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Abstract: Brown rot caused by Monilinia spp. fungi causes substantial losses in stone and pome
fruit production. Reports suggest that up to 90% of the harvest could be lost. This constitutes an
important worldwide issue in the food chain that cannot be solved by the use of chemical fungicides
alone. Biocontrol agents (BCAs) based on microorganisms are considered a potential alternative to
chemical fungicides. We hypothesized that endophytic bacteria from Prunus domestica could exhibit
antagonistic properties towards Monilinia fructigena, one of the main causative agents of brown rot.
Among the bacteria isolated from vegetative buds, eight isolates showed antagonistic activity against
M. fructigena, including three Pseudomonas spp. isolates that demonstrated 34% to 90% inhibition
of the pathogen’s growth when cultivated on two different media in vitro. As the stimulation of
plant growth could contribute to the disease-suppressing activity of the potential BCAs, plant growth
promoting traits (PGPTs) were assessed for bacterial isolates with M. fructigena-suppressing activity.
While all isolates were capable of producing siderophores and indole-3-acetic acid (IAA), fixating
nitrogen, mineralizing organic phosphate, and solubilizing inorganic phosphate and potassium, only
the Pseudomonas spp. isolates showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase
activity. Overall, our study paves the way for the development of an eco-friendly strategy for
managing M. fructigena pathogens by using BCAs including Pseudomonas spp. bacteria, which could
also serve as growth stimulators.

Keywords: Monilinia fructigena; bacterial control agents; plant growth promoting traits

1. Introduction

Brown rot is caused by Monilinia spp. fungal pathogens and is considered to be the
most significant disease for stone fruits [1–5], but it also causes losses in pome fruits [5–8].
Monilinia spp. can infect blooms, stems, and fruits; manifest a multitude of symptoms; and
cause significant damage after harvest during fruit storage [2,4,8,9]. Brown rot is caused
by several Monilinia species with distinct geographical distribution in Europe: M. laxa is
common across the continent, whereas M. fructicola dominates in Southern Europe, where
it is still classified as a quarantine pathogen by the European Union, and M. fructigena
dominates in Northern Europe and is more prevalent on fruits than on blossoms [5,10–12].

Conventional brown rot management strategies include chemical or physical control.
Chemical control includes the use of fungicides during all growth stages and, in some
cases, even during the post-harvest period. Physical control includes the use of plastic
covers to minimize fruit wounding by rainfall or insects, removing the diseased parts of
the tree (including mummies), cold post-harvest storage, and fruit sterilization [8,9,13].
Fungicides can be applied in orchards to control disease and currently are one of the main
management methods; however, so far, their effectiveness has been limited [3,4,9,13]. In
some cases, Monilinia spp. pathogens have already acquired fungicide resistance [4,9,14,15].
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Post-harvest use of chemical fungicides is either prohibited or limited because of safety
concerns [1,4,10,16]. Fungicides may leave a residue that can be consumed or may leach
into the environment, affecting aquatic and terrestrial ecosystems [2]. This, alongside
the growth habits of Monilinia spp., such as its ability to live in colder temperatures,
its fungicide resistance (classified as moderate), its fast conidial germination, and its
latency, are the factors contributing to the widespread of the disease and substantial yield
losses in Europe and worldwide [4,6,13]. Some studies estimate that under pre-harvest
conditions favorable to the pathogen (warm temperatures, high humidity [2,5]), post-
harvest losses could account for up to 59% of M. laxa and up to 80–90% of the total yield for
M. fructicola [1,4,5,13,14,16,17]. Lahlali et al. [2] reported that yield losses caused by brown
rot might be as high as 50–75% in the orchard and another 25–50% after harvest.

The loss of effective Monilinia spp. control, public concerns about pesticide use in
horticulture, and the risks to human health urge the need to search for alternative eco-
friendly methods to control these pathogens [3,8,18,19]. Three main categories of alternative
methods of controlling Monilinia spp. have been considered: (1) physicochemical, e.g., heat
and irradiation, which are generally recognized as safe (GRAS) compounds and sanitizers;
(2) natural bioactive compounds extracted either from plants or animals; and (3) biological
control agents (BCAs) based on bacterial or fungal species with Monilinia spp.-suppressing
activity. It was found that Monilinia spp. pathogens are light-responsive and that light
influences the development of brown rot [20]. Plant extracts, essential oils, or a variety
of salts and acids can be used pre- and post-harvest [2,21]. For example, an emulsion
of thyme essential oil was used on apple fruit, which inhibited M. fructigena by up to
72.1% [21]. Biocontrol agents (BCAs) cause no harm to the environment, and thus they
have been of particular interest [3,7]. This can be achieved through a variety of direct
and indirect mechanisms: inhibition via competition for resources [22], induced systemic
resistance [23], inhibition via antibiosis [24], enzyme production [2,25], or other unidentified
mechanisms [26,27]. In recent years, various species have been shown to benefit from the
use of BCAs in vitro, in greenhouses, and under field conditions [4,17,24,28,29].

Commercial BCAs for Monilinia spp. are already available on the market. However,
the selection is scarce, and the available BCAs are not as effective or consistent as the
currently used fungicides [9]. To our knowledge, at least three commercial BCAs are
recommended by manufacturers for controlling brown rot: Bacillus subtilis strain QST713
(“SerenadeMax”, Bayer AG), Bacillus amyloliquefaciens (“Amylo-X”, Certis Europe BV),
and Saccharomyces cerevisiae (“Julietta”, Agrauxine). Bacillus amyloliquefaciens has been
validated under field conditions on different stone fruit in different orchards in several
European countries. This BCA resulted in a >50% reduction in the incidence of brown
rot both during harvest and during storage [1]. Other species, such as the yeast-like
fungus Aureobasidium pullulans [22], the fungus Epicoccum nigrum [16], and the bacteria
Pseudomonas synxantha [17], have been studied for their inhibitory effect on Monilinia spp.
as well.

Alongside their biocontrol capabilities, microorganisms may also provide other bene-
fits to the plants. Microorganisms may help with enhanced nutrient availability through
phosphate and potassium solubilization, nitrogen fixation, siderophore (an iron transport
agent), phytohormone production, etc. These capabilities of microorganisms are known
as plant growth promoting traits (PGPTs), and microorganisms possessing these traits are
called plant growth promoting microorganisms (PGPMs) [30–33].

Endophytes are microorganisms that inhabit the plant endosphere and survive in
their hosts asymptomatically as commensalists or mutualists [29,31,34]. Similar to other
microorganisms, endophytes may also be used as BCAs [17,26,29,35–37]. For example, the
endophytic bacteria Pseudomonas synxantha was used for controlling Monilinia fructicola and
M. fructigena in vitro and in vivo. Different media and various storage temperatures were
tested [17]. Lahlali et al. [8] investigated the mechanisms of pathogen inhibition induced
by Pseudomonas sp. B11W11. They noted that the cell-free filtrate of B11W11 had greater
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reductions in growth than its volatile compounds. The Pseudomonas sp. isolate was also
shown to produce lytic enzymes, such as amylase and cellulase, and lipopeptides.

Overall, the plant endosphere is a very rich niche, and many endophytic microorgan-
isms have not yet been thoroughly studied [38]. Their long-lasting symbiosis may impact
microorganism evolution, creating strains that possess novel biochemical paths and, thus,
potentially novel antimicrobial agents [38]. Moreover, it is known that endophytes can be
transferred to offspring, and thus their beneficial impact may be transferred as well [29,39].
There are different sources of antagonistic bacteria against Monilinia pathogens, such as
roots, flowers, buds or fruits [40–42]. Only a few studies have been conducted in plum to
identify bacterial antagonists against M. laxa [43,44], M. fructicola [45], and, more recently,
against M. fructigena in the field and post-harvest [46] without regarding the traits promot-
ing plant growth. Therefore, the aim of this study was to identify the bacterial endophytes
from plum (Prunus domestica) buds and to assess their M. fructigena growth-suppressing
properties and plant growth promoting traits in vitro.

2. Materials and Methods
2.1. Isolation of Bacterial Endophytes

Endophytic bacteria were isolated from vegetative buds of one-year-old shoots of
European plum (Prunus domestica) maintained at the collection of genetic resources for
stone fruit of the Lithuanian Research Centre for Agriculture and Forestry, Institute of Horti-
culture (LAMMC IH), Babtai, Lithuania, in the autumn of 2021. The shoots (approximately
30 cm in length) were randomly selected, the leaves were discarded, and the shoots were
kept at 4 ◦C until further analysis. Buds were separated from the shoots, and 30 randomly
selected buds were collected to represent the pool for one sterilization method. In total, six
published methods for bud sterilization were used, as described by the authors, or slightly
modified, as indicated in Table 1.

Table 1. Sterilization methods used for isolating endophytic bacteria from European plum buds.

Step
Method Hydrogen

Peroxide [47]
Sodium

Hypochlorite [48]
Ethanol

[49]
Mercuric

Chloride [47,50]
Bleach

[51]
Combined Method

(Modified [52])

1.
Sterilization agent,

concentra-tion,
treatment duration

H2O2, 3%,
10 min

NaClO, 5%,
5 min

C2H5OH,
70%,

3 min

HgCl2, 0,1%,
10 min

Bleach,
5 min

C2H5OH, 70%,
5 min;

H2O2, 3%,
20 min;

C2H5OH, 70%,
1 min

2. Washing with sterile
distilled water

4 times,
2 min

Once,
10 min

4 times,
1 min

7 times,
1 min

4 times,
1 min

5 times,
1 min

3. Macerate buds in 5 mL of sterile distilled water for 30 min [49]

After sterilization by all the methods, the suspensions with buds were filtrated through
a sterile cheesecloth and centrifuged for 5 min at 2885 rcf, and the supernatant was dis-
carded. To each tube, 5 mL of sterile distilled water was added, and the precipitates were
resuspended. In the final isolation step, 20 µL of the suspension from each sterilization
method was spread on Petri dishes with lysogeny broth (LB) agar media [53] in 5 replicates
(1 replicate per Petri dish) and incubated at 28 ◦C for 7 days. Emerging colonies from these
plates were further re-streaked until pure colonies were achieved. Only colonies with a
morphology characteristic of bacteria were used for further analysis. The bacterial stock
cultures were stored at 4 ◦C on Petri dishes containing LB media.

2.2. Isolation and Identification of the Fungal Pathogen Monilinia fructigena

Decaying plum fruits with visual symptoms of brown rot (sporulating beige-colored
fungi colonies) were collected from the same orchard at the same time as the plum shoots
used for isolation of the endophytic bacteria. The mycelium of the pathogen was scraped
from the surface of the fruit with a sterile scalpel and isolated according to Amiri et al. [54].
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To identify Monilinia spp., a multiplex polymerase chain reaction (PCR) with specific
primers for M. laxa, M. fructigena, M. fructicola, and M. polystroma was performed according
to Côté et al. [55] by extracting DNA from the mycelium of the pathogen growing on
Petri dishes containing Potato Dextrose Agar (PDA, pH 5.6–5.8, Sharlab, S. L., Barcelona,
Spain) [4]. After molecular identification, the stock cultures of M. fructigena were cultured
on the PDA and stored at 4 ◦C.

2.3. Antagonistic Activity Test In Vitro

The evaluation of the isolated bacterial strains’ inhibition of M. fructigena’s growth
in vitro was performed as described by Ulrich et al. [56]. The mycelium plug from the
edges of a 2-week-old fungus (5 mm in diameter) was placed in the center of a Petri dish
with PDA or a maltose medium (22 g maltose, 8 g yeast extract, 6 g tryptone, 20 g glucose,
and 15 g gelrite per liter, pH 5.5). Around the mycelium plug, fresh bacteria were streaked
in a shape of a square. Five replicates were prepared for each bacterium on both media. A
plate with the fungus disc without bacterial inoculation was used as a control. The dual
culture plates were incubated at 22 ◦C till the mycelium in the control plates reached the
edge. Radial growth inhibition was measured in 3 locations per plate, and the average was
calculated as follows:

%I =
(

C − T
C

)
·100 (1)

where I is the inhibition of growth, C is the average radius of the fungus on the control
plates (5 replicates), and T is the average radius of the fungus on the plates with the fungus
and the bacteria (5 replicates).

The inhibition of the growth of M. fructigena by Endophytic bacteria of Prunus domestica
was analyzed for significant differences using a non-parametric variation analysis by the
Kruskal–Wallis H-test to compare the mean group ranks. Pairwise comparisons were
performed with Dunn’s test using IBM SPSS v. 28.0.1.1 (IBM, Armonk, NY, USA).

2.4. Identification of Potential Antagonists

Only bacterial endophytes showing some inhibition of M. fructigena were selected for
taxonomic identification. DNA from endophytic bacteria was isolated, and sequencing was
performed using the primer pairs 27F/1492R and 785F/907R for the 16S rRNA gene [57] at
Macrogen (Amsterdam, The Netherlands). The sequences were processed using Bioedit
7.2.5 [58] and Chromas v.2.6.6 (Technelysium, South Brisbane, Australia) open-access
software and aligned using GenBank’s database tool BLAST (NCBI, https://blast.ncbi.
nlm.nih.gov/Blast.cgi; accessed on 29 October 2022) according to the sequence homology
with most related microorganisms. Sequences were selected with a high level of genetic
homology (>97% identity match).

2.5. Endophyte Morphotyping

For some bacteria, identification based on the 16S rRNA gene sequence is possible
only at the genus level due to low sequence variation [59,60]. Therefore, morphotyping
of the endophytic isolates was performed. Tests were carried out in triplicate, using fresh
colonies each time. Bacteria were grown at 22 ◦C unless stated otherwise. After 2 days of
incubation on an LB agar, the colony shape, elevation, margin, color, smoothness, opacity,
consistency, and overall appearance were evaluated [61].

Catalase and oxidase tests were carried out as described previously [62]. For the
catalase test, a bacterial sample was placed on a glass slide, and 1–2 drops of 3% H2O2
were pipetted on top. If bubbles appeared within 5–10 seconds, the tested bacteria could
produce the catalase enzyme. The oxidase test was carried out with N, N-dimethyl-p-
phenylenediamine dihydrochloride (DMPD) via the paper method. Freshly grown bacterial
colonies were scraped and placed on a piece of filter paper, then a few drops of a freshly
made DMPD (1%) solution were pipetted on top. The development of a bright dark pink
color within 20 seconds was indicative of oxidase production.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Furthermore, to determine how the bacteria survived in an oxygenated environment,
thioglycollate broth was utilized [63]. Test tubes with a freshly prepared semi-solid medium
with a standard composition (15 g/L of a pancreatic digest of casein, 5.5 g/L of dextrose,
5 g/L of yeast extract, 2.5 g/L of NaCl, 0.5 g/L of sodium thioglycollate, 0.5 g/L of L-cystine,
and 0.075% of agar; pH 7.1) were inoculated with the bacterial isolates and incubated for
up to 48 h in the dark. The bacterial growth patterns were observed. When bacteria only
grew on top of the medium, the isolate was considered to be an obligate aerobe. If growth
was noticed on the top as well as lower in the tube but descending from the top in a cloudy
formation, the isolate was considered to be a facultative anaerobe [63].

The bacteria’s susceptibility to various antibiotics was determined by using a modified
Kirby–Bauer disc diffusion test. Six antibiotics were used: 10 µg ampicillin (AM), 30 µg
cefotaxime (CTX), 30 µg chloramphenicol (C), 30 µg kanamycin (K), 10 µg streptomycin
(STP), and 75 µg ticarcillin (TIC). The inhibition zones were measured the next day, and
bacterial susceptibility was evaluated using antibiotic susceptibility charts, as described by
Vaitiekunaite and Snitka [61].

A biofilm formation test was also carried out, as described by Vaitiekūnaitė and
Snitka [61].

2.6. Plant Growth Promoting Traits (PGPTs)

Multiple qualitative PGPT tests were carried out, all using selective media. To verify if
the bacteria were capable of tryptophan-dependent plant growth regulator (PGR) indole-
3-acetic acid (IAA) production, a modified qualitative test with the Salkowski reagent
was used, as described by Vaitiekunaite et al. [30]. Briefly, the bacteria were grown in
tryptophan-enriched media. After 24 h of incubation, the media were centrifuged, and the
Salkowski reagent was mixed with the supernatant (1:1). A color change from yellow to
red after 30 min of incubation in the dark was indicative of IAA production. Furthermore,
the samples were tested with a spectrophotometer (530 nm) for objective comparisons.

Bacterial cultures were also tested for qualitative siderophore production ability using
a method described previously [30]. A selective media color change from blue to orange
indicated siderophore production.

All bacterial isolates were tested for inorganic phosphate solubilization (tricalcium
phosphate) and organic phosphate mineralization (soy lecithin), as previously described [30].
The appearance of clear halos around the colonies on selective media showed phosphate
solubilization or mineralization, depending on the phosphorus source used.

The potential for nitrogen fixation was tested using a nitrogen-free Jensen’s medium,
as described by Vaitiekunaite et al. [30]. Colony growth was evaluated, and colonies with
clear growth zones were considered to be diazotrophs.

To evaluate potassium solubilization, an Aleksandrow agar medium (HiMedia, Thane,
India) was used. The selected medium contained feldspar powder, which is a non-soluble
source of potassium [64,65]. The isolates were inoculated on the medium, and clear areas
surrounding bacterial colonies, which were indicative of potassium solubilization, were
assessed after 7 days.

The isolates’ ability to synthesize the 1-aminocyclopropane-1-carboxylic acid (ACC)
deaminase enzyme was also qualitatively tested. Selective Dworkin and Foster minimal
salt media were prepared, with ACC being the only nitrogen source [66]. Concurrently,
plates with media of the same composition but without ACC or any other N source were
used as a negative control. Fresh colonies were placed on the medium via streaking and
stabbing. ACC deaminase activity was indicated if no growth appeared on the negative
control plate inoculated using an inoculation needle, but colony growth was observed on
the plate with ACC. The plates were incubated for up to a week.
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3. Results
3.1. Antagonistic Activity In Vitro

Within one week of incubation, bacterial colony growth was visible. Seventy-seven
samples were isolated and cultivated. Most endophytes were isolated using bleach
(22 isolates) and sodium hypochlorite (17 isolates) sterilization methods. The highest
number of potential antagonists of M. fructigena was observed in the bacteria isolated using
the sodium hypochlorite (seven isolates) sterilization method. Inhibition of the growth of
M. fructigena was observed for eight endophytic bacteria (Figure 1). The growth inhibition
level was dependent on the growth medium used for the assay. While some of the isolates
suppressed the growth of M. fructigena more on the PDA (SENP33, SENP33v2, SENP41, and
SENP81), other isolates promoted the growth of the pathogenic fungi (SENP53, SENP55,
and SENP58v2), among which the isolate SENP53 enhanced M. fructigena’s growth by up
to 10.27%. However, on a maltose medium, inhibition of the growth of M. fructigena was
observed for all isolates used in the analysis (Figure 1). In addition, three isolates (SENP33,
SENP33v2, and SENP41) exhibited more than 30% inhibition regardless of the medium
used. On a PDA medium, the inhibition of M. fructigena’s growth by these endophytes
ranged from 51.71% to 89.73%, and on maltose, they ranged from 34.31% to 50.41%. The iso-
late SENP33 (Pseudomonas graminis) inhibited M. fructigena’s growth by 50.24% and 89.73%
on the maltose and PDA media, respectively. Similarly, the isolate SENP33v2 (P. graminis)
inhibited M. fructigena’s growth by 50.41% and 70.89% on the maltose and PDA media,
respectively (Figure 2). The third isolate reaching the threshold of the minimum require-
ments for a biocontrol agent (>30%), namely SENP41 (P. amygdali), inhibited M. fructigena’s
growth by 34.31% and 51.71% on the maltose and PDA media, respectively.

Microorganisms 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

soluble source of potassium [64,65]. The isolates were inoculated on the medium, and clear 
areas surrounding bacterial colonies, which were indicative of potassium solubilization, 
were assessed after 7 days. 

The isolates’ ability to synthesize the 1-aminocyclopropane-1-carboxylic acid (ACC) 
deaminase enzyme was also qualitatively tested. Selective Dworkin and Foster minimal 
salt media were prepared, with ACC being the only nitrogen source [66]. Concurrently, 
plates with media of the same composition but without ACC or any other N source were 
used as a negative control. Fresh colonies were placed on the medium via streaking and 
stabbing. ACC deaminase activity was indicated if no growth appeared on the negative 
control plate inoculated using an inoculation needle, but colony growth was observed on 
the plate with ACC. The plates were incubated for up to a week. 

3. Results 
3.1. Antagonistic Activity In Vitro 

Within one week of incubation, bacterial colony growth was visible. Seventy-seven 
samples were isolated and cultivated. Most endophytes were isolated using bleach (22 
isolates) and sodium hypochlorite (17 isolates) sterilization methods. The highest number 
of potential antagonists of M. fructigena was observed in the bacteria isolated using the 
sodium hypochlorite (seven isolates) sterilization method. Inhibition of the growth of M. 
fructigena was observed for eight endophytic bacteria (Figure 1). The growth inhibition 
level was dependent on the growth medium used for the assay. While some of the isolates 
suppressed the growth of M. fructigena more on the PDA (SENP33, SENP33v2, SENP41, 
and SENP81), other isolates promoted the growth of the pathogenic fungi (SENP53, 
SENP55, and SENP58v2), among which the isolate SENP53 enhanced M. fructigena’s 
growth by up to 10.27%. However, on a maltose medium, inhibition of the growth of M. 
fructigena was observed for all isolates used in the analysis (Figure 1). In addition, three 
isolates (SENP33, SENP33v2, and SENP41) exhibited more than 30% inhibition regardless 
of the medium used. On a PDA medium, the inhibition of M. fructigena’s growth by these 
endophytes ranged from 51.71% to 89.73%, and on maltose, they ranged from 34.31% to 
50.41%. The isolate SENP33 (Pseudomonas graminis) inhibited M. fructigena’s growth by 
50.24% and 89.73% on the maltose and PDA media, respectively. Similarly, the isolate 
SENP33v2 (P. graminis) inhibited M. fructigena’s growth by 50.41% and 70.89% on the 
maltose and PDA media, respectively (Figure 2). The third isolate reaching the threshold 
of the minimum requirements for a biocontrol agent (>30%), namely SENP41 (P. amygdali), 
inhibited M. fructigena’s growth by 34.31% and 51.71% on the maltose and PDA media, 
respectively. 

 Figure 1. Inhibition of the growth of Monilinia fructigena in vitro on two different media (maltose-
based and Potato Dextrose Agar (PDA) with a standard composition) as percentages ± SE. The red
line denotes 30% radial growth inhibition, which is considered to be the minimum requirement for
a biocontrol agent, as per Ulrich et al. [56]. The test was performed using the Kruskal–Wallis one-
way analysis of variance on ranks, followed by pairwise comparisons with Dunn’s test. Significant
divergences from the control are marked as * (p ≤ 0.05).

All endophytes showing antagonistic activity against M. fructigena were identified
by 16S rRNA gene sequencing (Appendix A, Table A1). Six of the eight isolates were
assigned to Pseudomonas spp., and two were identified as Agrobacterium spp. Isolates
of the Pseudomonas genus were identified as P. graminis (SENP33, SENP33v2, SENP55,
and SENP58v2), P. amygdali (SENP41), and P. congelans (SENP53). Both isolates from the
Agrobacterium genus were identified as A. fabrum (SENP78 and SENP81).
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Figure 2. Dual culture antagonism assay of the Monilinia fructigena pathogen and the endophytic
bacteria isolate Pseudomonas graminis SENP33v2 from Prunus domestica buds (a) on a maltose medium
and (b) on a Potato Dextrose Agar, as compared with the control plates (shown on top).

3.2. Endophytic Bacteria Morphotypes

According to the results of colony morphology, the isolates were separated into four
distinct morphotypes, as shown in Table A2 (Appendix A). One of the four isolates, closely
related to Pseudomonas graminis, could be divided into two morphotypes, A and C. The
isolate SENP41 (P. amygdali) was grouped with the two Agrobacterium isolates into the
D morphotype. Colony margins, opacity, appearance, and texture were the same in all
isolates. The isolates could be divided on the basis of the colony’s color, form, elevation, and
consistency. According to the results of colony morphology, four isolates were yellowish
(from the A and C morphotypes), and four were creamy (B and D morphotypes). All
isolates had a circular form, with the exception of the SENP53 isolate belonging to the B
morphotype. This isolate was also unique by being flat. All isolates assigned to the A
morphotype by consistency were mucoid, whereas the remaining isolates were butyrous
(Appendix A, Table A2).

Subsequent physiological tests were conducted to distinguish the morphotypes fur-
ther. All isolates tested by the thioglycollate broth were obligate aerobes, and all of them
could produce the catalase enzyme (Figure 3, Table S1). With the exception of one isolate
(SENP55) from the Pseudomonas genus forming a moderate biofilm, all isolates formed
weak biofilms. Oxidase was produced by all isolates of the Agrobacterium genus, whereas in
Pseudomonas, the production of oxidase was absent. The subdivision into sub-morphotypes
was mostly dependent on variations in the results of the antibiotic susceptibility test. Specif-
ically, the A and D morphotypes were subdivided into two sub-morphotypes. Antibiotic
susceptibility testing differentiated three Pseudomonas graminis isolates from morphotype
A into two subgroups, where, in the first group (A1), the isolates SENP33 and SENP33v2
had identical characteristics; in the second (A2), the isolate SENP55 was more sensitive
to chloramphenicol than members of the A1 group. Pseudomonas graminis morphotype
C was also further differentiated by its susceptibility to cefotaxime and chloramphenicol.
In Group D, both bacteria from the Agrobacterium genus (D2) were differentiated from
Pseudomonas amygdali (D1).
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Figure 3. Physiological test results of oxygen requirements (thioglycollate test), biofilm formation,
catalase and oxidase production, and antibiotic susceptibility against ampicillin (AM), cefotaxime
(CTX), chloramphenicol (C), kanamycin (K), streptomycin (STP), and ticarcillin (TIC), where the
numbers beside the letters indicate the concentrations of antibiotics in micrograms. The dotted
line by the biofilm formation test indicates the separation of only one isolate (SENP55) with mod-
erate biofilm formation. The red and green rectangles in the diagram indicate the genus of the
isolates. The separation into sub-morphotypes was caused by variations in the results of antibiotic
susceptibility testing.

3.3. Plant Growth Promoting Traits

Representative examples of the PGPT tests are shown in Figure 4A. All tested isolates
displayed at least six out of seven PGPTs used in the analysis. All isolates were able to
produce siderophores, solubilize inorganic phosphate and potassium, mineralize organic
phosphate, and fixate nitrogen. Only the Pseudomonas spp. isolates showed ACC deam-
inase activity, whereas, in the two Agrobacterium isolates, no activity was detected. All
isolates tested were capable of producing IAA, and the concentration detected in the growth
medium was in the range from 0.182 µg/mL (SENP53) to 1.673 µg/mL (SENP81), with an
average of 1.06 µg/mL (Figure 4B). The highest IAA concentration was characteristic of
isolates assigned to the A1, C, and D2 sub-morphotypes. Three isolates of the Pseudomonas
genus (SENP55, SENP53, and SENP41) produced very small amounts of IAA.
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Figure 4. Plant growth promoting traits of the bacterial isolates. (A). Representative plant growth
promoting trait tests on selective media: (a) siderophore production by SENP41 (a color change in
the medium from blue to yellow), (b) phosphate mineralization by SENP33 (a clear zone around the
colonies), (c) phosphate solubilization by SENP55 (clear zones around the colonies), (d) potassium
solubilization by SENP53 (clear zones around the colonies), (e) ACC deaminase activity by SENP41
(growth on the medium with ACC as the only nitrogen source and no growth on the negative control
plate without any nitrogen), and (f) nitrogen fixation by SENP81 (growth on the medium without any
nitrogen source). (B). Identification of endophytic bacteria morphotypes based on IAA production.
Starting from the middle of the circle, the isolates were separated by genus, species, and isolate
according to the amount of IAA produced. The penultimate circle indicates the sub-morphotype
of the species, and the color differs according to their IAA production (µg/mL). The outside circle
indicates the morphotype of the isolates.
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4. Discussion

In total, 77 cultivable bacterial isolates were obtained from the plum bud endosphere.
Of those, eight showing antagonistic activity against M. fructigena were selected for fur-
ther analysis. Six of the isolates were identified as bacteria of the Pseudomonas genus.
Pseudomonas spp. bacteria are common in the plant endosphere [67], they are resilient
to isolation treatment, and can be easily cultivated on a variety of media; therefore, they
have been described for a variety of plant species: kiwifruit [17], apple [68], oak [30],
blueberry [69], Actinidia spp. [17], tomatillo [70], etc. The other two isolates were assigned
to the Agrobacterium genera. Agrobacterium spp. have previously been found in maize [71],
grasses, such as Oxalis corniculate [72], Sesbania cannabina [73], and Cassia tora [74], and other
plants [75].

Three out of the six tested Pseudomonas spp. inhibited the growth of Monilinia fructigena by
more than 30% on PDA and maltose media. Two of the isolates were identified as P. graminis,
and one was P. amygdali. The former species includes known endophytes, previously isolated
from olive [76], Teucrium polium [77], lodgepole pine [78], and Noccaea caerulescens [79]. More-
over, P. graminis was previously reported as a BCA that is effective against foodborne
pathogens, such as Listeria monocytogenes, Salmonella enterica, and E. coli [80,81]. Mean-
while, representatives of the latter species, P. amygdali, have been described as an almond
pathogen [82,83]. In general, pseudomonads are commonly considered for use as BCAs
and as biostimulants [8,67], and several Pseudomonas spp. have been reported to have an-
tagonistic properties against the Monilinia species [8,17] as well as other pathogens [84–86].

Previously, Lahlali et al. [8] reported three Pseudomonas sp. isolates from soil that could
inhibit M. fructigena’s growth in vitro by 78–82%. The study also showed that the isolates
provided highly effective control of the pathogen under field and fruit storage conditions.
Therefore, it could be proposed that the three Pseudomonas spp. isolates obtained from
plum buds that showed growth inhibition levels of up to ~90% in vitro in our study have
the potential for application as BCAs for controlling M. fructigena. Moreover, further
research to investigate the mechanisms responsible for inhibiting the pathogen, or to
check for particular lytic enzymes, while applying cell-free filtrates or volatile compounds
would be required.

In our study, it was observed that some of the isolated bacterial antagonists showed
different results when different media were used for the analysis of the inhibition of
M. fructigena’s growth. Higher growth-suppressing activity was observed on the PDA
medium than on the maltose medium. This is supported by previous studies that showed
different results for different in vitro co-cultivation methods and media [17].

As well as inhibiting the growth of M. fructigena, the endophytic bacterial isolates
isolated from the Prunus domestica buds were also tested for plant growth promoting traits.
Microorganisms that exhibit these and similar traits can enhance plants’ health, contribut-
ing to their overall resistance to pathogens. All the tested isolates exhibited several PGPTs
in vitro. The three aforementioned pseudomonads were positive for all the tested traits.
Similar results were observed for the Agrobacterium fabrum isolates, except for the absence
of ACC deaminase production. As mentioned, Pseudomonas spp. are often studied and
even used commercially for promoting plant growth [67,68,84,87,88]. Recently, several
Pseudomonas spp. were isolated from Quercus robur that also exhibited several PGPTs: IAA
and siderophore production, phosphate solubilization and mineralization, and nitrogen
fixation [30]. Pseudomonas spp. isolated from apple shoots were shown to enhance auxil-
iary shoot growth and shoot proliferation [68]. Similarly, Pseudomonas stutzeri enhanced
tomato growth. Plant root length, shoot length, and fresh weight were increased [70].
Pseudomonas fulva significantly enhanced the growth of pine seedlings and increased the
number of mycorrhizal roots [84]. Overall, pseudomonads have been reported to have
multiple mechanisms by which they can improve plant growth and health. Siderophore
production, competition, antibiosis, and induced systemic resistance are just a few, as noted
in a review by Santoyo et al. [67], as well as by other authors [85,89].
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Agrobacterium spp. are very common in soil, and some species could be pathogenic
to plants [90]. Agrobacterium fabrum was recently differentiated from A. tumefaciens [91], a
well-known and widely used bacterium that causes crown galls and is often utilized for the
genetic transformation of plants as a carrying agent [90]. A. fabrum was also shown to create
galls in citrus and sunflowers [91]. In comparison with Pseudomonas spp., bacteria from the
Agrobacterium genus are comparatively less often described in relation to growth promotion
or biocontrol. However, an Agrobacterium species has been used for the biocontrol of its
relative, A. tumefaciens, for decades [92]. Moreover, a strain of A. tumefaciens was used
for the biocontrol of the fruit pathogen Penicillium expansum, a ubiquitous toxic mold that
causes significant economic losses. An A. tumefaciens isolate was able to limit the growth of
mold on apples by ~28% and reduce the accumulation of the toxin patulin by ~95% [93].
A variety of PGPTs has been described for Agrobacterium spp.; however, the absence of
ACC deaminase activity, as observed in our study, is partially supported by previously
published results. Marag and Suman reported that A. larrymoorei can solubilize potassium
and produce IAA but that it was not able to produce ACC deaminase or siderophores and
could not solubilize phosphate [71]. Kumar et al. reported that an endophytic A. tumefaciens
could produce IAA and siderophores and solubilize phosphate [74].

5. Conclusions

In summary, our results show that endophytes naturally present in the tissues of Prunus domestica
could potentially inhibit the growth of the pathogenic fungus Monilinia fructigena. Eight
out of seventy-seven isolates showed antagonistic activity against M. fructigena in vitro and
were assigned to the Pseudomonas or Agrobacterium genera, according to the 16S rRNA gene
sequencing data. Three out of eight isolates, which were closely related to Pseudomonas
graminis (SENP33 and SENP33v2) and P. amygdali (SENP41) bacteria, reached the threshold
of the minimum requirements for biocontrol agents (>30%) on both PDA and maltose
media, distinguishing them as potential biocontrol agents of M. fructigena and eventually
other Monilinia spp. All isolates evaluated in this study exhibited multiple plant growth
promoting traits in vitro. The results presented here emphasize that bacterial endophytes
from the Pseudomonas genus could find a viable application in the development of biocontrol
measures for the M. fructigena pathogen. Further research would be necessary to focus on
examining the effectiveness of the selected bacterial isolates against Monilinia spp. under
field and fruit storage conditions and in different environments, biogeographical regions,
and concentrations.
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www.mdpi.com/article/10.3390/microorganisms10122402/s1. Table S1: Physiological test results of
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tested against ampicillin (AM), cefotaxime (CTX), chloramphenicol (C), kanamycin (K), streptomycin
(STP), and ticarcillin (TIC).
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Appendix A

Table A1. Sequencing data of the bacteria isolated in this study.

Isolate
Identification No.

Closest NCBI Match
(Species) Identity, % Query Coverage, % Fragment Length, bp Accession No. *

SENP33 Pseudomonas graminis 99.79 99 1449 NR_026395.1
SENP33v2 Pseudomonas graminis 99.86 99 1400 NR_026395.1

SENP41 Pseudomonas amygdali 99.43 100 1393 NR_036999.1
SENP53 Pseudomonas congelans 100 99 1452 NR_028985.1
SENP55 Pseudomonas graminis 99.87 100 1399 NR_026395.1

SENP58v2 Pseudomonas graminis 99.79 99 1403 NR_026395.1
SENP78 Agrobacterium fabrum 100 99.86 1406 NR_074266.1
SENP81 Agrobacterium fabrum 100 99 1396 NR_074266.1

* Accession number in the NCBI Reference Sequence Database (https://www.ncbi.nlm.nih.gov/refseq; accessed
on 29 October 2022).

Table A2. Colony morphology of the bacterial isolates analyzed.

Morphotype Isolate Color Form Margin Opacity Appearance Elevation Consistency Texture

A

Pseudomonas graminis,
SENP33 yellowish circular

en
ti

re

tr
an

sl
uc

en
t

gl
is

te
ni

ng

raised mucoid

sm
oo

th

Pseudomonas graminis,
SENP33v2 yellowish circular raised mucoid

Pseudomonas graminis,
SENP55 yellowish circular raised mucoid

B Pseudomonas congelans,
SENP53 creamy irregular flat butyrous

C Pseudomonas graminis,
SENP58v2 yellowish circular raised butyrous

D

Pseudomonas amygdali,
SENP41 creamy circular raised butyrous

Agrobacterium fabrum,
SENP78 creamy circular raised butyrous

Agrobacterium fabrum,
SENP81 creamy circular raised butyrous
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63. Vaitiekūnaitė, D.; Bružaitė, I.; Snitka, V. Endophytes from blueberry (Vaccinium sp.) fruit: Characterization of yeast and bacteria

via label-free surface-enhanced Raman spectroscopy (SERS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 275, 121158.
[CrossRef]

64. Setiawati, T.C.; Mutmainnah, L. Solubilization of Potassium Containing Mineral by Microorganisms From Sugarcane Rhizosphere.
Agric. Agric. Sci. Procedia 2016, 9, 108–117. [CrossRef]

65. Fatharani, R.; Rahayu, Y.S. Isolation and Characterization of Potassium-Solubilizing Bacteria from Paddy Rhizosphere
(Oryza sativa L.). J. Phys. Conf. Ser. 2018, 1108, 012105. [CrossRef]

http://doi.org/10.1371/journal.pone.0020396
http://doi.org/10.1016/j.micpath.2018.02.011
http://doi.org/10.1515/biol-2020-0080
http://doi.org/10.3390/jof8060636
http://doi.org/10.2298/BOTSERB2002203J
http://doi.org/10.3389/fmicb.2019.02287
http://www.ncbi.nlm.nih.gov/pubmed/31632384
http://doi.org/10.1016/j.postharvbio.2012.10.004
http://doi.org/10.3390/agriculture12101656
http://doi.org/10.1371/journal.pone.0242247
https://www.sigmaaldrich.com/LT/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/plant-tissue-culture/explant-sterilization
https://www.sigmaaldrich.com/LT/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/plant-tissue-culture/explant-sterilization
http://doi.org/10.1515/hepo-2015-0032
http://doi.org/10.6001/biologija.v57i2.1835
http://doi.org/10.1128/jb.62.3.293-300.1951
http://doi.org/10.1094/PHYTO-99-10-1199
http://doi.org/10.1094/PDIS.2004.88.11.1219
http://doi.org/10.3389/fmicb.2020.00966
http://www.ncbi.nlm.nih.gov/pubmed/32547506
http://doi.org/10.1128/MRA.00775-20
http://www.ncbi.nlm.nih.gov/pubmed/32972935
http://doi.org/10.1099/ijsem.0.004055
http://www.ncbi.nlm.nih.gov/pubmed/32068524
http://doi.org/10.1128/JCM.01228-07
http://doi.org/10.3390/microorganisms9091969
http://doi.org/10.1007/978-0-387-68572-4
http://doi.org/10.1016/j.saa.2022.121158
http://doi.org/10.1016/j.aaspro.2016.02.134
http://doi.org/10.1088/1742-6596/1108/1/012105


Microorganisms 2022, 10, 2402 15 of 16

66. Tiwari, G.; Duraivadivel, P.; Sharma, S.; Hariprasad, P. 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial
rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci. Rep. 2018, 8,
1–12. [CrossRef]

67. Santoyo, G.; del Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil
bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 2012, 22, 855–872. [CrossRef]

68. Tamošiūnė, I.; Stanienė, G.; Haimi, P.; Stanys, V.; Rugienius, R.; Baniulis, D. Endophytic Bacillus and Pseudomonas spp. Modulate
Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions. Front. Plant Sci. 2018, 9, 889.
[CrossRef] [PubMed]
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