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This special issue of Microorganisms highlights the importance of antimicrobial resis-
tance (AMR) and increased virulence of Salmonella with multiple research papers. Key to the
increase in AMR and virulence are plasmids, whose importance is briefly discussed in this
editorial. The acquisition of various large plasmids has impacted the global epidemiology
and cross-country dissemination of Salmonella enterica strains. Plasmids are extrachromo-
somal, generally circular DNA molecules that often contain genes that provide bacteria
several biological functions including virulence and AMR [1]. Some of the Salmonella large
plasmids possess multiple AMR genes and virulence factors; hence, co-selection of AMR
and virulence properties yield potentially more dangerous pathogens [2]. Commonly, these
plasmids are low copy number and confer minimal fitness costs. The role of some of these
virulence-associated plasmids in the dissemination of AMR and increased virulence in
food-animal environments and humans are discussed in this special issue.

Salmonella virulence plasmids, commonly known as pSV plasmids, are one of the more
well-studied plasmids [3–5]. pSV plasmids carry the Salmonella plasmid virulence (spv)
operon, a highly conserved 7.8-kb region, harboring several virulence genes promoting
intracellular infections in hosts [3]. spvABCD genes encode proteins that are translocated
into host cells via the type-3 secretion system (T3SS) and modulate host immune responses
by several mechanisms, including preventing actin polymerization and down-regulating
host immune responses [6–8]. The role of spv in virulence and pathogenesis during the
infection process was delineated using different model infection approaches, such as the
subcutaneous mouse model [6,9] and zebrafish model [10].

Another group of plasmids that contribute to virulence are the incompatibility group
(Inc) FIB plasmids that are related to the ColV plasmid, and are commonly found in
several Salmonella serovars including Kentucky, Typhimurium, and Schwarzengrund. In
a study by our group, an IncFIB plasmid was transferred to an IncFIB plasmid deficient
strain of S. enterica by conjugation [11]. The transconjugant SE819::IncFIB persisted in
human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819 [11].
Another study demonstrated that horizontal gene transfer of IncFIB plasmid resulted in the
emergence of a dominant avian clonal type of S. enterica serovar Kentucky [12]. Additionally,
their study examined distribution of these plasmids among 902 Salmonella isolates from
different poultry sources. The IncFIB plasmid was found to occur predominantly in serovar
Kentucky (72.9% of isolates tested), followed by Typhimurium (15%) and Heidelberg
(1.7%); the latter two serovars are among the most commonly associated with disease in
humans [12]. In a recent study, our data showed that IncFIB-containing food and clinical
S. Schwarzengrund isolates clustered within the same clade, which was separated from
the isolates that lacked IncFIB plasmids (unpublished data). These findings suggested
that IncFIB containing S. Schwarzengrund persist in a food environment and successfully
establish infection in human.

Some S. enterica strains contain another virulence-associated plasmid, an IncX4-like
plasmid that harbors a VirB/D4 type 4 secretion system (T4SS) [13]. The VirB/D4 T4SS helps
Salmonella survive better inside macrophages and epithelial cells by likely down regulating
the host’s innate immune response. In a study, it was shown that multiple Salmonella strains
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contained IncX4-VirB/D4 plasmids isolated from retail meats, food animals, and human
patients associated with a disease outbreak [14]. These data indicate that plasmid factors
including VirB/D4 T4SS on the IncX4 plasmid likely play a role in the infection process
and/or persistence in food-animal-clinical environments leading to pathogen transmission.

The IncI1 plasmids are widely distributed in enteric bacteria, particularly Salmonella
and Escherichia coli from food animal sources, resulting in clinical significance of bacteria
carrying this type of plasmid. These plasmids have the potential to carry and horizontally
transfer multiple integron-associated AMR genes including sul1 and sul2 sulfonamide
resistance genes, and the blaCTX blaCMY, blaSHV, and blaTEM genes that encode resistance to
multiple cephalosporins among enteric pathogens [15]. In addition to AMR genes, IncI1
plasmids can likely carry virulence-associated genes. We demonstrated that bacteriocins
encoded by IncI1 of Salmonella inhibit growth of E. coli which is likely a beneficial selection
advantage in growth competition in certain environment [16].

The recent global emergence of S. Infantis has been associated with the acquisition of
a unique mega-plasmid known as the plasmid of emerging S. Infantis (pESI), that confers
multidrug resistance and increased virulence phenotypes [17–19]. Despite its large size
(280 kb), the pESI plasmid does not appear to show a fitness cost [18]. When birds were
infected orally, pESI positive strains showed significantly increased virulence compared
to pESI negative strains [20]. Studies demonstrated that pESI also has the potential to
transfer resistance and virulence to commensal E. coli and other pathogenic bacteria in the
gut environment [18,21].

As the examples above demonstrate, plasmids are important elements that can impact
public health. Many plasmids carry mobile genetic elements (MGEs), such as integrons and
insertion sequences (ISs), that facilitate transfer of AMR genes. ISs are the simplest MGEs
that generally harbor one or more transposes (tnp) genes and are widespread in all domains
of life [22]. IS26, an 820 bp DNA segment that encodes a transposase (Tnp26) of 234 amino
acids [23], was found to be very critical in the dissemination of multiple antibiotic resistance
genes including those found in carbapenems [24]. IS26 is widely spread in many antibiotic-
resistant isolates and plays crucial roles in the diversity of the variable regions of different
plasmids [25,26]. IS26-mediated gene transfer is usually accomplished by cointegration
where transferable IS26 cointegrates with pre-existing IS26 sites [24,27].

It is likely that the widespread use of antibiotics has facilitated the emergence of
highly resilient pathogens that pose a threat to public health via co-selection of AMR
genes and virulence factors [2]. These plasmids likely contribute increased virulence
characteristics to the host bacteria that harbor them. Many of the IncF-type plasmids,
including those discussed above, are self-conjugative and play an important role in the
dissemination of resistance and virulence through horizontal gene transfer. Some Salmonella
strains can harbor multiple virulence-associated plasmids and become highly virulent.
While some gene transfer mechanisms are known, more research is needed to identify
other unknown mechanisms as to how virulence and AMR plasmids disseminate among
Salmonella and other pathogens. This will likely aid the development of proper intervention
strategies to control the spread of these plasmids in pathogens prevailing in the food-
animal environment.
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