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Abstract: This paper describes an exact linearizing control approach for a distributed actuation
magnetic bearing (DAMB) supporting a thin-walled rotor. The radial DAMB design incorporates
a circular array of compact electromagnetic actuators with multi-coil winding scheme optimized
for supporting thin-walled rotors. A distinguishing feature is that both the x and y components of
the radial bearing force are coupled with all four of the supplied coil currents and so a closed form
solution for the linearizing equations cannot be obtained. To overcome this issue, a gradient-based
root-finding algorithm is proposed to solve the linearizing equations numerically in real-time.
The proposed method can be applied with any chosen constraints on current values to achieve
low RMS values while avoiding zero-current operating points. The approach is implemented and
tested experimentally on a rotor system comprising two radial DAMBs and a uniform cylindrical
shell rotor. The results show that the method achieves more accurate reproduction of demanded
bearing forces, thereby simplifying the rotor suspension control design and providing improved
stability and vibration control performance compared with implementations based on operating
point linearization.

Keywords: active magnetic bearings; low bias current; vibration control; thin-walled structure;
nonlinear modeling

1. Introduction

Active magnetic bearings (AMBs) incorporate electromagnetic actuators to achieve contact-free
suspension of rotating shafts. They have important advantages over conventional bearings and can
enable high speed, low vibration and low maintenance operation of rotating machines. A typical radial
AMB is formed from pairs of electromagnets that apply opposing attractive forces to a rotor shaft,
as shown in Figure 1. Feedback control of actuator coil currents based on measured rotor displacements
is used to stabilize the rotor positioning within the bearing and prevent excessive vibration [1,2].
Although AMBs have been widely applied with solid-shaft rotors, there has been recent research
interest in the design and application of AMBs with hollow and ring-like rotors [3–6]. In the case of
thin-walled rotors, a larger number of smaller actuators may be incorporated within the bearing to
support the rotor around its periphery [5]. However, this results in a more complex relation between
the forces acting on the rotor and the currents within the actuator coils, which brings challenges in
achieving exact or approximate linearization of the bearing force behavior within a control algorithm.
Before describing the problem in detail, a brief review of the state of the art for conventional radial
AMBs is provided.
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Figure 1. Active magnetic bearing suspension incorporating four electromagnetic actuators.

A radial magnetic bearing is usually designed to operate in the linear B-H region [7,8].
Considering a single actuator within the bearing having two pole faces of area Ap and a uniform gap
of size s from the rotor, the attractive force (neglecting curvature) is given by [1]

F = µ0 Ap

(
Ni

liron/µr + 2s

)2
(1)

where N is the number of coil turns, i is the coil current, µ0 is the permeability of free space, µr is the
relative permeability of the core material and liron is the mean flux path length through the actuator
core and rotor.

Although the actuator forces are described by nonlinear equations, for feedback control,
the relationship between the magnetic force and change in current can be approximated by a linear
relation when operating with sufficiently high bias currents [9]. This is usually achieved with a
differential driving scheme, where time-varying control currents ic

x and ic
y are added and subtracted to

a constant bias current i0 for actuators on opposite sides of the rotor, as illustrated in Figure 1. From (1),
the resultant force (in the x-axis direction) will be

Fx(t) = µ0 ApN

((
i0 + ic

x(t)
l0 − 2x(t)

)2

−
(

i0 − ic
x(t)

l0 + 2x(t)

)2
)

(2)

For this equation, x is the displacement of the rotor from the bearing center and the effective flux path
length is l0 = liron/µr + 2s0 where s0 is the gap size when x = 0.

Using higher values for the bias current can widen the range of linear behavior but has
disadvantages of increased coil heating and energy losses. Therefore, a number of researchers have
investigated radial AMB operation with low or zero bias currents. Using permanent magnets (PMs)
to generate bias flux is one possible approach. This was considered by Zheng et al. to reduce power
consumption in a control moment gyro (CMG) system [10]. Design considerations in the use of PM
biasing for radial/axial and combination AMBs are described in Reference [11]. Meeker and Maslen
considered the generalized bias linearization problem for a radial magnetic bearing in Reference [12],
where a linear transformation of coil current values, computed offline, is used to generate a linear
dependency on bearing forces for a given rotor position.

As using low bias current values accentuates the nonlinear force characteristics of the
bearing, nonlinear control methods become more appropriate [13,14]. To improve load capacity,
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Gerami et al. presented a nonlinear magnetization model and control of a radial AMB with high-level
magnetization [15]. Chen and Song implemented a dynamics bias current control strategy to stabilize
an AMB system and minimize energy consumption [16].

For feedback linearization, an analytical inverse model of the bearing is usually employed within
the control algorithm so that the actual bearing force exactly matches the demanded value from the
feedback control law [17,18]. This control scheme is advantageous as it allows the control algorithm
to be designed based on the linear dynamics of the free rotor, as shown in Figure 2. To overcome the
difficulties in obtaining an accurate analytical model of the bearing forces, feedback linearization using
a look-up table approach was considered in Reference [19] for an AMB operating in current control
mode. Feedback linearization and control system design for a 1-d.o.f. AMB actuator was considered by
Mystkowski et al. [20], where two approaches based on voltage switching and flux control were
formulated and evaluated in simulation. Feedback linearization for a single voltage-controlled
magnetic bearing actuator was considered in Reference [21].

This paper considers the feedback linearization problem for a novel design of radial magnetic
bearing with distributed actuation topology. The distributed actuation magnetic bearing (DAMB)
incorporates a multiplicity of small electromagnetic actuators in an arrangement that is suited to
supporting hollow lightweight and thin-walled rotors [5]. A distinguishing feature is that both the x
and y force components couple with all four of the supplied coil currents, and hence the linearization
problem cannot be separated into x and y axis subsystems. Moreover, a closed form solution of the
linearizing equations cannot be obtained. Due to these features, feedback linearization methods such
as those in References [17–21] are not applicable and an approach based on numerical solution of the
linearizing equations in real-time is therefore proposed. Section 2 provides details of the bearing design
and theoretical model. The exact linearization control method is presented in Section 3. Simulation and
experimental results are described in Section 4 to validate the proposed approach. The final section
provides conclusions.
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Figure 2. Rotor-AMB control scheme: (a) with feedback linearization (inverse AMB model)
(b) equivalent dynamics.

2. DAMB Design and Force Model

A lightweight thin-walled rotor structure may be considered that is a shell of revolution
with large diameter compared with the wall thickness. Compared with a solid or thick-walled
rotor, there is a relatively small cross sectional area for the bearing magnetic flux to pass through.
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Therefore, a conventional radial AMB design is not appropriate to support the structure. A radial
bearing design based on the DAMB concept is shown in Figure 3. It comprises a circular array of
relatively small electromagnetic actuators fixed to the bearing stator. The actuators have a U-shaped
core with magnetic flux path aligned axially with the rotor, similar to a conventional homopolar
magnetic bearing. Note that lamination of the rotor wall is not possible and so a homopolar
arrangement is appropriate to reduce eddy current losses. The sizing of the actuator is chosen
to match the rotor wall thickness such that the onset of flux saturation within the actuator core,
and within the rotor material, would occur simultaneously. This condition is required to maximize
bearing capacity and leads to a larger number of smaller actuators compared with the conventional
AMB, where typically only four stator pole-pairs are employed (see Figure 1).

A further special feature of the design is that each actuator has two independently powered coils.
Suppose the coils on the jth actuator have number of turns N1,j and N2,j, and have regulated current
i1,j and i2,j, respectively. According to (1), the jth actuator at angular position θj applies an attractive
radial force to the rotor given by

Fj = µ0 Ap

(
N1,ji1,j + N2,ji2,j

)2(
l0 − 2uj

)2 (3)

where uj = x cos θj + y sin θj is the radial displacement of the rotor at the jth actuator with (x, y)
denoting the rotor lateral displacements within the bearing.

The load capacity of the magnetic bearing depends on the total pole-face area and the magnetic
flux saturation limit (which is material dependent). Therefore, the load capacity for the DAMB will be
similar to a conventional AMB if the total pole face area is similar. The main issue from downsizing of
the actuators is that the same current-turns (Ni) must be realized within a smaller coil volume and
this results in greater heating and more stringent requirements for heat dissipation. Achieving low
mean current values without introducing significant nonlinear dynamics for the controlled system is
therefore strongly motivated.
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Figure 3. Thin-walled rotor with DAMB supports: Cross-section diagrams.

To produce a resultant force in any radial direction, the actuator coils are connected in series with
four current control drives that supply currents i+x , i−x , i+y and i−y based on which quadrant the actuator
is located in [5]:

i1,j = i+x and i2,j = i+y for 0 ≤ θj ≤ π/2,
i1,j = i−x and i2,j = i+y for π/2 ≤ θj ≤ π

i1,j = i−x and i2,j = i−y for π ≤ θj ≤ 3π/2
i1,j = i+x and i2,j = i−y for 3π/2 ≤ θj ≤ 2π

(4)



Actuators 2020, 9, 99 5 of 18

From (3), the x and y components of the resultant force acting on the rotor can be expressed

Fx = ∑ Fj cos θj = a1i+x i+y + a2i+x i−y + a3i−x i+y + a4i−x i−y + a5i+
2

x + a6i−
2

x + a7i+
2

y + a8i−
2

y (5)

Fy = ∑ Fj sin θj = b1i+x i+y + b2i+x i−y + b3i−x i+y + b4i−x i−y + b5i+
2

x + b6i−
2

x + b7i+
2

y + b8i−
2

y (6)

where the coefficient values vary with rotor position according to the formulae given iin Table 1.
For given force values, (5) and (6) are coupled quadratic equations in the four current variables.
To obtain a unique solution, additional constraints must be introduced for the coil currents.
However, even with linear constraints, a closed form solution may not exist. To deal with a generalized
case, a numerical method to find solutions in real-time is introduced in the following section.

Table 1. Position-dependent coefficients for the bearing force Equations (5) and (6) .

Coefficient Formula * Coefficient Formula *

a1, a2, a3, a4 µ0 Ap ∑
2N1,j N2,j

(l0−2uj)
2 cos θj b1, b2, b3, b4 µ0 Ap ∑

2N1,j N2,j

(l0−2uj)
2 sin θj

a5, a6 µ0 Ap ∑
N2

1,j

(l0−2uj)
2 cos θj b5, b6 µ0 Ap ∑

N2
1,j

(l0−2uj)
2 sin θj

a7, a8 µ0 Ap ∑
N2

2,j

(l0−2uj)
2 cos θj b7, b8 µ0 Ap ∑

N2
2,j

(l0−2uj)
2 sin θj

* The summation here is over j falling within the appropriate quadrant according to Equation (4).

3. Exact Linearizing Control

If a conventional differential driving mode is adopted with constant bias current i0, then i+x,y =

i0 + ic
x,y, i−x,y = i0 − ic

x,y. Substituting these in (5) and (6) yields a pair of coupled quadratic equations
in ic

x and ic
y. In this case, after some algebraic manipulation, the solution can be found from a

root-calculation problem for a fourth order polynomial. Although this solution can be obtained
analytically, for practical implementation it is preferable to consider a more general situation where the
control currents have other types of constraints imposed, including those that involve saturation limits.
Therefore, an alternative approach considered in this paper is to use a gradient-based root-finding
algorithm within the feedback control computations. Moreover, the proposed approach is shown to be
sufficiently reliable and efficient for real-time control.

3.1. Gradient-Based Numerical Solution

Defining i =
[

i+x i−x i+y i−y
]T

, the force equations (5) and (6) can be expressed in quadratic
matrix form as

F(i) =

[
Fx

Fy

]
=

1
2

[
iT Hxi
iT Hyi

]
(7)

where

Hx =


2a5 0 a1 a2

0 2a6 a3 a4

a1 a3 2a7 0
a2 a4 0 2a8

 , Hy =


2b5 0 b1 b2

0 2b6 b3 b4

b1 b3 2b7 0
b2 b4 0 2b8

 (8)

Further, the Jacobian (derivative) matrix may be obtained, with respect to i, as

J(i) =

[
iT Hx

iT Hy

]
(9)

An algorithm to perform iterative updates of i must produce convergence of F(i) to the target

force values Fc =
[

Fcx Fcy

]T
, which are produced in real time by the feedback control algorithm.
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As there are four independent variables and only two force components, two more constraints may
be introduced. By defining these constraints in the general form g(i) = 0, they may be incorporated
within an extended error vector, as given by

ẽn =

[
F(in)− Fc

g(in)

]
(10)

where in is the nth solution update. Hence, if ẽn = 0, the required force value is achieved and the
current constraints are satisfied. The corresponding Jacobian matrix has dimensions 4× 4:

J̃n =

[
J(in)

∇gT(in)

]
(11)

An update equation based on a Newton iteration with step length α is given by:

in+1 = in − α J̃−1
n ẽn (12)

This iteration must be repeated multiple times within each control update until ‖ẽn‖ < ε with some
predefined tolerance ε. Generally, the solution from the previous time step can be used as the initial
solution for the present time step, thereby speeding convergence. Alternatively, the solution obtained
by a linear approximation model (see Section 3.2) can be used to initialize the algorithm. For the
versions of the algorithm implemented and tested here, constraints were adopted in the form

g(i) =

[
gx(i+x , i−x )
gy(i+y , i−y )

]
= 0 (13)

Two cases are shown in Figure 4. For case A, the constraints involve three line segments and are
equivalent to a differential driving mode with bias current i0 and lower saturation limit imin. For this
case, the corresponding constraint functions may be defined as

gx(i+x , i−x ) =


i+x − imin, i−x > 2i0 − imin

i−x − imin, i+x > 2i0 − imin

i−x + i+x − 2i0, otherwise

(14)

The corresponding vectors of derivatives are

∇gT
x =


[

1 0 0 0
]

, i−x > 2i0 − imin[
0 1 0 0

]
, i+x > 2i0 − imin[

1 1 0 0
]

, otherwise

(15)

and similarly for gy(i+y , i−y ).
With this scheme, a key benefit of using a non-zero bias value i0 is maintained i.e., the operating

point i+x = i−x = 0 is avoided, thereby preventing loss of controllability associated with the
Jacobian becoming singular. In practical terms, the slope of F(i) becomes too small leading to
unachievably high current slew-rates [11]. The sum (mean value) of the currents is set by the value
of i0, while linear operation of the bearing is maintained through the solution of the inverse model.
As the force-current relation is quadratic and the constraint are linear in this case, the update algorithm
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is guaranteed to converge for sufficiently small step-size α provided the Jacobian remains non-singular.
By substituting (12) in (10), the error convergence equation is obtained as

ẽn+1 = (1− α)ẽn +
1
2

α2


ẽT

n J−T
n Hx J−1

n ẽn

ẽT
n J−T

n Hy J−1
n ẽn

0
0

 (16)

Consequently, with step length 0 < α ≤ 1 a sufficient condition for |ẽn+1| < |ẽn| is

α < 2
∣∣(ex,y

)
n

∣∣ ∣∣∣ẽT
n J−T

n Hx,y J−1
n ẽn

∣∣∣−1
(17)

where ex,y are the force error components. Although a step length can be chosen based on this bound,
faster convergence may be achieved by using an adaptive step length. This is done by initially setting
α = 1. Then, if an update produces an increase in the error, the step length is halved and the solution
recalculating. Whereas, if a solution reduces the error, the step length can be doubled subject to α ≤ 1.

This numerical solution approach is suitable for other cases based on more complex models
that take account of magnetic flux saturation, or constraints that involve nonlinear functions.
However, the convergence properties should be checked thoroughly before any real application
is attempted. For further investigation, a case with hyperbolic constraints is considered, as shown by
Case B in Figure 4b, where

gx(i+x , i−x ) = (i+x − imin)(i−x − imin)− (i0 − imin)
2 = 0 (18)

gy(i+y , i−y ) = (i+y − imin)(i−y − imin)− (i0 − imin)
2 = 0 (19)

As for Case A, the mean value of the currents satisfies i+x + i−x ≥ 2i0, but there is no hard saturation of
the currents, and instead i+x → imin as i−x → ∞ and vice-versa. The corresponding vectors of gradients
for the update algorithm are

∇gT
x =

[
i−x − imin i+x − imin 0 0

]
(20)

∇gT
y =

[
0 0 i−y − imin i+y − imin

]
(21)
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3.2. Linear Approximation Solution

For the DAMB driving scheme, a more conventional approach can be adopted that involves
operating point linearization with fixed bias currents. For this approach, we consider the truncated
Taylor series for Fx and Fy about an operating point (OP) with i = i0, x = 0, y = 0. Hence, the x
component of the bearing force is

Fx =
1
2

iT Hxi ≈ 1
2

iT
0 (Hx)OPi0 + iT

0 (Hx)OP(i− i0) +
1
2

iT
0 (∇x Hx)OP i0x +

1
2

iT
0
(
∇y Hx

)
OP i0y (22)

Setting i+x = i0 + ic
x and i−x = i0 − ic

x where i0 is the bias current value, and assuming symmetry of the
bearing so that iT

0 (Hx)OPi0 = 0 and iT
0
(
∇y Hx

)
OP i0 = 0, then (22) simplifies to

Fx = Kx
i ic

x + Kx
s x (23)

where the current gain and displacement gain take scalar values given by

Kx
i = iT

0 (Hx)OP[ 1 −1 0 0 ]T , Kx
s =

1
2

iT
0 (∇x Hx)OP i0

Equivalent equations can be obtained for the y force component and so the required control currents
can be calculated directly as ic

x = (Kx
i )
−1Fx − (Kx

i )
−1Kx

s x and ic
y = (Ky

i )
−1Fy − (Ky

i )
−1Ky

s y. In this
calculation, the second term compensates for the negative stiffness of the bearing, while the first term is
the additional current required to produce the net force Fx,y. Clearly, the effectiveness of this approach
is dependent on the accuracy of the linear approximation in (22). Moreover, this accuracy will tend to
deteriorate as the bias current value is reduced.

4. Experiments

4.1. Thin-Walled Rotor and DAMB Test System

The proposed DAMB design and control approach have been applied to a horizontal cylindrical
rotor of length 800 mm with two radial DAMB supports, as shown in Figure 5. The rotor is made
from a uniform steel tube with properties given in Table 2. Each bearing comprises a circular array of
24 electromagnetic actuators, the design for which is shown in Figure 6. The bearing design parameters
are shown in Table 3. The two bearings are configured with different gap sizes but are otherwise
identical. The actuator cores are made from soft magnetic powder-sintered steel alloy (Somaloy SPM)
to minimize eddy current losses. Each bearing has four sets of actuator coils, in accordance with (4).
For each set, the actuator coils are connected in series and driven by a d.c. servo drive (Maxon EC48/5).
The variation in the number of turns for each coil is defined by

N1,j = round

N0

∣∣cos θj
∣∣√∣∣sin θj

∣∣+ ∣∣cos θj
∣∣
 and N2,j = round

N0

∣∣sin θj
∣∣√∣∣sin θj

∣∣+ ∣∣cos θj
∣∣


where N0 is the maximum number of coil-turns, as detail in Table 3. This scheme creates a sinusoidal
variation in actuator forces around the circumference of the rotor, thereby helping to minimize flexural
distortion and vibration of the rotor wall [5].

The rotor is driven by a brushless d.c. motor connected via a flexible coupling, which comprises
a disk on the motor shaft and four foam rubber flexures that connect the end of the rotor with the
disk in order to transmit torque to the rotor. The flexures have low stiffness in the lateral direction so
that the effect of the coupling on the dynamics of the rotor is very low. An orthogonal pair of rotor
position sensors (eddy current proximity probes) are located adjacent to each bearing and used for
feedback control of the bearings. The feedback control algorithm (including the algorithm for solving
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the inverse bearing model) is implemented in discrete time on PC-based hardware with the sampling
frequency set to 5 kHz.

Bearing A

Bearing B

Motor

Displacement sensors

Displacement sensors

Actuator

Thin-walled rotor

Flexible 

coupling

Figure 5. Experimental thin-walled rotor with two radial DAMBs.

i2i1

actuator core

coils

rotor wall

pole face area Ap

s0

flux path

(a) (b)

Figure 6. Multi-coil actuator for thin-walled rotors (a) schematic (b) solid model.

Table 2. Physical properties of thin-walled steel rotor.

Parameter Symbol Value Units

Length L 0.8 m
Radius R 0.0815 m
Wall thickness h 0.00306 m
Density ρ 7850 kg/m3

4.2. DAMB Simulations

To verify the convergence properties and correct operation of the linearizing control algorithm,
a single bearing was simulated with a 2 d.o.f. lumped mass rotor of 5 kg (which is half the mass of the
actual rotor). The DAMB properties were selected to match those of bearing A in Table 3. The bearing
force demand was generated via the feedback controller according to the block diagram in Figure 7.
Results were obtained to compare the two approaches described in Section 3, which are the exact
linearization approach and the linear approximation approach. Step changes in position demand input
were simulated with PD feedback control, the results for which are shown in Figure 8. Both cases
involve operation with bias current i0 = 1.6 A and initial position x = 0 and y = 0. The controller P and
D gains are 70 kN/m and 400 Ns/m respectively. Cases with step changes in horizontal and vertical
(X and Y axis) position demand are shown where the bearing axes are aligned at 45◦ to the vertical
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(see Figure 3). The gravity force is also included. For the exact linearization approach, the nonlinear
negative stiffness property of the bearing is exactly canceled by the inverse model and the transient
and steady-state response are the same as if the PD feedback control were applied to the free rotor
(as in Figure 2). It can also be seen that there is no cross-coupling between the two axes even though the
rotor weight introduces asymmetric loading on the bearing. With the linear approximation approach,
significant steady-state error in rotor position occurs following the step in demand. This is because the
negative stiffness coefficients from operating point linearization (see (23)) are no longer appropriate
following the change in rotor position.

Table 3. Properties of DAMB actuators.

Parameter Symbol Value Units

Pole face area Ap 55.8 mm2

Permeability of free space µ0 4π × 10−7 H/m−1

Maximum number of coil-turns N0 100
Bearing A
Gap size s0A 0.35 mm
Effective flux path length l0A 1.1 mm
Bearing B
Gap size s0B 0.2 mm
Effective flux path length l0B 0.8 mm

In the implementation of the exact linearization approach, the coil current values are computed
using the gradient-based algorithm with hyperbolic constraints. The current values from the linear
approximation are used as the initial values iinit for the update iterations, as shown in Figure 7. The coil
currents, i, were calculated via 10 iterations of the root-finding algorithm with fixed step length of α =

0.5 (see (12)). Details on the bearing force calculation for Fx are shown in Figure 9b. It can be seen
that the bearing force error converges rapidly and uniformly to the target force value (see Figure 9c).
Note that the actual current values are updated only after the 10 iterations are completed. With this
algorithm, the bearing force properties can be linearized over the entire operating space of the rotor,
thereby eliminating errors for both position and force based control strategies. It should be recognized,
however, that these results rely on an exact match between the actual bearing properties and the force
model, which is impossible to achieve in practice.
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(b)Figure 7. Feedback control scheme for exact linearization.
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4.3. Practical Implementation

Experiments were undertaken where the inverse bearing model was implemented in the control of
the test system described in Section 4.1. The feedback control scheme is shown in Figure 10, where the
measured rotor displacements at Bearing A and B are transformed to center-of-mass displacements by
transformation matrix Tcm. Thus, the rotor feedback control is applied in the center of mass coordinate
system. The feedback linearization algorithm is applied separately to each bearing based on the local
measurements of the rotor displacement within each bearing.

A harmonic vibration control (HVC) algorithm is applied in parallel with the PD controller
to eliminate multi-harmonic vibration of the rotor when rotating. Previously, it has been shown
that multi-harmonic vibration of a thin-walled rotor is prone to arise due to a combination of
mass-unbalance and non-circularity of the rotor wall [6]. In the present study, the HVC is used to
eliminate rotor vibration so that the required vibration control forces can be evaluated and compared.
The HVC algorithm shown in Figure 11 operates on each center of mass coordinate (which have been
decoupled by application of the inverse bearing models). A second order transfer function Kcomp is first
applied to compensate for the dynamics of the system (i.e., Kcomp is an approximate inverse model).
The signals are then down-sampled to form a vector of Ns sample values that cover one complete
revolution of the rotor. The first six harmonic amplitudes (Fourier coefficients) are then obtained by
multiplication with the discrete Fourier transform matrix given by:

RFT =
1

Ns


1 cos θ cos 2θ · · · cos (Ns − 1)θ
0 sin θ sin 2θ · · · sin (Ns − 1)θ
...

. . .
...

1 cos 6θ cos 12θ · · · cos 6(Ns − 1)θ
0 sin 6θ sin 12θ · · · sin 6(Ns − 1)θ

 where θ = 2π/Ns

The resulting coefficients are then integrated on a cycle-by-cycle basis and the control signal FHVC
formed as a summation of harmonic signals multiplied by the corresponding Fourier coefficients.
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Figure 10. Decoupled feedback control scheme with exact linearization.
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Initial tests were performed involving step changes in X and Y position demand for the rotor
center of mass, where the X and Y axes align with the horizontal and vertical directions respectively.
Figure 12 shows the results for tests with step change in position demand of 50 µm, and with P and D
gains of 140 kN/m and 1000 Ns/m respectively for the X and Y coordinates. The bias current values
were i0 = 1.6 A. The transient response with exact linearization is seen to match well with expected
behavior. Based on the linear free-rotor model and PD controller gains, the expected values of natural
frequency and damping ratio are 118 rad/s and 0.42, respectively. The damping levels are slightly
lower than expected due to lag effects within the control loop, which are not accounted for within
the inverse bearing model. For the case with feedback control based on the linear approximation
model, much larger positioning error occurred. Additionally, for large Y-axis motions (see Figure 12b),
the rotor response is prone to instability. Note also that cross-coupling effects are significantly reduced
with the exact linearization approach (see Figure 12a). These results are in broad agreement with the
simulation results in Figure 8. However, exact linearization cannot be achieved in practice. This is
believed to be due to the simplifications within the magnetic force model (Equation (3)). It is known
that the main causes of error with this type of model are flux leakage and non-uniform field effects,
as well as nonlinear B-H properties of the core materials [18]. The results here indicate that the negative
stiffness property of the bearing tends to be underestimated with both the exact linearization and
linear approximation models.

To further examine the position-dependent force characteristics of the bearings, tests were
undertaken involving sinusoidal tracking for the rotor center of mass position. The tests involved
a low frequency (2 rad/s) sine wave demand with amplitude of 50 µm. Exact compensation of the
position-dependency of the bearing force would lead to exact tracking in these tests as inertia effects
are negligible. Figure 13 shows that for the linear approximation model, the position error increases
significantly as the rotor moves away from the operation point (x = 0 µm and y = 0 µm). With the
exact linearization approach, the positioning error and axis cross-coupling is greatly reduced.
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Figure 12. Displacement response of the non-rotating thin-walled rotor due to (a) step change in X
demand (b) step change in Y demand.
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Figure 13. Displacement response of the non-rotating thin-walled rotor due to (a) sinusoidal demand
input in X direction (b) sinusoidal demand input in Y direction.

4.4. DAMB Force Control Evaluations

To further evaluate the force properties of the bearing and accuracy of the inverse model,
tests with rotation were conducted where control forces were applied to eliminate vibration of the rotor.
These tests were performed at relatively low speeds, but with large added unbalance, in order to
minimize errors due to the finite bandwidth of the current control loops and other lag effects within
the feedback control loop. Feedback control with exact linearization was implemented in combination
with HVC control so that the vibration of the rotor can be reduced and the synchronous component
eliminated, as shown in Figure 14a. Stable operation of the bearings using the exact linearization
algorithm with hyperbolic current constraints (bias i0 = 1.6 A) is achieved despite large differences in
the coil current values. For comparison purposes, results from operation with the linear approximation
controller with synchronous (unbalance) control only are shown in Figure 14b. To achieve stable
operation of the bearing, the bias current value was increased to 2.2 A. Significant vibration of the
rotor involving higher harmonics of the rotational frequency occurred for this case. This vibration
is caused by noncircularity of the rotor cross-section, as well as nonlinear effects from the bearing
(see Reference [6]). The effectiveness of the control implementations can be further compared from
Figure 15, where Fourier transform data for the rotor vibration signals and coils currents are presented.
A reduction in both mean and RMS values of the AMB currents is achieved with the proposed control
implementation, in addition to the large reduction in rotor vibration.

As synchronous vibration of the rotor is practically eliminated in these tests, the synchronous
force from the bearings should exactly match the mass-unbalance of the rotor. Hence, the predicted
bearing force from the inverse model can be used to estimate the unbalance of the rotor. To evaluate
the accuracy of the force prediction, the unbalance force was estimated for cases with and without an
unbalance mass of 97 grams applied at the middle inner surface of the rotor (angular position 0 degree)
such that the mass-eccentricity was 0.0074 kg-m. Table 4 shows the estimates of the unbalance force
obtained during operation and the corresponding mass-eccentricity estimate for rotational frequencies
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of 19.0 rad/s, 25.1 rad/s and 31.2 rad/s. The results confirm that the unbalance force prediction from
the inverse bearing model matches the actual unbalance well over the range of force levels tested.
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Figure 14. Steady-state behavior of test system at rotational speed of 31.2 rad/s (5 Hz) with (a) exact
linearizing control with Harmonic Vibration Control implementation (b) linear approximation control
with synchronous (unbalance) control implementation.

Table 4. Unbalance estimation results from nonlinear force model: actual unbalance was 0.0074∠0◦.

Rotational Frequency Estimated Force Estimated Unbalance
(rad/s) (N∠deg) (kg·m∠deg)

19.0 2.57∠2.3◦ 0.0071∠2.3◦

25.1 4.68∠0.3◦ 0.0074∠0.3◦

31.2 7.38∠−1.7◦ 0.0076∠−1.7◦
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Figure 15. Fourier transforms of displacement and current signals at rotational speed of 31.2 rad/s
(5 Hz). Data is shown for x-axis components from each case in Figure 14.

5. Conclusions

This paper has introduced an exact linearizing control approach for a distributed actuation
magnetic bearing supporting a thin-walled rotor. As the set of coupled nonlinear equations that
relate bearing forces to coil currents cannot be solved analytically, for control purposes, a method
for numerical solution of the equations in real-time has been proposed. Accurate solutions could be
obtained during each feedback control update using a finite number of Newton iterations for the
coil current values. Moreover, the formulation can incorporate arbitrary constraint equations for the
coil currents. This can be exploited to achieve low mean current values, while minimizing nonlinear
effects. Experiments conducted on a thin-walled rotor with two DAMB supports showed that the
linearizing and decoupling properties of the control implementation allow effective vibration control
to be achieved with lower currents and with improved performance compared with standard control
methods based on linear approximation models. For the experimental system, force errors arose mainly
due to inaccuracy of the considered magnetic flux model, which did not account for flux leakage or
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saturation effects. Nonetheless, the method has general applicability and can be applied with more
complex nonlinear models of force behaviour in AMB systems.
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