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Abstract: Cholera remains a significant public health burden in many countries and regions of
the world, highlighting the need for a deeper understanding of the mechanisms associated with
its transmission, spread, and control. Mathematical modeling offers a valuable research tool to
investigate cholera dynamics and explore effective intervention strategies. In this article, we provide
a review of the current state in the modeling studies of cholera. Starting from an introduction of
basic cholera transmission models and their applications, we survey model extensions in several
directions that include spatial and temporal heterogeneities, effects of disease control, impacts of
human behavior, and multi-scale infection dynamics. We discuss some challenges and opportunities
for future modeling efforts on cholera dynamics, and emphasize the importance of collaborations
between different modeling groups and different disciplines in advancing this research area.
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1. Introduction

Cholera is an infectious disease caused by the bacterium Vibrio cholerae (or, V. cholerae) [1].
The main sources of the pathogen are contaminated water and food. The infection can
spread rapidly in populations without safe drinking water and adequate sanitation and
hygiene, and those with limited medical resources [2]. The major symptom of cholera
is profuse watery diarrhea, which could result in rapid dehydration. Other symptoms
may include vomiting, extreme thirst, abdominal pain, kidney failure, and drop in blood
pressure. In the most severe cases, cholera can lead to death within days if not treated [3].

Although cholera is an old disease, with seven pandemics already recorded in human
history, the global burden of cholera remains high at present. This is largely due to lack of
access to basic drinking water and sanitation in many places of the world. It was estimated
that more than 2 billion people worldwide drink water from sources that may be faecally
contaminated, and 2.4 billion people do not have basic sanitation facilities, exposing them
to cholera and other waterborne infections [4]. From a report published in 2015 [5], it was
found that approximately 1.3 billion people were at risk for cholera in endemic countries
and regions, and about 1.3–4.0 million people were infected with cholera annually, including
an estimated 95,000 deaths. More recently, Yemen experienced the worst cholera outbreak
in modern history that started in late 2016 and peaked in 2017, with more than 2.5 million
cumulative cases reported as of November 2021 [6]. In October 2017, the World Health
Organization (WHO) launched a global strategy for ending cholera, with an aim of reducing
cholera deaths by 90% and eliminating cholera in 20 of the 47 countries currently affected
by the disease by 2030 [7]. Ultimately, the improvement of water, sanitation and hygiene
(WASH) infrastructure is the fundamental, long-term solution for cholera control [2].

Mathematical modeling for infectious diseases dates back to Bernoulli in the 18th
century [8], and has since become indispensable in epidemiological research [9]. Models
offer a powerful theoretical tool to understand infection and transmission mechanisms, to
predict future progression of epidemics, to compare different intervention strategies, and
to provide useful guidelines for outbreak management [10].
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Numerous mathematical models have been developed to study cholera dynamics. In
order to have an understanding of the volume of research activity in this area, we conducted
a simple search in October 2022 using Google Scholar for the number of cholera-modeling
studies published in the last 15 years (2008–2022). The search was based on the title of
any article containing the keyword “cholera” and at least one of the following keywords:
“mathematical”, “model”, “models”, “modeling”, “modelling”, and “dynamics”. The
records returned by Google Scholar were then individually screened, duplicates were
identified and removed, and those items not related to mathematical modeling were also
removed. The final search results were summarized in Figure 1. Our search was not meant
to be exhaustive, as it excluded those cholera-modeling studies that do not have one of
those aforementioned keywords in their titles and those that are not indexed by Google
Scholar. Nevertheless, even with this incomplete search, we have found almost 500 pieces
of modeling work for cholera published over the last 15 years, as shown in Figure 1. We
see a clear pattern that the number of articles for cholera modeling has been fast growing,
with an increase of more than 10 times from 2008 to 2021.

Figure 1. Number of published cholera-modeling studies by year. Search conducted in October 2022
based on Google Scholar.

Two excellent reviews of mathematical modeling for cholera were published in 2014
by Chao et al. [11] and Fung [12], both targeting the public health community, with a special
emphasis on modeling work devoted to the 2010 Haiti cholera outbreak. Eight years have
passed since the publication of these two reviews, and a large number of new modeling
studies for cholera have since appeared (see Figure 1). The main goal of the current article is
to review the state of the art in mathematical modeling studies for cholera that include both
the earlier development (before 2014) and the new progress (after 2014). A special effort is
made to survey a wide range of modeling techniques that have been employed for cholera
dynamics, including such topics as intrinsic bacterial growth, optimal control simulation,
within-host interaction, and multi-scale dynamics, which were not covered in the two earlier
reviews [11,12]. As such, it is hoped that the current review could reach a broader scientific
community that involves not only epidemiologists and public health professionals, but also
applied mathematicians, computational scientists, biologists, immunologists, and other
researchers and scholars who are interested in utilizing mathematical models to improve
the understanding of cholera dynamics.

This review will focus on mathematical models based on differential equations, includ-
ing both ordinary differential equations (ODEs) and partial differential equations (PDEs).
Such epidemic models are often referred to as compartmental models, which were intro-
duced almost 100 years ago [13] and which still take over the vast majority of modeling
studies for infectious diseases, cholera in particular. Starting from an overview of basic
cholera transmission models and their applications, model extensions in several directions
are surveyed that include spatial and temporal heterogeneities, effects of disease control,
impacts of human behavior, and multi-scale infection dynamics. Although the emphasis
of this review is the modeling of cholera, the various types of mathematical models and
techniques discussed in this article can be applied to many other infectious diseases.
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2. Basic Transmission Dynamics

The first mathematical model for cholera dynamics was proposed by Capasso and
Paveri-Fontana [14], based on two simple equations for the infected individuals and free-
living pathogens, to study the 1973 cholera epidemic in the Mediterranean region. Follow-
ing this seminal work, many mathematical models were proposed for cholera transmission
in homogeneous populations and environments. These models typically involve at least
four compartments that include the numbers of the susceptible, infected, and recovered
individuals, commonly denoted by S, I, and R, respectively, and the concentration of the
pathogenic bacterium V. cholerae in the aquatic environment, commonly denoted by B.
More sophisticated models, such as those reviewed in Sections 3–6, generally build upon
such basic transmission dynamics models.

2.1. A Few Examples of Cholera Models

A notable extension from the model of Capasso and Paveri-Fontana [14] was made by
Codeço in 2001 [15], where the bacterial concentration in the water supply was incorporated
into an SIR model to form a combined human-environment epidemiological system. The
details of this model are presented in Tables 1 and 2, with some notations slightly different
from those in the original formulation of [15]. The incidence, which determines the rate of
new infection, is represented by a Michaelis-Menten type functional response [16], where
the half saturation rate κ refers to the infectious dose in water sufficient to produce infection
in 50% of those exposed. The existence of such a dose-response relation is supported by
experimental evidence that the frequency and severity of cholera infection were correlated
with inoculum [17]. Only the environment-to-human transmission pathway is considered
in this model, which is also referred to as the indirect transmission route, in contrast to the
more familiar human-to-human (or, direct) transmission route. Disease-induced mortality
is not included in this model (and most other cholera transmission models), given that the
case fatality rate for cholera is lower than 1% in general [18]. However, a cholera model can
be easily modified to account for disease-induced deaths in a particular epidemic scenario.

Using a nonlinear incidence similar to that in Codeço’s model, Hartley et al. [19]
in 2006 incorporated a hyper-infectious stage of V. cholerae and developed a new cholera
transmission model. They introduced two pathogen compartments, BL and BH , to denote
the lower and hyper infective stages of V. cholerae, respectively (see Tables 1 and 2). The
emphasis of the “explosive” infectivity of V. cholerae was based on laboratory measurements
that freshly shed V. cholerae from human intestines outcompeted other V. cholerae by as
much as 700-fold for the first few hours in the environment [20,21].

Mukandavire et al. [22] proposed a model with both the indirect and direct transmis-
sion routes to estimate the reproduction number for the 2008–2009 cholera outbreak in
Zimbabwe. The incidence in this model consists of two parts: one is the environment-to-
human transmission which is again represented by a Michaelis-Menten functional response
form, and the other is the human-to-human transmission which is represented by a standard
bilinear form (see Tables 1 and 2).

The basic reproduction number, commonly denoted by R0, is frequently used in
epidemic studies to measure the infection risk. It is defined as the average number of
secondary infections that occur when one infective is introduced into a completely suscep-
tible host population [10,23]. The next-generation matrix technique described in [24] is
a standard mathematical approach to compute the basic reproduction numberR0. With
this approach, the basic reproduction number for each of the three cholera models can be
derived, and the results are listed in Table 1. For example, R0 = Nξβ/κδ(γ + µ) for the
model of Codeço [15], where the term ξβ/κδ represents the (normalized) unit transmission
rate from the environmental pathogen to the human host, 1/(γ+ µ) represents the expected
time of infection, and the multiplication of these two terms with the human population size
N gives the expected number of secondary infections during one generation period. The
basic reproduction number for the model of Hartley et al. [19] consists of two parts that
represent, respectively, the contributions from the hyper-infective and lower-infective vib-
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rios. Meanwhile, the basic reproduction number for the model of Mukandavire et al. [22] is
shaped by both the environment-to-human and human-to-human transmission pathways.

Table 1. Examples of basic cholera transmission models: Codeço [15], Hartley et al. [19], and
Mukandavire et al. [22]. The prime symbol ′ denotes the derivative with respect to time.

Model Mathematical Formulation Basic Reproduction Number

[15]

S′ = µN − βSB/(κ + B)− µS

I′ = βSB/(κ + B)− (γ + µ)I

R′ = γI − µR

B′ = ξ I − δB

Nξβ
κδ(γ+µ)

[19]

S′ = µN − βLSBL/(κL + BL)− βHSBH/(κH + BH)− µS

I′ = βLSBL/(κL + BL) + βHSBH/(κH + BH)− (γ + µ)I

R′ = γI − µR

B′H = ξ I − χBH

B′L = χBH − δBL

Nξ
γ+µ

(
βH

κH χ +
βL
κLδ

)

[22]

S′ = µN − βeSB(κ + B)− βhSI − µS

I′ = βeSB/(κ + B) + βhSI − (γ + µ)I

R′ = γI − µR

B′ = ξ I − δB

N
κδ(γ+µ)

(
ξβe + κδβh

)

Table 2. Parameters for the basic cholera transmission models presented in Table 1. For the models
of Hartley et al. [19] and Mukandavire et al. [22], only those parameters that do not appear in the
model of Codeço [15] are listed.

Model Parameter & Definition

[15]

N Human population size
µ Natural birth and death rate for humans
β Contact rate with V. cholerae in the environment
κ Half saturation rate for V. cholerae
γ Recovery rate for infected people
ξ Rate of contribution from an infected person to V. cholerae in the environment
δ Removal rate of V. cholerae in the environment

[19]

βL Contact rate with lower-infectious V. cholerae in the environment
κL Half saturation rate for lower-infectious V. cholerae
βH Contact rate with hyper-infectious V. cholerae in the environment
κH Half saturation rate for hyper-infectious V. cholerae
χ Rate of decay for V. cholerae from hyper-infectivity to lower-infectivity

[22]
βe Contact rate with V. cholerae from the environment-to-human pathway
βh Contact rate with V. cholerae from the human-to-human pathway

There are quite a few other mathematical models developed for cholera transmission
in a homogeneous population. For example, Tien and Earn [25] proposed a waterborne
infection model that also includes dual (environment-to-human and human-to-human)
transmission pathways. A bilinear incidence was employed for each transmission route,
and no saturation effect was considered in this work. Jensen et al. [26] published a
model with an emphasis on how lytic bacteriophage specific for V. cholerae impacts cholera
outbreaks. A strongly nonlinear incidence form was utilized in this model, and a nonlinear
growth for V. cholerae in the environment was considered. A more general modeling
framework was developed in [27], which allows various representations for the force of
infection resulting from environment-human and human–human interactions, and for the
bacterial dynamics in the environment. Many published cholera models (such as those
in [15,19,22,25,28]) can be included in this framework as special cases.
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Most of these cholera transmission models employ the standard compartments of the
susceptible (S), the infected (I), and the recovered (R) to describe the flow of infection in a
human population. The underlying assumption is that an individual infected with cholera
becomes immediately infectious. In reality, there is typically a short incubation period for
cholera infection. A systematic review [29] estimated that the median incubation period of
cholera was 1.4 days. Mathematical models can incorporate the impact of the incubation
period by adding an exposed (E) compartment, and such models can possibly improve the
accuracy of predictions for the transmission and spread of cholera [30,31]. In addition, we
refer to [32] for detailed and insightful discussion regarding potential issues such as model
misspecification and parameter uncertainty related to some basic cholera models.

2.2. Transmission Routes

Most of the earlier cholera models (e.g., [15,19,26,28,33]) considered only the indirect,
environment-to-human transmission route. In particular, the model of Hartley et al. [19] in-
troduced a hyper-infectious stage of V. cholerae to represent the freshly shed pathogen, which
was well supported by experimental findings [20]. As pointed out by Pascual et al. [34];
however, the role of the hyper-infectious stage of V. cholerae implicitly highlights the impor-
tance of human–human interaction in a short time frame following the onset of symptoms
(typically within 24 h). This is especially relevant for the households of infected individuals,
where high secondary attack rates are often observed [35]. For example, the hands of an
infected individual may be contaminated by freshly shed vibrios. When this person uses
dirty hands to contact other people (shaking hands, hugging, etc.) or to prepare food
for members of the household, the infection can be easily transmitted due to the high
infectivity of the vibrios at this stage. In this regard, the indirect incidence term based
on the hyper-infective bacterial stage in the model of Hartley et al. may be represented,
perhaps equivalently, by the human-to-human transmission pathway that corresponds to
the direct incidence term in the model of Mukandavire et al. [22] as well as those in other
models [25,27,36].

These two modeling perspectives, i.e., the incorporation of the hyper-infectious stage of
V. cholerae through the environment-to-human transmission route and the use of the human-
to-human transmission pathway, have both been well known to the cholera-modeling
community in recent years. In general, it may be difficult to assess which one is better than
the other. The choice between these two modeling approaches appear to mostly depend on
the specific purpose of a cholera model and possible invention methods considered there.
We refer to the reviews [11,12] for additional discussion regarding this point.

2.3. Intrinsic Bacterial Dynamics

The majority of the basic cholera transmission models employed a simple represen-
tation of the bacterial dynamics in the environment; see, e.g., the equation for B in the
models listed in Table 1. Two linear terms were typically involved to describe the rate of
change for the environmental vibrios, with the positive term representing the contribution
from infected people through shedding, and the negative term representing the natural
removal of the bacteria. The underlying assumption, related to an early theory in cholera
ecology [37], was that the vibrios would not be able to sustain themselves in the environ-
ment without the human contribution (e.g., shedding from infected individuals and inflow
from contaminated sewage). This assumption allowed a simplification in the development,
analysis, and implementation of these cholera models. However, even with such simplified
models, it was found that there was large uncertainty associated with the parameterization
of the bacterial dynamics, particular for the lifespan of V. cholerae in the water supply [12,32].
In fact, recent ecological studies [38–41] have provided strong evidence that V. cholerae can
independently survive and multiply in various aquatic environments, including freshwater,
estuaries, and seawater.

Several mathematical models have incorporated nontrivial, intrinsic bacterial dy-
namics into the study of cholera transmission [26,27,42,43]. In particular, an analysis was



Microorganisms 2022, 10, 2358 6 of 25

conducted in [43] for two types of nonlinear bacterial dynamics: one for logistic growth,
and the other for cubic growth with possible Allee effects. The logistic growth model fol-
lows regular threshold dynamics, similar to those observed from previous cholera models
based on linear bacterial dynamics: when R0 < 1, the disease will be eradicated, char-
acterized by a stable disease-free equilibrium; whenR0 > 1, the disease will persist and
become endemic, characterized by the instability of the disease-free equilibrium and the
appearance of a stable endemic equilibrium. Mathematically, this threshold behavior is
known as a forward bifurcation, depicted in Figure 2a. In contrast, the model with Allee
effects exhibits very rich dynamics, including the existence of multiple endemic states when
R0 < 1, as illustrated in Figure 2b, and when R0 > 1, as illustrated in Figure 2c. These
two types of dynamical behaviors are referred to as backward bifurcation and forward
hysteresis, respectively. Unlike the forward bifurcation, where a reduction of R0 below
unity would lead to disease eradication, these two scenarios indicate potential challenges
in the control of cholera outbreaks. For example, when a backward bifurcation occurs,
there exist both stable and unstable branches of positive endemic equilibria, an indicator
for disease persistence, in the region R0 < 1. Hence, simply reducing R0 below unity
would not be sufficient to eliminate the infection, and stronger control measures have to
be implemented (so thatR0 can be pushed to the small region free of positive equilibria)
to contain the epidemic and eradicate the disease. More discussion for the backward
bifurcation related to cholera dynamics can be found in [44,45]. Additionally, a forward
hysteresis is often accompanied by a backward bifurcation, though not shown in Figure 2c,
which could lead to a potentially catastrophic epidemic characterized by a rapid increase
from low prevalence to high prevalence.

Although not as extensively discussed as for animal populations, Allee effects in pop-
ulations of microorganisms such as bacteria have been reported in several studies [46–49].
Thus, the theoretical study conducted in [43] could be practically relevant in terms of
cholera prevention and intervention, especially for control measures (such as water san-
itation) that target the reduction and removal of V. cholerae in the environment. Further
development of mathematical models for cholera dynamics along this direction would
benefit from biological and ecological studies focused on detailed growth patterns of V.
cholerae under various environmental conditions.
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Figure 2. Three different types of bifurcation behaviors: (a) forward bifurcation; (b) backward
bifurcation; (c) forward hysteresis. Solid and dashed lines represent stable and unstable equilibria,
respectively. The horizontal axes represent the disease-free equilibria, and the lines above the
horizontal axes represent the endemic equilibria.

2.4. Real-World Applications

A number of modeling studies have been conducted for real-world cholera outbreaks
using data reported by government agencies and public health administrations. Many of
these studies utilized relatively simple cholera models that belong to the basic transmission
models discussed earlier in this article.

Most of these application studies were concerned with the Haiti cholera outbreak
during 2010–2012. For example, Abrams et al. [50] conducted real-time modeling for the
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Haiti cholera outbreak and projected the cases and hospitalizations during the first year of
the outbreak based on available surveillance data. Their model included two categories
of recovered individuals that represent the effect of waning immunity. Andrews and
Basu [51] constructed a mathematical model that considered environmental reservoirs
for both hyper-infectious and lower-infectious vibrios and included both symptomatic
and asymptomatic infections. The model was then calibrated using hospitalization and
mortality data reported by the Haitian Ministry of Health. Chao et al. [30] developed a
transmission model to assess different vaccination strategies for epidemic cholera in Haiti.
Tuite et al. [52] applied a model with both direct and indirect transmission pathways to
investigate the infection risk of each administrative department in Haiti during the cholera
outbreak, and generated reproduction numbers ranging from 2.06 to 2.78 for different
regions of Haiti. Eisenberg et al. [53] modeled the relationship between rainfall and the
Haiti cholera outbreak, and found that increased rainfall was associated with increased
cholera risk. Some other modeling studies for the Haiti cholera outbreak include [54–61].

In addition, modeling studies for the 2008–2009 Zimbabwe cholera outbreak in-
clude [22,62,63], and those for the Yemen cholera outbreak starting from 2016 include [64–67].
Modeling studies for cholera outbreaks in other countries and regions include, for exam-
ple, [68–71].

3. Spatial and Temporal Heterogeneities
3.1. Multi-Group and Multi-Patch Models

Transmission of cholera, like that of many other infectious diseases, is complicated by
spatial heterogeneity that involves different ecological and geographical environments, popu-
lation sizes, mobility and contact patterns, and socio-economic and demographic structures.

Mukandavire et al. [22] performed a modeling study for the 2008–2009 Zimbabwe
cholera outbreak, where basic reproduction numbers were estimated and relative contribu-
tions from direct and indirect transmission routes were compared for the 10 provinces in
Zimbabwe. The results were highly heterogeneous, an indication that the underlying trans-
mission pattern varied substantially throughout the country. Similarly, the study in [52]
generated a range of reproduction numbers for different administrative departments in
Haiti during the 2010 cholera outbreak. In addition, an investigation of the Yemen cholera
outbreak during 2016–2017 [64] revealed that the transmission modes and infection risk
differ significantly in the northwest, southwest, and east regions of the country. Although
relatively simple mathematical models were used in these studies, the findings confirmed
that spatial heterogeneity plays an important role in cholera transmission and spread.
Consequently, there is a need for more detailed quantitative investigation regarding the
spatial effects, especially the movement of human hosts and the dispersal of pathogenic
vibrios, on cholera epidemics and endemicity.

Meta-population models [72,73] have been commonly used in epidemiological studies
to incorporate spatial heterogeneity from the hosts and environments. A standard approach
is based on multi-group modeling [74–76], where the entire population is divided into a
number of groups that possess different characteristics. Each group is connected to other
groups, and infection can take place between individuals within the same group or from
different groups. The multi-group formulation is analogous to the Lagrangian approach
in fluid dynamics since it labels individual hosts of different groups and explicitly tracks
disease transmission for individuals [77].

A multi-group cholera model was proposed and analyzed in [78] which considered
only the indirect, environment-to-human transmission route. The authors in [79] extended
the homogeneous cholera model presented in [27] to a multi-group setting, and found
that the overall infection risk for the entire population represents a combination of the
transmission risk for each individual group. Another multi-group model, applicable to
cholera transmission, was proposed in [80] with both direction and indirect transmission
pathways represented in a general incidence form. Other cholera-modeling studies based
on the multi-group framework include, for example, [52,81,82].
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Another popular meta-population approach, called multi-patch modeling [83–86],
divides the entire population into a set of patches, where each patch is often associated with
a different location. This method describes the movement of the hosts and/or pathogens
between patches, with a focus on the pathogen transmission within each patch. This type
of formulation is related to the Eulerian approach in fluid dynamics as it labels locations
and explicitly tracks disease transmission for each location.

A multi-patch cholera model was developed in [87] where the movement of the
pathogenic bacteria between different patches was considered and only the indirect trans-
mission route was included. This modeling framework was subsequently extended to
predict the spatial evolution of the Haiti cholera outbreak [54,55]. Another modeling study
for Haiti cholera outbreak was performed in [52], where the between-patch epidemic spread
was based on a gravity model that depends on the population size and distance between re-
gional centroids. In another multi-patch model [88], the movement of both the human hosts
and environmental vibrios was incorporated, and both the direct and indirect transmission
pathways were included. A sharp threshold condition was established atR0 = 1 for the
entire system to distinguish disease extinction (R0 < 1) and disease persistence (R0 > 1).
A cholera model that couples the multi-patch structure with a time-periodic environment
was proposed and analyzed in [89]. Some other cholera models were proposed in [90,91]
where the human hosts from different patches do not directly communicate with each other
and, instead, are connected through a common environmental water reservoir. Their model
structure can be regarded as a star network where the hub (or, center) corresponds to the
shared water source and the leaves (or, vertices) correspond to the host patches. The basic
reproduction number is determined by the direct transmission in each patch and the total
indirect transmission through the water source from all patches.

In most of these studies, it was found that the basic reproduction number and the
outbreak size would be higher for the coupled meta-population system than those for the
disconnected, individual groups or patches, indicating that increased spatial heterogeneity
may lead to increased disease transmission risk. In some cases, it was also found that the
connection between population groups or patches would allow cholera to persist, whereas
such disease persistence may not be possible in any isolated individual population [90].

3.2. Reaction-Diffusion PDE Models

Partial differential equations (PDEs) of the reaction–diffusion type are extensively
used in epidemiological modeling (e.g., [92–97]). Fick’s law [98] can be generally applied
to construct a reaction–diffusion model. Often, based on an epidemic system of ordinary
differential equations (ODEs), diffusion terms can be added to model the spatial spread
of the disease. A diffusion process represents random movement and dispersal of hosts
and/or pathogens over a spatial domain, normally without a directional preference. The
underlying ODE model typically describes homogeneous dynamics of disease transmis-
sion, whereas the reaction–diffusion PDE model incorporates spatial movement, generally
associated with location-dependent diffusion rates, into the epidemiological process and
emphasizes the spatial heterogeneity of population dynamics [99,100] related to disease
transmission and spread.

A reaction–diffusion model, derived from the continuous limit of a multi-patch ODE
system, was presented in [87] to account for the epidemic spreading of cholera. The spatial
dispersal of V. cholerae was modeled as a diffusion process, and only the environment-to-
human transmission route was considered. This model was extended in [101] to include
the movement of human hosts. Another cholera model was developed in [102] where the
human hosts undergo a diffusion process while the vibrios remain stationary. In [42], a PDE
cholera model was proposed that represents the spatial diffusion of both the pathogens
and human hosts, while incorporating both the direct and indirect transmission routes.
This work was later extended in [103] to include a convection process for the pathogenic
bacteria, such as the movement of the vibrios from the upstream to the downstream along
a river. These cholera models and some other extensions were mathematically analyzed
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in a rigorous way in [104–106]. Additionally, the work in [107] incorporated seasonal
fluctuation into the spatiotemporal dynamics of cholera.

For all the aforementioned PDE-based cholera studies, the spatial domain is restricted
to either a one-dimensional (1D) space or a symmetric two-dimensional (2D) space that
is equivalent to a 1D domain. These simplified, 1D reaction–diffusion models may be
practically meaningful when the spread of cholera is associated with a fluvial system.
For example, the suspected source of the 2010–2012 Haiti cholera outbreak outbreak was
Artibonite River, the longest and most important river in Haiti, and the initial spread of the
disease was believed to follow the river [108].

More sophisticated PDE models of the reaction–diffusion type that involve multi-
dimensional spatial domains have also been developed for cholera dynamics; see,
e.g., [109–112]. These modeling studies have focused on the mathematical analysis of
the PDE systems.

All these PDE studies contribute to the body of knowledge in mathematical modeling
of cholera. On the other hand, most of these studies are intentionally theoretical, and it
remains a challenge to apply such reaction–diffusion models to fit data from real-world
cholera outbreaks. Particularly, the diffusion coefficients, which generally take different
values for different population groups and spatial locations, are difficult to calibrate. Thus
far, there is very little published work regarding the outbreak simulation and practical
data fitting of reaction–diffusion cholera models, even for the simplified cases with 1D
spatial domains and constant diffusion coefficients. The challenge associated with reaction–
diffusion modeling is not only for cholera, but also for many other infectious diseases.
More efforts along this direction are needed to facilitate the real-world applications of
these PDE epidemic models and to make such models better appreciated by the public
health community.

3.3. Seasonal Variation and Climate Change

The transmission of cholera is inherently related to the environment. Many environ-
mental factors, such as floods, droughts, precipitations, and water temperature and salinity,
are seasonal and can significantly impact cholera dynamics [113–116]. For example, it
has been observed that cholera becomes a seasonal disease in many endemic places and
infection peaks typically occur in the rainy or monsoon season on an annual basis [117,118].
Furthermore, historical cholera data indicate that climate change, which leads to rises in
sea levels and global temperatures, may influence the temporal fluctuations of cholera and
increase the frequency and duration of cholera outbreaks [119,120].

Most cholera models based on ODE systems utilize constant parameters for simplicity,
and these models may not be able to reflect the seasonal and climatic behavior of cholera
dynamics. To overcome this difficulty, non-autonomous ODE systems with time-dependent
parameters can be used. In particular, temporal periodicity may be applied to the contact
rate, recovery rate, and pathogen growth rate, among other parameters, to represent regular
seasonal oscillations of the infection dynamics.

Simple numerical tests were conducted in [15] for three hypothetic scenarios with
periodic model parameters. A more general cholera model [121] incorporated periodicity
into both the incidence and pathogen functions to represent seasonal oscillations in a generic
manner. This model was extended in [122] to a stochastic system based on a Markov process,
where it was shown that the probability of a cholera outbreak is periodic in time. Another
study [36] discussed the intra-annual seasonality and variability of cholera dynamics based
on a mathematical model that incorporates both asymptomatic and symptomatic infections.
The authors of [123] studied the seasonality of cholera dynamics and the fluctuations of
the aquatic reservoir in endemic areas driven by rainfall and temperature, and fitted their
model to the historical cholera dataset of the Bengal region in the Indian subcontinent.
Another cholera study [124] incorporated seasonal environmental drivers, including river
flow, temperature and chlorophyll concentration, into a spatially explicit model and showed
that such drivers may generate dual-peak cholera prevalence patterns. A mathematical
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model presented in [125] showed that climate variability played a vital role in modulating
the size of cholera outbreaks in Bangladesh. In addition, the authors in [126] reviewed
several mathematical models and provided quantitative evidence for the influence of
climate change on cholera dynamics.

In general, the seasonal patterns and temporal variations of cholera epidemics and
endemicity are complex, involving the interplay between many environmental and climatic
factors. Mathematical models based on periodic systems (i.e., systems of differential
equations with time-periodic parameters) are capable of simulating and predicting regular
seasonal oscillations of cholera outbreaks, but these may not represent the full picture of the
intra- and inter-annual dynamics of cholera. Particularly, the effects of climate change are
typically not periodic and thus cannot be resolved through purely periodic models. Instead,
the use of time-dependent but non-periodic model parameters would be more appropriate
in this case, though the models may become difficult to analyze and may involve non-trivial
data fitting procedures to calibrate the parameters. Furthermore, as pointed out in [123],
stochasticity played an important role in the occurrence of some abnormally large cholera
outbreaks in the Bengal region, while regularity of inter-annual cholera dynamics was
found in other times (with periodicity roughly corresponding to the dominant frequency of
El Niño). This indicates that a combination of periodicity and stochasticity into a single
modeling framework may better explain the various environmental and climatic drivers
and provide deeper insight into the temporal dynamics of cholera.

4. Effects of Disease Control

The frequent occurrence of cholera outbreaks and their increasing duration and sever-
ity underscore the importance of effective cholera control. Common prevention and
intervention methods for cholera include the rehydration therapy, antibiotic treatment,
water sanitation, and vaccination. Oral rehydration solution with a mix of salt, sugar, and
clean water is widely used to treat individuals with minor or moderate infections. This
basic therapy has been credited for preventing tens of millions of deaths since they were
formally endorsed by WHO and for reducing the average cholera case fatality rates below
1% [5,18]. Antibiotics such as doxycycline, ciprofloxacin, and azithromycin are recom-
mended for severe cases where hospitalization is typically required. Antibiotic therapy
may reduce the duration of symptoms, the volume of diarrhea, and the length of time
that the vibrios are excreted in the feces. A significant concern, however, is that antibiotic
therapy frequently leads to antimicrobial resistance, which may complicate the treatment of
cholera and may even result in higher rates of secondary infection [127]. Water sanitation
based on chlorination, filtering and other cleaning/disinfecting methods is an effective way
to improve the quality of drinking water and to reduce the concentration of the pathogens
in the environment, which is crucial for the prevention of cholera and other waterborne
infections in the long run. The impact of this approach, though, may be limited in an
emergency setting associated with a disease outbreak. In addition, with the introduction of
low-cost oral vaccines based on live attenuated or killed whole-cells, vaccination has been
an effective and affordable means to fight cholera, with a series of trials and campaigns
successfully completed in various endemic places during the last few decades [127,128].
Vaccination in epidemic and emergency situations was also conditionally recommended
by WHO [129], and was successfully implemented during the 2010–2012 Haiti cholera
outbreak [130].

A number of mathematical models have been published to quantify the effects of these
control measures on the transmission and spread of cholera. For example, a system of differ-
ential equations was constructed in [131] that incorporated antibiotic treatment, vaccination
and water sanitation into cholera transmission dynamics. An analysis for cost-effective
strategies to curb cholera transmission in epidemic settings was also conducted. Similarly,
the work in [132] included vaccination and water disinfection in a cholera transmission
model. The cholera model proposed in [22] was applied to each of the 10 provinces in
Zimbabwe to estimate the minimal vaccination coverage required to contain the 2008–2009
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cholera outbreak. The studies in [30,51] designed mathematical models to simulate the
epidemic trajectories for the Haiti cholera outbreak in 2010 and estimate the impact of
clean water, vaccination and enhanced antibiotic distribution programs. In [133,134], the
authors considered the effects of quarantine on the transmission dynamics of cholera.
Another modeling study was conducted in [135] that incorporated the impact of disease
education programs into the transmission rates and the effects of water sanitation into
the environmental pathogen dynamics. Additionally, the models proposed in [136,137]
incorporated age-structures and were focused on the impact of vaccination, with a rigorous
mathematical analysis.

Practically, public health resources are limited, and not all the disease control strategies
are feasible in a specific location within a certain timeframe. Meanwhile, the implementa-
tion of any control measures would incur expenses. An optimal control study [138], which
takes into account the costs of cholera control, seeks a cost-effective solution to manage a
cholera outbreak. The results could provide useful guidelines for effectively containing a
cholera outbreak while reducing the total costs of the disease management.

Most optimal control studies for cholera employ ODE models, based on Pontryagin’s
Maximum/Minimum Principle [139] and other standard optimal control theories [140].
A general procedure for such a study starts with a clearly defined goal of optimal con-
trol, mathematically represented by an objective functional, which is often formulated
in such a way as to minimize the number of infected individuals and the costs of dis-
ease control measures in a prescribed time interval. A Hamiltonian is then constructed
using the adjoint variables, which are associated with those state variables such as S, I,
R and B, and the objective functional. The problem of minimizing the objective func-
tional is then transformed into a problem of minimizing the Hamiltonian with respect
to the control. From there, one can normally derive the adjoint system (with final-time
conditions) and the characterization of the control variables. Together with the original
epidemic system (referred to as the state system), they constitute a complete optimal control
model. A popular numerical approach to solve such a coupled, nonlinear control system
is the forward-backward sweep method [138], which involves an iterative process—at
each iteration, the state system is solved forward in time, then the adjoint system is
solved backward in time, and then the control variables are updated. Numerous optimal
control studies for cholera are based on these analytical and numerical techniques; see,
e.g., [33,66,131,135,141–144]. Meanwhile, some extensions to the optimal control of stochas-
tic cholera models have been made [145,146].

A few optimal control studies based on PDE models, especially age-structured PDE
systems, have also been published for cholera transmission dynamics [137,147–149]. These
studies typically involve deeper mathematical theory in developing the optimal control
models and require more computational efforts in finding the solutions.

Mathematical models incorporating cholera control can potentially better describe the
transmission and spread of cholera at the present age. In large cholera outbreaks, some
control measures are always implemented that would impact the transmission dynamics
and progression trajectory of cholera. The modeling studies can quantify and compare
different prevention and intervention strategies and evaluate their outcomes. Furthermore,
an optimal control study can theoretically predict which control strategy, or a combination
of several strategies, could achieve the best performance in balancing the effects and costs
of cholera outbreak management.

On the other hand, there are still several challenges in the practical applications of
these cholera control models toward policy development. For example, the parameters
associated with the interventions, such as the therapeutic treatment rate, vaccination rate,
and water sanitation rate, are generally time-dependent and accurate estimates of these
parameter values may be challenging. Meanwhile, data that link the strength of control
measures and the reduction of disease transmission are not always available, which may
hinder the quantification of the effects of disease control. For another example, an optimal
control study typically needs to represent the reduction of the prevalence and/or mortality
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in terms of some monetary value, and such a value may be difficult or even impossible to
assess in a practical situation. Furthermore, some of these cholera control studies should
be understood as hypothetical, and their potential of solving real-world problems has yet
to be utilized.

5. Impacts of Human Behavior

There is usually a two-way interaction between an epidemic and human behavior. A
disease outbreak would likely raise the awareness of the infection risk that often leads to
changes of population activity and social behavior. In return, behavioral changes could
play an important role in shaping the transmission pattern and epidemic progression [150].
When the prevalence level is high, at least some people would attempt to adjust their
routine schedules in work and travel and take necessary action to reduce contacts with
infected individuals so as to protect themselves and their families. They would also be
motivated to make changes in their social activities, such as practicing self-quarantine,
wearing masks, and adhering to social distancing, which would help to slow down the
transmission and spread of the infection.

Particularly, when cholera is concerned, people who are conscious of the infection risk
would possibly pay more attention to the hygiene and sanitation practice, such as washing
hands often with soap, properly treating disposals, and boiling or disinfecting water before
drinking. These people may also be willing to receive vaccination, and would likely
avoid contacts with infected individuals and contaminated water or food [151]. Currently,
the communication regarding an outbreak has gone far beyond the traditional sources such
as newspaper and television and radio stations. The advance of information technology
allows fast and up-to-date case reports from the internet and mobile networks, including
various social media and search engine sites, which could promptly motivate behavioral
changes from the general public in order to reduce the risk of infection. Consequently,
the disease transmission rate during an epidemic, cholera in particular, is typically time-
dependent and often inversely correlated to the disease prevalence. Hence, positive changes
of human behavior could contribute significantly to the control and possible eradication of
the disease [152,153].

There are an increasing number of epidemic modeling studies concerned with human
behavior (see, e.g., [154–157] and references therein). Specifically, several mathematical
models have focused on human behavior related to the transmission and spread of cholera.
In a cholera model proposed in [158], the impact of human behavior was incorporated
into the direct and indirect transmissions rates as well as the pathogen shedding rate from
the infectious hosts. The results showed that positive changes of human behavior can
reduce the risk of infection, decrease the epidemic size and endemic level, and reduce
the spatial spreading speeds of cholera. The authors in [159] proposed two models to
study human behavior associated with disease awareness programs and its impact on
cholera transmission dynamics, and found that these two models exhibit significantly
different dynamical properties. Their findings highlighted the importance of validating
key assumptions in the selection and implementation of practically meaningful cholera
models. The cholera model in [160] compared the effects of disease education and water
chlorination, and found that education is more effective than chlorination in decreasing
bacterial concentrations and reducing the number of cholera cases. Additional modeling
studies for human behavior and cholera dynamics include, among others [135,161,162].

Although these studies have generated very useful insight for the epidemiological im-
pact of human behavior, most of the findings remain theoretical with what-if scenarios and
have not been validated by real behavioral data or applied for decision making. Meanwhile,
there is currently an insufficient representation of the complex nature of human behavior,
which involves many different angles from social interaction, behavioral characteristics,
psychological effects, economic concerns, and population heterogeneity. In particular,
responses to interventions could vary significantly both within and between populations,
depending on factors such as cultural and religious circumstances, perceived infection
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risk, and health campaign coverage. How to accurately translate such complex behavioral
dynamics into disease modeling remains an open question. A deeper investigation in this
direction would require an integration of the behavioral, social, and economic processes
into next-generation epidemic models. Once developed, such models can potentially yield
a better understanding and more reliable prediction for the spread and progression of
cholera and many other infections. To that end, collaborations between mathematical
modelers, epidemiologists, and social and behavioral scientists would be essential.

6. Multi-Scale Dynamics
6.1. Within-Host Modeling

In contrast to the large number of published mathematical models that are concerned
with the transmission and spread of cholera at the population level, relatively few modeling
studies have been devoted to the bacterial dynamics of cholera inside the human body and
the related host–pathogen interaction.

Experimental findings indicate that cholera infection involves unique and complicated
within-host dynamics [163]. In particular, a virus, referred to as the cholera toxin phage
(CTXφ), plays a critical role in the pathogenesis of the bacterium V. cholerae inside the human
body. CTXφ is originally present as an integrated section of the genome of V. cholerae, and it
remains silent within V. cholerae in the natural aquatic environment. However, after the
vibrios enter the human body and reach the intestinal area, the viral particles within
some vibrios are activated. Through a horizontal gene transfer, the virus transduces the
vibrios ingested from the environment into another type of vibrios that have an infectivity
up to 700-fold increase [1,19,39]. The released virus may enter other vibrios, and such
bacterial–viral interaction leads to the production of a large amount of toxin causing
severe diarrhea.

A model for the within-host dynamics of cholera was proposed in [164] to describe
the bacterial–viral interaction that leads to the transformation of the vibrios ingested from
the environment (with lower infectivity) to hyper-infectious vibrios inside the human body.
A saturation-based response form was used to represent the within-host interaction. This
model was subsequently extended in [165] to include the innate immune response in the
bacterial–viral–immune interaction. It was found that the basic reproduction number of the
extended model is given byR0 = max{R1, R2, R3}, where R1 is the bacterial reproduction
number that measures the intrinsic growth rate of the highly infectious vibrios, R2 is
the viral reproduction number that quantifies the generation rate of CTXφ, and R3 is the
immune reproduction number that characterizes the generation rate of the immune cells.
The biological interpretation of this result is that the risk of developing cholera infection
inside the human body is determined collectively by the bacterial, viral and immune
reproduction rates, representing the interplay among these three critical components in
the within-host dynamics of cholera. Another within-host cholera model was proposed
in [166], where a bilinear incidence was employed to represent the interaction between the
bacterium, the virus, and the host immune response.

A limitation of these modeling studies is that only the effect of the innate host im-
munity is considered, which makes instantaneous responses against pathogens invading
the human body. On the other hand, the adaptive immune response also plays an impor-
tant role in the human immune system. The adaptive immunity kicks in with delayed
responses but often leads to more sustained protection of the human body. This process
may be mathematically represented by adding a time delay into the differential equations.
Meanwhile, many other issues related to the within-host dynamics of cholera, such as the
detailed interaction between the virus and the molecular components of the vibrios and
immune cells, the spatial structure and heterogeneity associated with different types of
cells, and the link between the cellular interaction and the tissue- and organ-level dynamics,
have not been addressed in current modeling studies. These could be interesting topics
for future model development, and several mathematical techniques for population dy-
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namics, such as multi-patch systems and reaction–diffusion PDEs, may be extended to
within-host modeling.

The transmission and spread of cholera depend on the infectiousness of individual
hosts, which in turn depends on pathogen load. Thus, the host–pathogen interaction
within the human body could have a significant impact on cholera transmission at the
population level. Additionally, after the highly infectious vibrios inside the human body
are shed out to the environment, they can stay at this hyper-infectious state for a period of
several hours, as discussed in Section 2. Individuals who contact such freshly shed vibrios
through contaminated water and food or through human–human interaction would more
likely be infected with cholera. In this regard, the within-host interaction constitutes an
essential part of cholera dynamics which demands further modeling efforts and deeper
quantitative investigation.

6.2. Coupled Within-Host and Between-Host Modeling

A holistic understanding of the infection dynamics of cholera requires both the
between-host transmission and the within-host interaction in a single modeling framework.
One complication, however, is that cholera dynamics involve environmental ecology, popu-
lation epidemiology, microbiology, and immunopathology that span several distinct time
scales, with the range from hours to years.

A multi-scale cholera model was first proposed in [167], where a two-way coupling
for the within-host and between-host dynamics was established. The results showed that
the infection risk of cholera is collectively shaped by the pathogen dynamics inside the
human body and the disease transmission at the population level. Meanwhile, by noting
that the within-host pathogen dynamics are on a faster scale with a typical range from
several hours to a few days, while the between-host disease transmission and spread are
on a slower scale with a duration ranging from months to years, an analysis based on
separation of time scales was conducted which allowed a more detailed examination into
the dynamical behavior at each level. One limitation of this study, however, is that the
within-host dynamics sub-model takes a simplistic form of a single differential equation
that describes the increased toxicity of the pathogen inside the human body.

Another cholera model [166] coupled the host–pathogen interaction, the between-host
transmission, and the environmental evolution of the vibrios at three different scales (fast,
intermediate, and slow), respectively. The dynamics at each scale make a contribution to
the overall disease risk. The within-host subsystem in this model involved the interaction
among the bacterium, the virus, and the host immune response. It was found that the basic
reproduction number of this multi-scale model represents the contributions from both the
human-to-human and the environment-to-human transmission routes, a result consistent
with those from the single-scale cholera transmission models (e.g., [22,25]).

An advantage of the aforementioned multi-scale cholera models is that they provide a
mutual (or, two-way) connection between the individual host–pathogen interaction and the
population-level disease transmission. The separation of time scales allows considerable
simplifications of the models so that it is possible to investigate the infection dynamics
at each scale in detail. A disadvantage of these models, however, is that they assume
individual hosts have the same internal state; i.e., these studies consider an “average”
individual and do not resolve the heterogeneity from person to person.

In [168], a multi-scale model of a different type was proposed for environmentally
transmitted diseases, with a particular application to cholera, based on the nested modeling
approach [169,170]. In this approach, the within-host and between-host dynamics are
coupled via the infection age of individuals. The transmission rates and other between-
host parameters explicitly depend on the individual pathogen load and immune strength.
Consequently, the disease transmission risk at the population level is dependent on the
within-host immunopathology. Although the information flow is unidirectional in the
nested model, the age-of-infection structure allows to incorporate the staged progression
nature of the disease at the population level, which helps to account for the different
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infection states among individuals and to examine their impact on the between-host disease
transmission and progression.

One interesting result of the modeling study in [168] is that the infection number at
the population level does not always monotonically increase with the pathogen load. For
example, Figure 3 shows the relationship between the infection number at the endemic
state and the bacterial growth rate inside the human body. As the bacterial growth rate
increases, the infection number first increases and reaches a peak, and then decreases
afterwards. Note that the pathogen load, though varied for different individual hosts, is
always positively correlated to the bacterial growth rate. An implication is that a decrease of
the pathogen load may not necessarily lead to a reduction of the population-level infection
in the long run, unless the bacterial growth rate can be pushed to a small neighborhood of
0 where a positive correlation exists between the two variables.

0 0.2 0.4 0.6 0.8 1

Bacterial growth rate

0

100

200

300

En
de

mi
c i

nfe
cti

on
 nu

mb
er

Figure 3. A non-monotone relationship between the infection number at the endemic state and the
bacterial growth rate inside the human body.

A limitation of the nested model in [168] is that the between-host dynamics do not have
any impact on the within-host dynamics. On the other hand, experimental studies such
as [17,163] indicate that the severity of cholera infection for an individual is correlated with
inoculum that may depend on different routes of transmission, and that the characteristics
of the environmental vibrios could affect the within-host pathogen evolution. Thus far, no
cholera models have been able to incorporate the two-way coupling for the between-host
and within-host dynamics, while adequately represent the complexity of the host–pathogen
interaction and the heterogeneity between individual infection states. This could be a
meaningful direction in future efforts of cholera modeling, and development of such
multi-scale models can strengthen the connection of cholera dynamics at different scales
and enable a more complete understanding of the disease. Additionally, a major challenge
at present for the practical application of multi-scale cholera models is the requirement
of different types of datasets, including both the population-level epidemiological data
and the individual-level immunological data, within the same framework. Hopefully,
with the rapid advances of data generation, acquisition and processing in medical science
and public health, and with the continuous improvement of multi-scale modeling and
fitting techniques, this obstacle will be overcome in the near future.

7. Conclusions and Discussion
7.1. Complexity of Mathematical Models

A large number of cholera-modeling studies have been published, ranging from
very basic models for transmission dynamics in homogeneous populations to highly
sophisticated models with spatiotemporal heterogeneities and/or with multiple scales.
Those studies based on complex models tend to focus more on the properties of the models,
generating qualitative results and contributing to theoretical understanding of the various
aspects of cholera dynamics. On the other hand, those studies that have been applied to
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actual cholera outbreaks are mostly based on simple models, such as the basic transmission
models reviewed in Section 2.

Simple models are relatively easy to construct, manipulate, and implement. They
typically require only a few parameters to be estimated, which makes it efficient for model
calibration with real data. This probably explains why those simple models are more
popular in the public heath community, especially for applications to real-world cholera
outbreaks. Such practice also applies to the modeling of many other infectious diseases.
Another important note is that mathematical models with different levels of complexity
might fit the data equally well. For example, as pointed out in [11], a simple SIR model
can sometimes produce the dynamics of a cholera outbreak nearly indistinguishable from
those models that include the environment-to-human transmission route.

Nevertheless, this does not mean that more sophisticated cholera models should not
be used in practical applications. The infection and transmission of cholera involve many
spatial and temporal factors at different scales. Basic transmission models may not be
able to represent the highly complex nature of cholera dynamics, despite the fact that they
may fit the case data well. Data fitting is certainly a critical part of model application,
but it is by no means the sole criterion for model selection. When studying a cholera
epidemic, several intervention strategies often need to be considered that target different
sources and routes of the pathogen. Models should include all the possible transmission
pathways in order to compare the intervention methods and to identify the control of which
transmission mode would yield the best outcome. When studying cholera in an endemic
scenario that involves a large population over a long period of time, different prevention
and intervention methods may be needed for distinct subpopulations, or the same control
method with varied strengths may be needed for a population group at different times.
Models should incorporate the spatial and temporal heterogeneities to manage the disease
in a strategic and cost-effective way. In order to study precision medicine for infectious
disease control [171], particularly for cholera management, models should connect the
within-host and between-host dynamics and investigate the relationship between bacterial
evolution, individual pathogen load, and population-level disease transmission in a multi-
scale setting. Additionally, multi-purpose and multi-faceted cholera models, with their
parameters tunable by different datasets under a variety of scenarios, can be very helpful
to researchers and administrators in public heath.

Practical implementation of complex models often requires nontrivial, possibly inno-
vative, data fitting techniques. Model validation becomes especially important and should
always be an indispensable part in model development and application. Identifiability
analysis [172,173] and sensitivity analysis [174] should be conducted to better understand
the properties of the parameters when applying a model to real data. Advanced numerical
methods may also be needed to handle complex models, such as those based on strongly
nonlinear PDEs or multi-scale ODEs. Fortunately, the rapid growth in computing power
allows the implementation and application of highly complex infectious disease mod-
els through computationally intensive approaches using large-scale simulation [175,176].
Meanwhile, the continuous improvement in the quantity and quality of epidemic data, es-
pecially the increased granularity of surveillance data in time and space, and the availability
of high-resolution data from many related fields such as ecology, immunology, and social
science, would promote the real-world applications of complex models.

7.2. Other Modeling Studies for Cholera

Due to the large volume of the published work in this research area, it is not possible
to survey all the cholera models and related mathematical techniques. Some differential
equation-based modeling categories not reviewed in this article include, but are not lim-
ited to, age-structured cholera models [136,177,178], multi-stage cholera models [179,180],
multi-strain cholera models [181,182], stochastic cholera models [122,183–185], cholera
models with time delay [186–188], and cholera models with Hopf bifurcation [161,189,190].
Interested readers may refer to these studies and references therein.
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In addition to differential equations, several other types of modeling techniques
have been applied to the transmission and spread of cholera. For example, agent-based
modeling was conducted in [191,192], discrete-time models were developed in [193,194],
machine learning methods were utilized in [195–199], and statistical analysis was applied
in [200,201]. These methods complement the standard epidemic modeling approach based
on systems of differential equations and enrich the modeling studies for cholera dynamics.

7.3. Future Perspectives

Despite a myriad of clinical and theoretical studies and tremendous investment in
public health management, cholera is persistent and remains a significant burden in many
countries and regions throughout the world. Mathematical models can improve our
qualitative and quantitative understanding of cholera, thus contributing to the efforts
toward filling the gap between our current knowledge and the complex mechanisms
involved in the infection, transmission, spread, and control of cholera.

Remarkable progress has been made in the mathematical modeling of cholera over
the last few decades. However, there are still a number of challenges that remain in this
research area, including, but not limited to, prediction of possible occurrence of the next
large outbreak, forecasting of epidemic progression beyond a short term, quantification
of intertwined seasonal and climatic impacts on disease endemicity, characterization of
contact structure and movement patterns in heterogeneous populations, representation of
complex human behavior in social networks, cost-effective health management strategies in
the presence of spatiotemporal heterogeneities, efficient disease control spanning multiple
temporal and spatial scales, and precision medicine in the context of a large population.
Some of these modeling challenges apply not only to cholera, but also to a wide range of
infectious diseases.

To address these challenges and to advance the modeling studies for cholera, tradi-
tional mechanistic models, such as those based on differential equations, will benefit from
new insights introduced by other emerging modeling techniques. In particular, with the
exponential growth of data in recent years, machine learning methods have become in-
creasingly popular in epidemiology [202], and they offer another powerful tool to study
cholera dynamics from a data-driven perspective. On the other hand, mechanistic models
may provide useful guidelines for the development of more efficient, consistent, and robust
learning algorithms in epidemic applications and can be used as a validating framework for
machine learning [203]. A new modeling paradigm for cholera may be established by inte-
grating classical epidemic models and machine learning techniques, which, if successful,
can potentially lead to new breakthrough in the study of cholera dynamics.

Another useful approach is based on ensemble modeling and forecasting [204], where
multiple models, often constructed by independent research groups, are implemented
and their predictions are combined to guide decision making. The ensemble framework
allows different types of models (ODEs, PDEs, stochastic systems, agent-based models,
machine learning techniques, and others), based on different assumptions, to be developed
for answering the same questions, with a goal of better capturing the complete range of
possible outcomes than a single model does. The ensemble procedure can be repeated at
regular intervals in the course of an epidemic. Ensemble modeling has been conducted
for the COVID-19 pandemic with robust projections [205,206]. This modeling approach
would also be applicable to cholera outbreaks, and open communication and collaboration
between different cholera-modeling groups would be crucial for its successful application.

Future modeling efforts for cholera may also benefit from a holistic modeling frame-
work that connects relevant biological, ecological, epidemiological, immunological, and so-
cietal processes, provided that sufficient and high-quality data are available from these
different fields. Models generated from such a framework will most likely be multi-scale,
strongly nonlinear, and highly complex. Consequently, advanced numerical methods and
data analysis techniques will be needed, facilitating a comprehensive and computationally
intensive modeling approach. To achieve this goal, interdisciplinary collaboration should
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be strongly encouraged and promoted, and such collaborative work may involve epi-
demiologists, mathematical modelers, computational scientists, ecologists, microbiologists,
immunologists, and social scientists.
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