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Abstract: Aeromonas veronii is as an important opportunist pathogen of many aquatic animals, which
is wildly distributed in various aquatic environments. In this study, a dominant bacterium GJL1
isolated from diseased M. salmoides was identified as A. veronii according to the morphological,
physiological, and biochemical characteristics, as well as molecular identification. Detection of the
virulence genes showed the isolate GJL1 carried outer membrane protein A (ompA), flagellin (flgA,
flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), DNases (exu), and hemolysin (hly), and the
isolate GJL1 also produced caseinase, lipase, gelatinase, and hemolysin. The virulence of strain GJL1
was confirmed by experimental infection; the median lethal dosage (LD50) of the GJL1 for largemouth
bass was 3.6 × 105 CFU/mL, and histopathological analysis revealed that the isolate could cause
obvious inflammatory responses in M. salmoides. Additionally, the immune-related gene expression
in M. salmoides was evaluated, and the results showed that IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and
Cas-3 were significantly upregulated after A. veronii infection. Our results indicated that A. veronii was
an etiological agent causing the mass mortality of M. salmoides, which contributes to understanding
the immune response of M. salmoides against A. veronii infection.
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1. Introduction

As an economically significant aquatic species native to North America, M. salmoides
has been widely cultured in China [1], and the annual production has exceeded 619 thou-
sand tons, according to the China Fishery Statistical Yearbook in 2020. Unfortunately,
M. salmoides has suffered from increasing diseases due to the high-density culture and the
deterioration of the water environment. In recent years, various viral pathogens have
been reported to cause serious economic losses to the M. salmoides industry, including
largemouth bass virus (LMBV), largemouth bass Birnavirus (LBBV), viral hemorrhagic
septicemia virus (VHSV), nervous necrosis virus (NNV), and Micropterus salmoides rhab-
dovirus (MSRV) [2–6]. In addition, outbreaks caused by bacterial pathogens including
Aeromonas hydrophila, A. veronii, Aeromonas sobria, Vibrio parahemolyticus, Nocardia seriolae,
Edwardsiella piscicida, and Francisella orientalis, are also increasing in frequency and causing
major economic losses [7–13]. In this study, the mass mortality of M. salmoides with skin
ulcerations occurred in Yangzhou, Jiangsu Province, and the dominant bacterium GJL1
from the diseased M. salmoides was identified as A. veronii.

A. veronii, a Gram-negative bacterium, is widely distributed in freshwater and estuary
environments and is an opportunistic pathogenic bacterium, which infects a variety of
aquatic organisms. In recent years, A. veronii has been recognized as an aquatic pathogen
for various fish species, such as Ictalurus punctatus, Oreochromis niloticus, Dicentrachus labrax,
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Misgurnus anguillicaudatus, Carassius auratus, Labeo rohita, Odontobutis potamophila, Silurus
asotus, Astronotus ocellatus, etc. [14–22]. A. veronii infection in fish is mainly characterized
by the clinical symptoms of dermal ulceration, furunculosis, enteritis, and hemorrhagic
septicemia [23–25]. Furthermore, infection with A. veronii has expanded to affect inverte-
brates and amphibians, such as Macrobrachium nipponense, Xiphophorus helleri, Procambarus
clarkia, Pelodiscus sinensis, Macrobrachium rosenbergii, Eriocheir sinensis, etc. [26–31]. Thus,
more attention should be given to the widespread infections of A. veronii in aquatic animals.

In this study, the pathogenicity of A. veronii GJL1 associated with ulceration disease
in cultured M. salmoides was investigated. In addition, the expression of immune-related
genes in the livers and spleens of M. salmoides after infection with A. veronii was monitored
at different points of time using qRT-PCR. A. veronii is the most notable causative agent
of fish disease, which is responsible for severe economic losses not only in M. salmoides
but also in other fish; our studies indicated that A. veronii GJL1 had considerable virulence
to M. salmoides, which revealed the damage of this pathogenic bacteria in aquaculture.
Generally, our data provide valuable insights into the etiology of A. veronii.

2. Materials and Methods
2.1. Bacterial Isolation

Diseased M. salmoides were collected from the aquaculture farms of Yangzhou, Jiangsu
Province, China in July 2021. The diseased fish were sanitized with 75% alcohol prior
to being dissected. Subsequently, tissue samples from the livers, kidneys, and spleens of
diseased fish were streaked separately on LB agar plates and cultured for 24 h at 28 ◦C. The
dominant colonies were purified by re-streaking on LB agar plates, and the bacteria were
preserved in 30% glycerol at −40 ◦C for further study.

2.2. Bacterial Virulence Assay

The isolate GJL1, as a representative of the dominant strains, was incubated in an
LB medium at 28 ◦C with shaking at 180 rpm for 18 h, and the bacterial suspension was
diluted from 2.4 × 108 to 2.4 × 105 CFU/mL by sterile PBS. Twenty healthy M. salmoides
(60–70 g) in each tank (in triplicate) were injected intraperitoneally with 100 µL with
different concentrations of the bacterial suspension (2.4 × 108, 2.4 × 107, 2.4 × 106, and
2.4 × 105 CFU/mL) per fish, respectively, and the fish in the control group were injected
with 100 µL sterile PBS (pH 7.4). The mortalities of fish were monitored every day for 14 d,
and the LD50 of A. veronii to M. salmoides was calculated based on the cumulative mortality
of the fish using the methods of Behreans and Karber [32].

2.3. Histopathology

The livers, spleens, kidneys, and gills from the infected and control groups were
fixed in Bouin’s fixative, dehydrated in different concentrations of ethanol, embedded in
paraffin wax, sectioned, and stained with hematoxylin and eosin (H&E) for histological
examination.

2.4. Morphology Observation

The isolate GJL1 was observed under transmission electron microscopy (Tecnai 12,
Philips, Eindhoven, The Netherlands). Briefly, the cells were harvested by centrifugation
(4000 rpm, 15 min, 4 ◦C) and washed thrice with sterilized PBS (pH 7.4). Then, the cells were
fixed in 2.5% glutaraldehyde, post-fixed with osmium tetroxide, dehydrated by a graded
ethanol series, and coated with gold palladium alloy. Finally, the cells were observed with
a transmission electron microscope, and the types and sizes of flagella were analyzed.

2.5. Identification of Bacteria

The biochemical tests were performed using the commercial biochemical identifica-
tion tubes (Hangzhou Binhe Microorganism Reagent Co., Ltd., Hangzhou, China). The
tests included motility, indole, sucrose, salicin, α-Methyl-d-glucoside, esculin hydroly-
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sis and ornithine decarboxylase, arginine dihydrolase, the Voges–Proskauer, raffinose,
β-galactosidase, dulcitol, and fructose, etc. The results were compared with Bergey’s
Manual of Systematic Bacteriology [33].

The 16S rRNA and gyrB genes of the isolate GJL1 were amplified as described by
Zhang et al. [34]. After sequencing, the 16S rRNA and gyrB sequences of isolate GJL1
were searched in the NCBI database for sequence homology analysis using BLAST, and
phylogenetic trees were constructed using the maximum likelihood method by MEGA 7.0
(version 7.0, Mega Limited, Auckland, New Zealand) [35].

2.6. Determination of Extracellular Enzymes and Hemolysin

The isolated A. veronii was screened for extracellular enzymatic activities, such as
phospholipase, lipase, amylase, hemolysin, and urease, which were determined by the
method described earlier by Gao et al. [30]. LB nutrient agar medium was supplemented
with 7% rabbit erythrocytes, 2% starch, 1% gelatin, 1% Tween-80, and 10% egg yolk,
respectively. Five microliters of a suspension of GJL1 were spot-inoculated in the center of
the plates, which were incubated at 28 ◦C for 24 h. The presence of a lytic halo surrounding
the GJL1 colonies was observed. The test was performed in triplicate.

2.7. Detection of Virulence-Related Genes

The virulence-related genes, including the outer membrane protein A (ompA), flagellin
(flgA, flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), ribozyme (exu), and hemolysin
(hly), were detected in the isolate GJL1 using PCR with specific primers (Table S1). The
PCR reactions were performed using Easy Taq PCR Super® Mix (Tolo Biotech Co., Ltd.,
Shanghai, China), and the PCR products were detected by 1% Agarose gel electrophoresis.

2.8. Detection of the Expression Levels of Immune-Related Genes

The expression of immune-related genes (IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and
Cas-3) in the tissues of M. salmoides was monitored after A. veronii infection by using
qRT-PCR. Briefly, a total of 40 fish were intraperitoneally injected with 100 µL A. veronii
(3.6 × 105 CFU/mL), and the fish in the control group were injected with 100 µL sterile PBS.
The liver, spleen, and kidney were sampled at 6, 12, 24, 48, and 72 h post infection. The qRT-
PCR reactions were performed using Thermofisher QuantStudio Real-Time PCR System
PCR System with a ChamQ Universal SYBR qPCR Master Mix (Vazyme, Nanjing Co., Ltd.,
Nanjing, China), and the primer sequences are displayed in Table S2. β-actin was chosen
as an internal control, and the relative mRNA expression was calculated by the 2−∆∆Ct

method. The significant differences were analyzed by a t test using SPSS 16.0 software
(p < 0.05). All qRT-PCR reactions were performed in triplicate.

3. Results
3.1. Pathological Symptoms

The epidemiological investigation found that the diseased M. salmoides showed serious
ulceration on the surface, with hemorrhage in the bodies. The diseased fish had several
common symptoms such as swelling and hemorrhage on the base of internal organs.

3.2. Isolation of Bacteria from Diseased M. salmoides

The pathological tissues of the diseased M. salmoides were isolated with abundant
pure bacteria from the livers, spleens, kidneys, and gill samples, and these colonies grew
with the characteristics of white color, translucence, circularity, convexity, and an intact
edge. Pure isolates were obtained by streaking the colonies on LB nutrient agar plates,
and a representative strain from these was chosen for this study, which was tentatively
named GJL1.
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3.3. Virulence of the Isolate

The results of the pathogenicity study are shown in Figure 1. The infected M. salmoide
started to die from day 2, the 1.8 × 108, 1.8 × 107, 1.8 × 106, and 1.8 × 105 CFU/ mL of GJL1
caused 100%, 80%, 40%, and 20% mortality after 14 dpi, respectively, and no fish died in
the control group. The calculated LD50 of GJL1 to the M. salmoides was 3.6 × 105 CFU/mL.
Furthermore, the isolate GJL1 was reisolated from the infected M. salmoides, confirming
that the experiment fulfilled Koch’s postulates.
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Figure 1. The survival rates of largemouth bass challenged by GJL1.

3.4. Histological Observation

Compared with the control group, histopathologic examination showed hemorrhage
and necrosis in liver tissues and the destruction of intercellular junctions between liver cells
(Figure 2B). As shown in Figure 2D, the spleen tissues showed several signs of telangiectasia,
hyperemia, hemolysis, and the formation of blood spots, especially with severe regional
rupture. Obvious signs of necrosis in the respiratory epithelial cells of the secondary gill
plate were observed, and the gill lamellae were arranged irregularly, bent, and wrinkled.
As shown in Figure 2H, nephritis occurred in the focal area of the kidney, the glomerulus
necrosed, and the interrenal tissue cells were necrotic and chapped.
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liver; (B) histologic section of infected liver; (C) histologic section of healthy spleen; (D) histologic
section of infected spleen; (E) histologic section of healthy gill; (F) histologic section of infected gill;
(G) histologic section of healthy kidney; (H) histologic section of infected kidney. LD represents
decreased lipid droplets; HC represents mild hepatic cell; CV represents swollen central vein. WP
represents white pulp; RP represents red pulp. H represents hypertrophy; HP represents hyperplasia;
ED represents epithelial cell detachment. G represents glomerulus; UT represents urine tubules.

3.5. Electron Microscopic Observation of the Isolate

The micrographs of transmission electron microscopy revealed that the isolate GJL1
was rod-shaped with round-ends, approximately 1.1–1.9 µm wide and 2.6–4.8 µm long,
which was motile by single polar flagella (Figure 3).
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3.6. Physiological and Biochemical Characterization

The isolate GJL1 was obtained from the diseased sample M. salmoides and confirmed
as A. veronii bv veronii by morphological, physiological, and biochemical characteristics
as described in Bergey’s Manual of Systematic Bacteriology. As shown in Table 1, the
motility, indole, sucrose, salicin, α-Methyl-d-glucoside, esculin hydrolysis, and ornithine
decarboxylase were positive but not arginine dihydrolase. The Voges–Proskauer, raffinose,
β-galactosidase, dulcitol and fructose activity of the isolate GJL1 were positive, which
showed different characteristics than the descriptions of A. veronii in Bergey’s Manual of
Systematic Bacteriology.
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Table 1. Physiological and biochemical characteristics of strain GJL1.

Characteristics GJL1
A. veronii A. veronii

bv sobria * bv veronii *

Gram staining − − −
Oxidase + + +

Voges–Proskauer + d d
Indole production + + +

Sucrose + + +
Maltose + + +

Raffinose + − −
Lactose − d d
Xylose − − −

Mannose + + +
Fructose + NT NT

Melibiose + − −
Cellobiose + d d
Galactose + NT NT

Esculin hydrolysis + − +
Glucose + d d

Mannitol + + +
Salicin + − +

Arabitol − − −
Sorbitol − − −
0% NaCl + + +
1% NaCl + NT NT
3% NaCl + + +
6% NaCl − NT NT
Tartrate − NT NT

Amygdalin − − −
Acetate − + +

Arginine dihydrolase − + −
Ornithine decarboxylase + − +

β-galactosidase + NT NT
Catalase + + +
Trehalose + + +

α-Methyl-d-glucoside + d +
Dulcitol + − −

Erythritol + − −
Rhamnose − − −

Motility + + +
Note: “+”, positive; “−”, negative; d, 11 89% positive with incubation at 35 ◦C for 7 d except for A. veronii, which
were incubated at 25 ◦C. “*” the data of A. veronii come from Bergey’s Manual of Systematic Bacteriology.

3.7. Molecular Identification

The sequences of GJL1 were amplified and sequenced after polymerase chain reaction
(Table S3). The 16S rRNA sequences of the isolate GJL1 (accession number: OP035982) showed
99% identity with A. veronii in GenBank (accession number: MG051695.1, MN581681.1),
and the phylogenetic tree showed the isolate GJL1 belonged to A. veronii (Figure 4a). In
addition, the gyrB sequences of the isolate GJL1 (accession number: ON101329) showed 98%
similarity to the sequence of A. veronii strains (accession number: KY652264.1, AF417626.1),
and the phylogenetic tree also showed the isolate GJL1 belonged to A. veronii (Figure 4b).
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3.8. Virulence Factors and Genes of the Pathogenic Isolate

The extracellular enzymes activities of GJL1 are shown in Figure 4. The strain GJL1
produced DNAase, protease, gelatinase, and hemolysin activity, without lecithin and lipase
activity (Figure 5).
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3.9. Virulence Genes of the Pathogenic Isolate

The outer membrane protein A (ompA), flagellin (flgA, flgM, flgN), aerolysin (aer), cy-
tolytic enterotoxin (act), ribozyme (exu), and hemolysin (hly) were detected by PCR (Figure 6).
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3.10. Immune-Related Gene Expression in M. salmoides after A. veronii Infection
3.10.1. Immune-Related Gene Expression in Livers at Different Hours Post-Infection

As shown in Figure 7, significant expression levels of IgM, HIF-1α, Hep-1, IL-15, TGF-β1,
and Cas-3 were detected at 12 hpi. Then, the increased rates of IgM, IL-15, and Cas-3 were
reduced between 12 hpi and 48 hpi, and infected group remained higher than the control
group, except for IL-15 and Cas-3. The expression peaks of IgM, HIF-1α, IL-15, and Cas-3
in the liver were at 12 hpi, and reached 1.91-, 2.80-, 3.60-, and 1.40-fold, respectively. The
expression peak of TGF-β1 in the liver was at 24 hpi and reached 2.23-fold. The expression
level of Hep-1 in the liver reached the peak value of 2.39-fold at 72 hpi.
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3.10.2. Immune-Related Gene Expression in Spleens at Different Hours Post-Infection

As shown in Figure 8, the significant expression levels of IgM, HIF-1α, Hep-1, IL-15,
TGF-β1, and Cas-3 were all detected at different times. The increased rates of IgM and IL-15
were reduced between 12 hpi and 48 hpi, and the infected group remained higher than
the control group. The expression peaks of IgM and IL-15 in the spleen were at 24 hpi and
reached 1.93- and 1.73-fold, respectively. The expression peak of TGF-β1 in the spleen was
at 48 hpi and reached 2.57-fold. The expression levels of HIF-1α, Hep-1, and Cas-3 in the
spleen reached the peak values of 3.15-, 2.03-, and 4.40-fold higher, respectively, at 72 hpi.
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4. Discussion

A. veronii causes one of the most common conditional pathogens of freshwater fish
cultured in China and has been known to cause significant economic damage in the
aquaculture industry [36]. The cases of death caused by A. veronii have risen quickly
in recent years, with the pathological symptoms in fish including skin ulcers, bleeding
of organs, and severe ascites. Shameena et al. indicated that A. veronii isolated from
diseased C. auratus caused high economic losses in farming [25]. Hoai et al. reported the
disease and mortality of channel catfish mainly due to A. veronii [19]. In addition, A. veronii
was also pathogenic to Poecilia reticulata [37]. In this study, A. veronii GJL1 was isolated
from diseased M. salmoides showing serious ulceration on the surface and hemorrhage in
the bodies. Challenge tests showed that the LD50 of A. veronii GJL1 to M. salmoides was
3.6 × 105 CFU/mL, and the challenged M. salmoides exhibited similar symptoms to the
naturally infected fish, suggesting that the isolate GJL1 has high virulence to M. salmoides.

Previous studies have shown that extracellular products of bacteria are considered as
important factors in the infection of the host. It is reported that many virulence factors, such
as amylase, caseinase, gelatinase, lipase, hemolysin, and aerolysin, play important roles
in the pathogenicity of A. veronii. [38,39]. In the present study, the isolate GJL1 exhibited
caseinase, lipase, gelatinase, and hemolysin activities, which contributed to invading the
host. Further, the virulence-related genes encode secreted proteins and toxins that may play
important roles in the pathogenesis of A. veronii. Sreedharan et al. reported that various
virulence genes, such as act and alt coding enterotoxins, aerA coding enterotoxins, and hlyA
coding hemolytic toxins, etc., were key contributors to the virulence of A. veronii [40]. More-
over, the aer gene was an important gene associated with aerolysin [41]. Gao et al. reported
that the expression of hly could cause cytotoxic effects and the lysis of erythrocytes [42].
Meanwhile, the fla gene plays an important role in the abilities of motility and adherence to
cells [43]. In this study, the virulence-related genes including ompA, flgA, flgM, flgN, aer,
act, exu, and hly were detected in A. veronii GJL1. These results indicated that the highly
virulent A. veronii GJL1 may harbor many virulence genes.

Fish possess an adaptive immune system with an ability to mount a specific antibody
response against pathogens, and various aspects of the innate immune systems and tissues
have been studied in M. salmoides. In this study, the expressions of six immune-related genes
in M. salmoides were determined after A. veronii infection, which exhibited significantly
differential expressions. Transforming growth factor-β (TGF-β) is an anti-inflammatory
cytokine, and TGF-β1 is an important isoform of TGF-β, which has been proved to relate
to the controlled inflammation by interleukin [44,45]. IL15 plays an important role in
innate and adaptive immunity, which is one of the most important factors to regulate
T-cell, dendritic cell, and NK cell development and participate in some immune related
signal transduction pathways [46]. The signaling molecules involved in mediating IL-15-
induced B cell activation were identified that culminated in augmenting IgM response [47].
Meanwhile, as the systemic immunoglobulin, IgM is not only the major antibody of primary
response but also a vital part of the adaptive immune response of fish [48]. Hypoxia-
inducible factor (HIF) can induce apoptosis to release inflammatory mediators such as IL-1β
and TNF-α [49]. The expression of hepcidin was also shown to be positively regulated by
TGF-β /SMAD4 signals [50]. In addition, Caspase-3 is the key executory enzyme and final
effector of apoptosis [51]. The activation level of caspase-3 was surveyed to understand the
apoptosis status of the liver and spleen in largemouth bass during bacterial infection. In this
study, the expression levels of the above six immune-related genes of M. salmoides infected
by A. veronii were studied; the expression of IgM was significantly upregulated from 6 to
24 hpi in the liver and spleen, and the HIF-1α, Hep-1, and TGF-β1 expression levels in the
liver and spleen were also significantly upregulated after A. veronii infection. In addition,
the expression levels of IL-15 and Cas-3 in the liver were found to reach the maximum
at 12 hpi but were rapidly downregulated after 24 hpi. Our results revealed that these
immune-related genes were influenced by A. veronii and activated the host immune defense
system, which provides a theoretical basis of the M. salmoides and A. veronii interactions.
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In conclusion, the A. veronii GJL1 was identified as highly pathogenic to M. salmoides
in this study. The expression levels of the immune-related genes, including IgM, HIF-1α,
Hep-1, IL-15, TGF-β1, and Cas-3, of M. salmoides were significantly changed during the time
course of the immune response to the pathogenic A. veronii. Furthermore, these findings
provide theoretical support for prevention and control of the diseases caused by A. veronii
in aquaculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
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