and pure ripple n. The input disturbance τdis is not discussed for simplicity.
The open-loop transfer function Popen

m(s) from the desired velocity
.
θd to link velocity

.
θl can be given

by Equation (11).

Popen
l(s) =

.
θl
.
θd

=
PIωr

2

(Jm + Jl)s · (s2 +ωr2)
(11)

The closed-loop transfer function Pclose
l(s) from the desired velocity

.
θd to link velocity

.
θl can be

derived from the following. 

( .
θd − u

)
Popen

m =
.
θl

u =
.
θl + n

n = K
( .
θl −

.
θr

)
.
θr = α

.
θm + β

.
θl

.
θm =

.
θl

PML

(12)

Pclose
l(s) =

.
θl.
θd

=
Popen

l

1+Popenl
[
1+K

(
1− α

PML
−β

)]
=

PIωr2

(Jm+Jl)(s2+ωr2)s

1+ PIωr2

(Jm+Jl)(s2+ωr2)s

[
1+K

(
1−

(Jms+Bm)(s2+ωa2)−(Jls+Bl)ωa2

[(Jm+Jl)s+(Bm+Bl)]ωa2

)] (13)

Correspondingly, the viscous damping terms Bm, Bl, D are ignored for simplicity to analyze the
closed-loop transfer function performance of the link-side controller. Therefore, the closed-loop transfer
function Pclose

l(s) can be simplified, as shown in Equation (14). Pclose
l(s) =

.
θl.
θd

= PIωr
2

(Jm+Jl)s·(s2+2ξlωrs+ωr2)+PIωr2

ξl =
−K·PI
2ωr

(14)

Compared to the open-loop transfer function given in Equation (11), the closed-loop transfer
function adds an equivalent damping term 2ξlωrs and an equivalent natural resonance term PIωr

2.
When the K is negative, the added equivalent damping term becomes positive, and then the system
damping can be increased. With the control parameter K and PI tuning, the velocity ripple can be
eliminated by the increased equivalent damping.
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3.3. Controller Parameter Analysis

In the proposed method, as discussed above, the motor-side controller and link-side controller
have only one more control parameter K than a PI method. The PI method can also include two kinds
of feedback (motor velocity feedback and link velocity feedback), as shown in Figure 8a,b, respectively.
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Firstly, the PI parameters need to be designed before the proposed method application. Based
on the integral of squared error (ISE) criterion [38], the proportional and integral gain of the motor
velocity feedback PI controller are designed as Kp = 480 and Ki = 2400. The proportional and integral
gain of the link velocity feedback PI controller are designed as Kp = 168 and Ki = 1200.

3.3.1. Parameters of Motor-Side Controller

For a modular drive joint, the elimination of velocity ripple is mainly to suppress velocity ripple
occurring on the link side. This is based on the closed-loop transfer function from the desired velocity
to motor velocity with the motor-side controller, as expressed in Equation (10) and Figure 6. Naturally,
the transfer function from the desired velocity to link velocity can be given by Equation (15).

Pclose
m(s) =

.
θl.
θd

=
.
θm.
θd
· PML = PIωr

2

(Jm+Jl)s·(s2+2ξmωrs+ωr2)+PIωr2

ξm = PI
2

[
K
ωr

(
ωr

2

ωa2 − 1
)
+ ωr

(Jm+Jl)ωa2

] (15)

The closed-loop transfer function from the desired velocity to link velocity has an added equivalent
damping term 2ξmωrs and an equivalent natural resonance term PIωr

2 compared to the open-loop
transfer function. The parameter K can be expressed by Equation (16).

K =

(
2ωr

PI
ξm −

ωr
2

(Jm + Jl)ωa2

)
/

(
ωr

2

ωa2 − 1
)

(16)

When the damping ratio ξm of the closed-loop transfer function is under damping, critical
damping, and over damping, such as ξm = 0.2, ξm = 1, ξm = 2, as well as the special damping ratio
ξm = 0.707, the parameter K can be obtained from Equation (16) based on the identified parameters
listed in Table 1 and the above parameters Kp and Ki, as shown in Table 2.

Table 2. The parameter K derived from different damping ratios ξm.

Under Damping Under Damping Critical Damping Over Damping

ξm 0.2 0.707 1 2
K 0.08 0.87 1.41 3.28

The closed-loop Bode diagrams of motor-side controller from the desired velocity to motor velocity
with different parameters K are shown in Figure 9.
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Figure 9. Bode plot of motor-side controller from
.
θd to

.
θm with different parameters K: (a) amplitude–

frequency characteristic; (b) phase–frequency characteristic.

As the parameter K increases (the damping ratio increases), the system damping gradually
increases, which leads to the velocity ripple being damped, however, this decreases the closed-loop
control bandwidth. The parameter K as well as the proportional and integral gain Kp and Ki are
designed to be those in Table 3. Under the current parameters, the amplitude margin and phase margin
of the closed-loop frequency response are sufficient. The amplitude margin and phase margin are
22.9 dB and 58.7 deg, respectively, which proves the system is stable after closed-loop control.

Table 3. Parameters of motor-side controller.

Symbol Name Value

Kp proportional gain 480
Ki integral gain 2400
K gain of VREC 1.3

3.3.2. Parameters of Link-Side Controller

The link-side controller, shown in Figure 7, shows that the closed-loop transfer function from the
desired velocity to link velocity is expressed in Equation (14). Based on the foregone proportional and
integral gain of Kp = 168 and Ki = 1200, the parameter K of the link-side controller can be obtained by
Equation (17).

K = −
2ωr

PI
ξl (17)

Similarly, when the damping ratio ξl of the closed-loop transfer function represents under
damping, critical damping, and over damping, such as ξl = 0.2, ξl = 1, ξl = 2, as well as the special
damping ratio ξl = 0.707, the different parameters K can be summarized in Table 4, based on the
identified parameters listed in Table 1 and the above parameters Kp and Ki.

Table 4. The parameter K derived from different damping ratios ξl.

Under Damping Under Damping Critical Damping Over Damping

ξl 0.2 0.707 1 2
K −0.22 −0.98 −1.52 −3.21

The closed-loop Bode diagram of the link-side controller from the desired velocity to link velocity
with different parameters K are shown in Figure 10.

In a similar way, with parameter K increasing (damping ratio increasing), the system damping
gradually increases, which lets the velocity ripple eliminate but decreases the closed-loop control
bandwidth. Since there is no anti-resonance point in the transfer function from the desired velocity to
link velocity, the phase will drop quickly, and the system is easy to diverge [39]. Therefore, the control
parameters of the link-side controller should be very conservative. The parameter K as well as the
proportional–integral gain Kp and Ki are set in Table 5.



Actuators 2020, 9, 135 11 of 19

Actuators 2020, 9, x FOR PEER REVIEW 11 of 20 

 

Table 3. Parameters of motor-side controller. 

Symbol Name Value 
pK  proportional gain 480 

iK  integral gain 2400 
K  gain of VREC 1.3 

3.3.2. Parameters of Link-Side Controller 

The link-side controller, shown in Figure 7, shows that the closed-loop transfer function from 
the desired velocity to link velocity is expressed in Equation (14). Based on the foregone proportional 
and integral gain of 168pK =  and 1200iK = , the parameter K  of the link-side controller can be 
obtained by Equation (17). 

2 r
lK

PI
ω ξ= −  (17) 

Similarly, when the damping ratio lξ  of the closed-loop transfer function represents under 
damping, critical damping, and over damping, such as 0.2lξ = , 1lξ = , 2lξ = , as well as the special 
damping ratio 0.707lξ = , the different parameters K  can be summarized in Table 4, based on the 
identified parameters listed in Table 1 and the above parameters pK  and iK . 

Table 4. The parameter K  derived from different damping ratios lξ . 

 Under Damping Under Damping Critical Damping Over Damping 
lξ  0.2 0.707 1 2 
K  −0.22 −0.98 −1.52 −3.21 

The closed-loop Bode diagram of the link-side controller from the desired velocity to link 
velocity with different parameters K  are shown in Figure 10. 

  
(a) (b) 

Figure 10. Bode plot of link-side controller from dθ  to lθ  with different parameters K : (a) 

amplitude–frequency characteristic; (b) phase–frequency characteristic. 

In a similar way, with parameter K  increasing (damping ratio increasing), the system damping 
gradually increases, which lets the velocity ripple eliminate but decreases the closed-loop control 
bandwidth. Since there is no anti-resonance point in the transfer function from the desired velocity 
to link velocity, the phase will drop quickly, and the system is easy to diverge [39]. Therefore, the 
control parameters of the link-side controller should be very conservative. The parameter K  as well 
as the proportional–integral gain pK  and iK  are set in Table 5. 

Table 5. Parameters of link-side controller. 

Symbol Name Value 
pK  proportional gain 168 

iK  integral gain 1200 
K  gain of VREC −0.9 

Open-loop

Figure 10. Bode plot of link-side controller from
.
θd to

.
θl with different parameters K: (a) amplitude–

frequency characteristic; (b) phase–frequency characteristic.

Table 5. Parameters of link-side controller.

Symbol Name Value

Kp proportional gain 168
Ki integral gain 1200
K gain of VREC −0.9

4. Simulations and Experiments

Simulations and experiments are conducted to verify the effectiveness of this proposed method
(named Prop method in this paper), using the modular drive joint’s identified parameters, as listed in
Table 1. The control parameters of the motor-side controller and link-side controller are scheduled in
Tables 3 and 5. The experimental platform is described in Section 2. The sampling frequency of the
controller and the experimental platform is 1 kHz. In simulations and experiments, a variable velocity
tracking from high velocity to low velocity is used for verifying the effectiveness of velocity ripple
elimination at different velocities. Next, the system stability is confirmed by an input disturbance
suppression. Finally, with the load inertia changing in the range of 30% in the premise of unchangeable
identified model parameters and control parameters, the robust performance is verified. This Prop
method is compared with the traditional pure PI method, the conventional method (named Conv
method in this paper) present in [32] and the conventional method improved in [35] based on a state
observer (named Csob method in this paper), to prove its advantages.

4.1. Motor-Side Controller Simulations and Experiments

In the motor-side controller’s simulations and experiments, the modular drive joint is controlled
by the PI method, Conv method, Csob method, and the Prop method. In order to fairly compare
the effects of these methods, it is necessary to ensure the same proportional and integral gain of
these methods. Above all, the PI method has two parameters. The Conv method has six parameters.
The Csob method has four parameters. Meanwhile, the Prop method only has three parameters.
The control parameters of these four methods are summarized in Table 6.

Table 6. Control parameters of the four methods with motor-side controller.

Methods Proportional
Gain Kp

Integral
Gain Ki

High-Pass
Filter fh

Low-Pass
Filter fl

Inner-Loop
Gain Km

Outer-Loop
Gain K

PI method

480 2400

- - - -
Conv method ωr ωr 300 1.3
Csob method - - 600 1.3
Prop method - - - 1.3

4.1.1. Velocity Ripple Elimination

A motor-side desired step velocity is triggered at 0.1 s to get 1000 rpm (0.66 rad/s of link-side
velocity) and keeps constant motion at this velocity, then is reduced to 500 rpm (0.33 rad/s of link-side
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velocity) at 1.5 s. The link velocity tracking with these four different methods in simulations and
experiments is shown in Figure 11a,b, respectively. The black dotted line is link velocity tracking with
the PI method. The blue dot-and-dash line is the Conv method. The green dot-and-dash line is the
Csob method. The red solid thick line is the Prop method.
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Figure 11. Velocity ripple elimination from 0.66 rad/s reduced to 0.33 rad/s with motor-side controller:
(a) simulations; (b) experiments.

As the simulation results show in Figure 11a, when the velocity ripple at 0.66 rad/s is eliminated
within 10%, the decay time of the Prop method is around 61% less than that of the PI method and Conv
method. When the velocity ripple at 0.33 rad/s is eliminated within 10%, the decay time of the Prop
method is 56% less than that of the PI method and Conv method. However, the Csob method does not
work with motor velocity feedback control.

As for the experiment results shown in Figure 11b, when the velocity ripple at 0.66 rad/s is
eliminated within 10%, the decay time of the Prop method is 49% less than that of the PI method and
Conv method (Prop method: 0.221 s; PI method and Conv method: 0.431 s). When the velocity ripple
at 0.33 rad/s is eliminated within 10%, the decay time of the Prop method is 55% less than that of
the PI method and Conv method. However, the Csob method does not work with motor velocity
feedback control.

In actual applications, the modular drive joint is a complex nonlinear system influenced by
some nonlinear and time-varying factors, such as the nonlinear torques, frictions, damping effects,
and the varying efficiency of harmonic drive. Above all, the transmission error of harmonic drive will
induce velocity ripple during low-speed uniform motion, which is twice the frequency of the motion
velocity [40]. In simulations, the transmission error model of harmonic drive is not modeled in the
objective two-inertia model of modular drive joints, so there is no velocity ripple during low-speed
uniform motion at 0.33 rad/s, shown in Figure 11a. Actually, during the uniform motion at 0.33 rad/s
from 2 s to 3 s, the Prop method can effectively suppress velocity ripple in experiments. Meanwhile,
with the added equivalent system damping increasing, the velocity response is slowed down, as shown
in the partial enlarged drawing of Figure 11b. The Conv method has a phase adjuster, which means the
Conv method can only damp a limited range of velocity ripple frequencies around the system resonance
frequency. When the twice frequency of motion velocity is much lower than the system resonance
frequency, the Conv method cannot eliminate the twice-frequency ripple frequency. The Csob method
has a state observer to obtain the rigid-body velocity indirectly. When the observed motor velocity
approaches the actual motor velocity, the rigid-body velocity can be obtained. Above all, there is a
motor-side nominal model in the state observer, which means the Csob method’s bandwidth with motor
velocity feedback control is limited by the anti-resonance. Under the premise of the same proportional
and integral gain for a fair comparison, the Csob method’s bandwidth is much lower than the other
methods. The added damping term is too small to eliminate velocity ripple with the Conv method and
Csob method because the system resonance frequency is too close to the anti-resonance frequency.
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4.1.2. Input Disturbance Suppression

In practical applications, the modular drive joint is influenced by some input disturbance, which
reduces the control accuracy and system stability. Therefore, a 6 A shock input current is triggered at
0.1 s to act as the input disturbance, while the desired velocity is held at 0 rad/s. With the same input
disturbance trigger, the suppressive effects of input disturbance with the PI method, the Conv method,
the Csob method, and the Prop method in simulations and experiments are shown in Figure 12a,b,
respectively. In these figures, the black dotted line is the PI method. The blue dot-and-dash line is
the Conv method. The green dot-and-dash line is the Csob method. The red solid thick line is the
Prop method.
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Figure 12. Input disturbance suppression with motor-side controller: (a) simulations; (b) experiments.

As discussed above, the added equivalent damping term is too small to effectively damp input
disturbance with motor velocity feedback of the Conv method and Csob method. When the velocity
ripple is suppressed within 10% of the maximum velocity ripple value, the decay time of the Prop
method is 45% less than the other three methods (PI method, Conv method, Csob method) in simulations
and 68% less in experiments (Prop method: 0.114 s; PI method: 0.357 s).

In actual experiments, the modular drive joint is influenced by the nonlinear stiffness of harmonic
drive. Especially when the modular drive joint is started and/or stopped, the nonlinear stiffness
seriously affects the response performance and steady-state performance of the link-side velocity,
which does not occur in simulations. Therefore, the system stabilization time after the input disturbance
needs longer in experiments. Compared to simulations, the magnitude of link velocity response
induced by input disturbance is much lower than that of simulations because of the actual time-varying
frictions and viscous damping effects.

4.1.3. Robust Performance to Load Inertia Changes

When the collaborative robot changes poses, the modular drive joint will receive different load
inertias. In simulations, with the unchangeable identified model parameters listed in Table 1 and
control parameters listed in Table 3, different load inertias were taken to verify the robust performance,
15% increased (Jl = 2.60 kg·m2) and 15% decreased (Jl = 1.92 kg·m2), on the basis of load inertia
Jl = 2.26 kg·m2. In experiments, the load inertia is changed by loading or unloading the loads (weights)
at the end of the connecting rod, as shown in Figure 1.

In Figure 13, the solid red line is link velocity ripple with load inertia Jl = 2.26 kg·m2. The black
dotted line is link velocity ripple with 15% increased load inertia Jl = 2.60 kg·m2. The blue dot-and-dash
line is link velocity ripple with 15% decreased load inertia Jl = 1.92 kg·m2. Changing load inertia in the
range of 30%, the Prop method can hold its stability and have a similar elimination effect on velocity
ripple. Figure 13b shows velocity ripple during low-speed uniform motion at 0.33 rad/s, which is
caused by the transmission error of harmonic drive. The transmission error model is not considered in
the two-inertia model (modular drive joint model) in simulations. Therefore, there is no velocity ripple
during low-speed uniform motion in simulations.
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Figure 13. Robust performance to load inertia±15% changes with motor-side controller: (a) simulations;
(b) experiments.

In conclusion, the simulation and experiment decay time reduced percentage effects of the Conv
method, Csob method, and Prop method compared to the PI method with the motor-side controller,
summarized in Table 7.

Table 7. Suppression percentage of Conv, Csob, and Prop methods compared to PI method with
motor-side controller.

Methods Simulations Experiments

Ripple at
0.66 rad/s

Ripple at
0.33 rad/s Input Disturbance Ripple at

0.66 rad/s
Ripple at
0.33 rad/s Input Disturbance

Conv 0% 0% 3% 0% 0% 5%
Csob 0% 0% 0% 0% 0% 16%
Prop 61% 56% 45% 49% 55% 68%

4.2. Link-Side Controller Simulations and Experiments

As for the simulations and experiments of the link-side controller, the modular drive joint is also
controlled by the PI method, Conv method, Csob method, and the Prop method, which have two
parameters, six parameters, four parameters, and three parameters, respectively. To fairly compare the
effects of these four different methods, the same proportional and integral gain of these methods needs
to be guaranteed. The control parameters of these four different methods are summarized in Table 8.

Table 8. Control parameters of these four methods with link-side controller.

Methods Proportional
Gain Kp

Integral
Gain Ki

High-Pass
Filter fh

Low-Pass
Filter fl

Inner-Loop
Gain Km

Outer-Loop
Gain K

PI method

168 1200

- - - -
Conv method ωr ωr 300 −0.9
Csob method - - 600 −0.9
Prop method - - - −0.9

4.2.1. Velocity Ripple Elimination

Similarly, a motor-side desired step velocity is triggered at 0.1 s to get 1000 rpm (0.66 rad/s of
link-side velocity) and keeps uniform motion at this velocity, then is reduced to 500 rpm (0.33 rad/s of
link-side velocity) at 1.5 s. The link velocity tracking with these four different methods in simulations
and experiments is shown in Figure 14a,b, respectively. The black dotted line is link velocity tracking
with the PI method. The blue dot-and-dash line is the Conv method. The green dot-and-dash line is
the Csob method. The red solid thick line is the Prop method.
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Figure 14. Velocity ripple elimination from 0.66 rad/s reduced to 0.33 rad/s with link-side controller:
(a) simulations; (b) experiments.

With the link-side controller, the Conv method and Csob method have obvious effects compared to
the motor-side controller. The added equivalent damping term is only related to the system resonance
frequency but not related to the system anti-resonance frequency. As the simulation results show
in Figure 14a, when the velocity ripple at 0.66 rad/s is eliminated within 10%, the decay time of the
Conv method is around 51% less than that of the PI method. The Csob method is around 77% less.
Furthermore, the Prop method is around 86% less. When the velocity ripple at 0.33 rad/s is eliminated
within 10%, the decay time of the Conv method is around 60% less than that of the PI method. The Csob
method is around 71% less. Moreover, the Prop method is around 83% less.

As the experiment results show in Figure 14b, when the velocity ripple at 0.66 rad/s is eliminated
within 10%, the decay time of the Conv method is around 52% less than that of the PI method. The Csob
method is around 57% less. The Prop method is around 69% less. When the velocity ripple is at 0.33
rad/s, the Csob method and Prop method can suppress 67% of the velocity ripple during low-speed
uniform motion at 0.33 rad/s (amplitude of velocity ripple in the PI method: 0.03 rad/s; amplitude of
velocity ripple in the Prop method: 0.01 rad/s), as shown in the partial enlarged drawing of Figure 14b.
In contrast, the Conv method has the phase adjuster aiming to eliminate the velocity ripple around
system resonance, which leads to the invalid elimination work during low-speed uniform motion at
0.33 rad/s.

4.2.2. Input Disturbance Suppression

Likewise, a shock input current at 6 A acts as the input disturbance trigger at 0.1 s when the desired
velocity is held at 0 rad/s. The suppression effects of input disturbance with the PI method (black
dotted line), Conv method (blue dot-and-dash line), Csob method (green dot-and-dash line), and Prop
method (red solid thick line) in simulations and experiments are shown in Figure 15a,b, respectively.
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Figure 15. Input disturbance suppression with link-side controller: (a) simulations; (b) experiments.

In simulations, when the velocity ripple is suppressed within 10% of the maximum velocity ripple
value, the decay time of the Conv method is 34% less than the PI method. The Csob method is 58%
less. Moreover, the Prop method is 47% less. In experiments, when the velocity ripple is suppressed
within 10% of the maximum velocity ripple value, the decay time of the Conv method is 16% less than
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the PI method. The Csob method is 59% less. Furthermore, the Prop method is 68% less (Prop method:
0.122 s; PI method: 0.386 s).

Comparing Figure 15b with Figure 15a, the magnitude of link velocity response in experiments
induced by the input disturbance is much lower than that in simulations because of the actual
time-varying frictions and viscous damping effects.

4.2.3. Robust Performance to Load Inertia Changes

To verify the robustness of the Prop method to load inertia changes, three different load inertias
(Jl = 1.92 kg·m2, Jl = 2.26 kg·m2, Jl = 2.60 kg·m2) are applied to eliminate velocity ripple under
unchangeable identified parameters and control parameters.

Based on the load inertia Jl = 2.26 kg·m2 (solid red line), when the load inertia increases 15%
to Jl = 2.60 kg·m2 (black dotted line) or decreases 15% to Jl = 1.92 kg·m2 (blue dot-and-dash line),
the velocity ripple with the Prop method always holds in the robust band. It eliminates velocity
ripple effectively in simulations and experiments, as shown in Figure 16a,b, respectively. As mentioned
previously, the experiments have periodical velocity ripple during low-speed uniform motion at 0.33 rad/s,
which is caused by the transmission error of harmonic drive in experiments but not in simulations.
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Figure 16. Robust performance to load inertia ±15% changes with link-side controller: (a) simulations;
(b) experiments.

In summary, Table 9 summarizes the simulations and experiments of decay time reduced
percentage effects of the Conv method, Csob method, and Prop method compared to the PI method
with the link-side controller.

Table 9. Suppression percentage of Conv, Csob, and Prop methods compared to PI method with
link-side controller.

Methods Simulations Experiments

Ripple at
0.66 rad/s

Ripple at
0.33 rad/s Input Disturbance Ripple at

0.66 rad/s
Ripple at
0.33 rad/s Input Disturbance

Conv 51% 60% 34% 52% 0% 16%
Csob 77% 71% 58% 57% 67% 59%
Prop 86% 83% 47% 69% 67% 68%

As discussed in Sections 4.1 and 4.2, comparing the motor-side controller with the link-side
controller, the motor-side controller indirectly eliminates link velocity ripple, while the link-side
controller directly eliminates link velocity ripple. In the motor-side controller, the control band is
limited by the anti-resonance; however, the phase margin is improved by the influenced anti-resonance.
On the contrary, the link-side controller with no anti-resonance increases the control band but with
a rapidly decreasing phase margin. To be exact, the motor-side controller has a slower response
performance, but the controller is more stable. While the link-side controller has faster response
performance and a more effective velocity ripple suppression effect, the controller is easy to diverge.
All in all, the motor-side controller and link-side controller both have more velocity ripple elimination
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effectiveness compared to the PI method, Conv method, and Csob method, whether in simulations
or experiments.

5. Conclusions and Future Work

This paper proposed a robust method to damp velocity ripple based on dual encoders. The method
contains a rigid-body velocity solver and a velocity ripple elimination controller. In order to obtain
rigid-body velocity, the rigid-body velocity solver is designed by the weighted sum of dual encoders’
velocities—motor velocity and link velocity directly getting rigid-body velocity. The velocity ripple
elimination controller can be divided into the motor-side controller and link-side controller according
to the feedback velocity, which adds an equivalent system damping term compared to the open-loop
transfer function. Some simulations and experiments were carried out with the motor-side controller and
link-side controller, respectively, to verify elimination effects on velocity ripple and input disturbance,
even the robust performance. The proposed method had minimal control parameters and obvious
advantages (on average better than 50% effects in the motor-side controller and 60% effects in the
link-side controller) over the PI method, conventional method, and improved conventional method,
whether in simulations or experiments. Meanwhile, to some extent, with the added equivalent system
damping increasing, the system response was slowed down. In the future, the proposed method will
be applied to robotic arm control to achieve velocity ripple elimination when the robotic arm’s inertia
changes in an extensive range during its posture changing.
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Abbreviations

The following abbreviations are used in this manuscript:

VREC Velocity Ripple Elimination Controller
RBVS Rigid-Body Velocity Solver
PI Proportional–Integral
PMSM Permanent Magnet Synonym Motor
CCS Cascade Control Structure
ILC Iterative Learning Control
MPC Model Predictive Control
SRC Self-Resonance Cancellation
ISE Integral of Squared Error criterion
Conv Conventional method
Csob Conventional method based on a state observer
Prop Proposed method
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