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Abstract: Antimicrobial resistance is now commonly observed in bacterial isolates from multiple
settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent
requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as
preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are
secondary metabolites produced by plants for numerous purposes, including antimicrobial defence.
In this report, we compare the bioactivity of a range of phytochemical compounds, testing their
ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica
Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus. We found
that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators.
Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth
of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica
Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes, respectively. Selection of mutants
with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated
rate of 3.77 × 10−8, and characterisation of S. enterica Typhimurium mutants showed a low-level
MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show
that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be
evaluated in any further development.

Keywords: antimicrobial resistance; AMR; phenolics; flavonoids; natural products

1. Introduction

Bacterial infections remain a major cause of illness and mortality for humans and
animals, including those caused by foodborne pathogens ingested through contaminated
foodstuffs and feedstocks [1]. This impact is being worsened by the increasing numbers of
pathogenic microorganisms demonstrating antimicrobial resistance (AMR) against antibi-
otics used for clinical and industrial purposes [2–4]. In parallel with this increase in AMR,
there has been a decline in the development of new antibiotics, making novel antimicrobials
urgently required [5].

Plants, a historically productive source of natural pharmacological compounds, repre-
sent a source of novel biochemical structures [5], and numerous plant extracts have shown
direct in vitro antimicrobial activity [6–11]. Much of this bioactivity is the result of phyto-
chemicals, secondary metabolite compounds produced by plants for multiple functions,
including antimicrobial defence against microbial pathogens [12–15]. With over 8000 com-
pounds identified [14], phytochemicals display enormous structural diversity [15,16]. As
well as the identification of direct antimicrobial activity, including carvacrol and cinnamic
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acid against S. Typhimurium and Escherichia coli [17] and the coumarin cajanuslactone
against S. aureus [18], phytochemicals have also been identified that synergise with other
antimicrobials via direct synergism [19,20] and the capacity to potentiate their activity via
the inhibition of efflux pumps, etc. [21–24].

Despite this body of evidence demonstrating the antimicrobial properties and po-
tential of phytochemicals, few studies have focused on responses of microorganisms to
phytochemical challenge [25–29]. If any phytochemicals are to be developed and applied
practically, a good understanding of the responses of target organisms is needed. In this
study, we determined the direct inhibitive and synergistic activities of a panel of phytochem-
icals against standard laboratory reference strains of the common foodborne pathogens S.
Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes. We then assessed the potential
of the most potent compounds to select for resistant mutants, which were then characterised
phenotypically and genotypically.

2. Materials and Methods
2.1. Bacterial Strains

The following bacterial strains were used: Salmonella enterica serovar Typhimurium
14028S, Staphylococcus aureus NCTC 8532, Pseudomonas aeruginosa PA14, and Listeria mono-
cytogenes LM014. All strains were stored in Protect Microorganism Preservation System
ceramic cryo-beads (Technical Service Consultants Ltd., Heywood, UK) at −70 ◦C until
required. One cryo-bead from a stock was used to inoculate 5 mL of sterile growth medium
when overnight cultures were needed; S. Typhimurium, S. aureus, and P. aeruginosa strains
were cultured at 37 ◦C in Luria-Bertani Broth (LB) (Fisher Scientific BioReagents, Loughbor-
ough, UK), whereas L. monocytogenes was cultured at 37 ◦C in Brain–Heart Infusion (BHI)
Broth (Oxoid, Basingstoke, UK).

2.2. Phytochemicals

A panel of phytochemicals consisting of caffeic acid, cinnamic acid, ferulic acid, hes-
peridin, kaempferol, naringenin, naringin, quercetin, rutin, thymol, vanillic acid, and
vanillin was sourced from Sigma-Aldrich (Gillingham, UK) and eriodictyol from Extrasyn-
thase (Genay, France). All compounds were stored as suggested by the manufacturer.
Prosur NATPRE T-10+, chosen because it is a commercially available phytochemical mix-
ture designed to substitute sodium nitrite/nitrate as a food preservative, was stored in
aluminium foil-wrapped Durans, sealed with parafilm, and kept in a dark environment.
All phytochemicals were dissolved at room temperature in DMSO, vortexed, and stored at
4 ◦C. Compounds were selected based on the rationale of balancing previously described
activity and the general cost of synthesis/purchase. Compounds representative of most
phytochemical structural families were selected. Tested phytochemical concentrations
were selected to reflect the working concentrations of the commercially available Prosur
NATPRE T-10+ mixture and not those found in natural extracts.

2.3. Growth Inhibition Assays

A high-throughput screen was used to test the panel of all phytochemicals for an-
tibacterial activity. From 1 mg/mL phytochemical working stocks, dilutions to give final
concentrations of 0.5 mg/mL, 0.25 mg/mL, and 0.125 mg/mL were made and 100 µL of
each were added to three wells of 96-well microtiter plates. Plates were then inoculated with
bacteria diluted in 100 µL of medium (LB for S. Typhimurium, S. aureus, P. aeruginosa strains;
BHI for L. monocytogenes) at ~10−5 CFU/mL. Drug-free media controls were included as
well as broth containing DMSO at the final concentrations used as solvent controls. Plates
were sealed with gas-permeable membranes (ThermoFisher Scientific, Cambridge, UK)
and incubated at 37 ◦C overnight for 16 h. After incubation, the OD(600 nm) of each culture
was measured using a FLUOstar Omega plate reader (BMG Labtech, Ortenberg, Germany).
Endpoint OD(600 nm) readings were used instead of a time-course experiment to allow for a
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more rapid screening of multiple plates at once. All experiments were replicated four times
and statistically analysed as detailed below (see Section 2.10).

2.4. Identification of Antimicrobial Potentiation

The ability of each phytochemical to synergise with chloramphenicol (chosen as an
antibiotic whose activity is increased by agents that enhance membrane permeability or
inhibit efflux) was determined. Plates were inoculated with phytochemicals as described in
Section 2.3 above, but the media used to inoculate bacteria contained chloramphenicol at a
final concentration of 2 µg/mL. Plates were incubated and analysed as for direct growth
inhibition assays; phenyl-arginine β-naphthylamide (PAβN) was included as a control,
being a known efflux pump inhibitor. All experiments were replicated four times and anal-
ysed as detailed below. Phytochemicals that displayed significant reduction in OD(600 nm)
measurements with the inclusion of chloramphenicol, but not in its absence (at least not to
the same extent), were deemed as holding the capacity for antibiotic potentiation.

2.5. Measuring Cell Viability after Phytochemical Exposure

To distinguish bacteriostatic and bactericidal activity, the viable numbers of cells after
exposure to a panel of selected phytochemicals (chosen based on results from the high
throughput end-point assay above) were determined. Overnight bacterial cultures were set
up in triplicate for each species. The next day, fresh growth media was supplemented with
phytochemicals at either 0.05 mg/mL or 0.5 mg/mL and inoculated with ~105 CFU/mL of
each species (overnight bacterial cultures were diluted appropriately into 250 µL of PBS).
These cultures were then sampled by removing 20 µL at 0, 1, 2, 4, 8, and 16 h of incubation
at 37 ◦C and ~200 rpm. Each aliquot was serially diluted and 20 µL spots inoculated onto
LB agar plates and incubated overnight at 37 ◦C before colony-forming units (CFU) were
enumerated. In total, three technical replicates for each of three biological replicates were
tested in this way and analysed as detailed below.

2.6. Drug Accumulation Assays

To determine whether any phytochemicals impacted cellular permeability, the accu-
mulation of resazurin, a molecule that is metabolised within the cell into a fluorescent
product, was measured. Intracellular accumulation of resazurin is usually limited due to
low permeability, and it is also a substrate for efflux pumps. Accumulation was measured
in the presence and absence of the selected phytochemicals. Overnight bacterial cultures
were grown, then used to incubate fresh growth media the following day. Once bacterial
cultures had reached an OD(600 nm) of 0.2–0.5, cells were harvested and resuspended in
sterile PBS, normalising the OD(600 nm) to the lowest measurement taken. A 96-well plate
was inoculated with 5 µL of a 400 µg/mL resazurin stock (20 µL of a 100 µM ethidium
bromide stock was substituted for S. aureus and L. monocytogenes), as well as 2 µL of sterile
PBS/DMSO/50 mg/mL phytochemical stock depending on the experimental condition.
Positive controls included an additional 5 µL of a 5 mg/mL PAβN stock and, finally, 193 µL
of bacterial suspensions were added to the appropriate wells and mixed. In total, five
technical replicates for each of three biological replicates were tested in this way. As soon
as all wells were filled, a transparent membrane was sealed onto the 96-well plate, which
was placed into a FLUOstar Omega Plate Reader to measure OD(600 nm) and fluorescence
readings (excitation: 544 nm, emission: 590 nm) over a period of 16 h.

2.7. Mutant Selection

Phytochemical-laced agar was inoculated with either S. Typhimurium, S. aureus, P.
aeruginosa, or L. monocytogenes and incubated to select for resistant mutants. Muller Hinton
agar plates were prepared and supplemented with either caffeic acid, thymol, or the
Prosur NATPRE T-10+ mix at 1× and 2× the MIC. These phytochemicals were selected
due to their potent directly antimicrobial activity, their capacity for the potentiation of
chloramphenicol, or their current use as a food preservative substitute. Supplemented
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plates were then inoculated with bacteria concentrated to 10−10 or 10−9 CFU in 100 µL
volumes and incubated at 37 ◦C overnight. A dense inoculum was used as the classic
methodology to encourage and capture the potential for mutant selection from exposure to
the tested compounds/mixture. Control plates with no phytochemicals or with DMSO as a
vehicle control were prepared in parallel. The next day, the plates were enumerated, the
average mutation frequency was calculated (see below), and random mutant colonies were
picked via toothpick before culturing and storage in 40% glycerol stocks at −70 ◦C. Plates
that showed no colony growth were incubated for a further 24 h, then re-examined.

2.8. Mutant Sequencing and Phenotyping

Mutant strains of S. Typhimurium selected by phytochemical exposure were cultured
for DNA extraction and sequencing as described recently [30]. Briefly, cultured cells
were lysed and DNA was isolated via DNA-binding magnetic beads (KAPA Pure Beads,
Roche Diagnostics) and eluted with 10 mM Tris-Cl, pH 8.5. The extracted DNA samples
were sequenced using an Illumina Nextseq500 instrument [30] and sequence reads were
quality filtered using Trimmomatic (v3.5) with default parameters. Contigs were assembled
using SPAdes v3.11.1 and the de novo and parental genomes fed through the Snippy v3.1
software to identify single nucleotide polymorphisms (SNPs) [30]. The sequenced mutant
strains were also phenotypically assayed using the growth analysis and drug accumulation
assays described above, and the MICs of antibiotics kanamycin, tetracycline, ampicillin,
chloramphenicol, and nalidixic acid were also determined via the microdilution broth
method. Finally, to identify whether mutant strains had any difference in biofilm-forming
ability, crystal violet assays and analysis of colony morphology on congo red plates were
used, both as described previously [31].

2.9. Transmission Electron Microscopy (TEM)

An overnight culture of S. Typhimurium and a previously selected thymol-tolerant
mutant strain were used to inoculate 200 mL LB within Erlenmeyer flasks in a 1:200
ratio. After an overnight incubation at 37 ◦C and ~200 rpm, these flask cultures were
separated into 30 mL aliquots within 50 mL centrifuge tubes and supplemented to contain
0.25–1 mg/mL thymol, with PBS and DMSO controls included. These samples were
incubated at room temperature for two hours before being pelleted, washed in 10 mL PBS,
and pelleted again to be covered with 1 mL PBS. The pelleted samples were then processed
by the QIB Bioimaging Core Facility for sample fixing and TEM imaging. Briefly, 2.5%
glutaraldehyde in 0.1 M sodium cacodylate buffer (both Agar Scientific Ltd., Stansted, UK)
was used as the fixative, post fixed in 1% osmium tetroxide (Agar Scientific Ltd., UK) for
two hours, and dehydrated through an ethanol series (30–90% for 15 min each, followed
by 100% ethanol three times each for 15 min). Finally, samples were embedded in resin
through a series mix of LR White medium-grade resin (Agar Scientific Ltd., Stansted UK)
and 100% ethanol (1:1, 2:1, 3:1 resin:ethanol, and, finally, three times 100% resin, each for at
least 1 h with the final 100% resin step overnight), before polymerising overnight at 60 ◦C
and sectioning the samples to ~90 nm thickness using an ultramicrotome (Leica EM UC6,
Wetzlar, Germany) onto carbon-coated copper TEM grids (EM Resolutions Ltd., Keele, UK)
and sequential staining with ~2% uranyl acetate (BDH 10288) and 0.5% lead citrate-tribasic
trihydrate (Sigma 153265-25G). Sections were examined and imaged in an FEITalos F200C
transmission electron microscope at 200 kV with a Gatan One View digital camera. Digital
micrograph files (.DM4) were converted to a .TIFF format for ease of viewing. The resulting
images were parsed to identify representative examples of the bacterial morphologies and
analysed as described below.

2.10. Statistical Analyses

For all of the previously described experiments, the following statistical analyses
were implemented. For the growth inhibition assays and identification of antimicrobial
potentiation, all experiments were statistically analysed via a one-way ANOVA test with
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Fischer’s least significant difference post-test. For measuring cell viability after phyto-
chemical exposure and the drug accumulation assays, growth/accumulation velocities
and endpoint states were first calculated. The data were then analysed using a one-way
ANOVA test with the inclusion of Fischer’s least significant difference post-test. For the
mutant selections, the following formula was used to calculate a mutation frequency for
each pathogen against each tested phytochemical at 1 × MIC.

Average mutation frequency =
[Average CFU/mL for each inoculum]

Corresponding DMSO viable count (CFU/mL)

For the phenotyping of thymol-selected mutants, the previously stated analyses for
the measuring of cell viability after phytochemical exposure and the drug accumulation
assays were performed. Crystal violet assays were analysed using a one-way ANOVA
test with the inclusion of Fischer’s least significant difference post-test, whereas congo red
assays were quantitatively observed. Finally, five individual cells randomly selected from
the TEM images were analysed via the ImageJ version 1.53r software (National Institutes
of Health, MD, USA). Mean grey values were measured. Mean grey values were labelled
as average cytoplasmic density values in the corresponding table, as this was the intended
inference. Numerical values were displayed to two decimal places and a statistical analysis
via a one-way repeated measures ANOVA test, with the inclusion of Fisher’s LSD test,
performed using the GraphPad software package version 8.0, to distinguish statistically
significant results.

3. Results
3.1. Nine Compounds Show Consistent Antimicrobial Activity

All 14 compounds were screened for both direct antimicrobial activity and the abil-
ity to potentiate other antimicrobial agents, with most demonstrating activity in either
assay. Examples of results from growth inhibition and potentiation assays are shown in
Figure 1a,b, with full data in the Appendix (Tables A1–A4). Nine compounds showed
a reproducible, statistically significant reduction in the average OD(600 nm) achieved by
cultures of the four tested pathogens, although the spectrum of activity varied between
compounds. Dose-dependent inhibition of growth was also observed; for example, the
flavanone eriodictyol reduced the average OD(600 nm) measurements of S. aureus and L.
monocytogenes cultures by 86.87% (at 0.5 mg/mL) and 12.31% (at 0.125 mg/mL), respec-
tively, compared to the relevant controls (Figure 1a,b). Naringenin showed potent activity
against S. aureus (reducing growth by 92.8%, 89.5%, and 8.9% at 0.5 mg/mL, 0.25 mg/mL,
and 0.125 mg/mL, respectively). Thymol at 0.5 mg/mL showed a wide spectrum of activity
and reduced the average OD(600 nm) of S. Typhimurium, P. aeruginosa, and L. monocytogenes
by 48.82%, 42.59%, and 23.35%, respectively, although it was not active against S. aureus.

The data points show the final OD achieved after 16 h of incubation of four biological
replicates, with three technical replicates each. The horizontal bars show the mean for
each set. The dashed line shows the OD from media alone. Statistical analysis was
performed using the GraphPad software v.8, using a one-way ANOVA test with Fischer’s
least significant difference test. The error bars indicate SEM (±).

PABN, a known efflux inhibitor, was used as a control to potentiate the activity of
chloramphenicol (present at 0.25 × MIC in all conditions).

To determine impacts on viability, the number of surviving cells was enumerated after
exposure to two concentrations of the compounds that demonstrated activity in the initial
optical density screens. Eight of the nine tested compounds exerted a significant reduction
in viability numbers of at least one pathogen (Figures 2 and A1 and Tables A5–A8).
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Figure 1. Example antibacterial and potentiating activity of phytochemicals. (a) Growth of S. aureus in the presence of different phytochemicals. (b) Impact of 
phytochemicals on growth of S. Typhimurium in the presence of a sub-MIC concentration of chloramphenicol. Red dotted lines included to visually segregate the 
tested concentrations. 

Figure 1. Example antibacterial and potentiating activity of phytochemicals. (a) Growth of S. aureus in the presence of different phytochemicals. (b) Impact of
phytochemicals on growth of S. Typhimurium in the presence of a sub-MIC concentration of chloramphenicol. Red dotted lines included to visually segregate the
tested concentrations.
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Figure 2. Viability of pathogens challenged with 0.5 mg/mL of selected phytochemicals. Viable numbers (based on CFU/mL) of the following: (a) S. Typhimurium, 
(b) P. aeruginosa, (c) S. aureus, and (d) L. monocytogenes following exposure to different phytochemicals. Experiments were repeated with three biological replicates 
(three technical replicates each) over an incubation period of 16 h. Graphs display the averaged values of three technical replicates for three biological replicates. 
Error bars indicate SEM (±); asterisks denote statistical significance. 
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Figure 2. Viability of pathogens challenged with 0.5 mg/mL of selected phytochemicals. Viable numbers (based on CFU/mL) of the following: (a) S. Typhimurium,
(b) P. aeruginosa, (c) S. aureus, and (d) L. monocytogenes following exposure to different phytochemicals. Experiments were repeated with three biological replicates
(three technical replicates each) over an incubation period of 16 h. Graphs display the averaged values of three technical replicates for three biological replicates.
Error bars indicate SEM (±); asterisks denote statistical significance.
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In general, the phytochemicals were more effective at inhibiting the growth of the
Gram-positive than the Gram-negative pathogens tested, and dose-dependent effects were
again observed.

Prosur NATPRE T-10+ significantly reduced the CFU/mL of L. monocytogenes cultures
by 38.8% compared to the relevant control; however, this compound mixture did not have
a significant inhibitive effect on any other tested pathogen (see Figure 2). Eriodictyol
significantly decreased the growth velocity and endpoint states of S. aureus by 84.7% and
44.1%, respectively, and of L. monocytogenes by 61.2% and 35.3%, respectively (Figure 3).
The flavonols quercetin and kaempferol both significantly decreased the growth velocities
of S. aureus (quercetin and kaempferol) and L. monocytogenes (quercetin alone) cultures
(Figure A1 and Tables A5–A8). The flavanone naringenin showed a statistically significant
reduction in growth of all four pathogens (Figures 2 and A1 and Tables A5–A8). Thymol
was significantly more active than any other compound and exerted the most consistent
and potent inhibitive activity against all of the tested pathogens (Figure 2). This was
particularly pronounced for earlier time points with decreased growth velocities for S.
Typhimurium (70.2% reduction), S. aureus (75.9% reduction), P. aeruginosa (87.6% reduction),
and L. monocytogenes (>99% reduction). The final number of viable cells achieved by each
population was also lower after thymol exposure for S. Typhimurium (66.8% reduction),
S. aureus (43.2% reduction), P. aeruginosa (29.5% reduction), and L. monocytogenes (70.2%
reduction) compared to the appropriate controls.

The Prosur NATPRE T-10+ mix and vanillin exhibited dose-dependent effects on L.
monocytogenes, with the former displaying inhibitive activity at 0.5 mg/mL but not at the
lower concentration of 0.05 mg/mL and vice versa for the latter aldehyde compound (see
Tables A8 and A9).

3.2. Caffeic Acid and Prosur NATPRE T-10+ Enhance Cellular Permeability

Drug accumulation after exposure to the phytochemicals was determined, and selected
results are shown in Figure 3 (full data can be found in Figures A2–A5 and Tables A10–A13).
Six compounds provoked a statistically significant increase in drug accumulation by S.
Typhimurium, P. aeruginosa, and L. monocytogenes cultures. Caffeic acid (0.5 mg/mL) in-
creased the velocity of resazurin accumulation within S. Typhimurium by 40.8% compared
to the solvent vehicle control and provoked a smaller increase in P. aeruginosa cultures
(Figures A2–A5, Tables A10–A13). The Prosur NATPRE T-10+ mixture was most effective
at increasing the drug accumulation of all the tested pathogens, increasing the rate of
resazurin accumulation by between 70 and 200% in S. Typhimurium (Figure 3) and P.
aeruginosa (Figures A2–A5, Tables A10–A13).

Ferulic acid and naringenin were also able to increase resazurin accumulation, increas-
ing the average fluorescence accumulation velocity of S. Typhimurium by 29.1% and 17.9%,
respectively (Figure 3). For S. aureus and L. monocytogenes (Figure 3), ethidium bromide
was used rather than resazurin as the fluorescent indicator due to these microorganisms’
rapid metabolisation of the latter compound. This showed increased accumulation after
exposure to the Prosur NATPRE T-10+ mix in S. aureus (Figure 3).

3.3. Thymol Selects for Resistant Mutants at a Rate Similar to Classic Antibiotics

To determine the potential for resistance emergence, S. Typhimurium, S. aureus, P.
aeruginosa, and L. monocytogenes were exposed to the MIC and 2× the MIC of caffeic acid,
Prosur NATPRE T-10+, or thymol in agar. After inoculation of plates with large populations
of each organism, no significant inhibition was observed from caffeic acid or the Prosur
NATPRE T-10+ mix, and bacterial lawns of growth were observed. Thymol, however,
was able to inhibit growth of the majority of populations and selected for discrete mutant
colonies of S. Typhimurium, S. aureus, and P. aeruginosa at an average rate of 3.77 × 10−8

(Table 1).
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Figure 3. Selected resazurin accumulation assays for pathogens challenged with 0.5 mg/mL of various phytochemicals. (a) S. Typhimurium challenged with
the Prosur NATPRE-T10+ mix, naringenin, and ferulic acid. (b) S. Typhimurium challenged with thymol, caffeic acid, and vanillin at 0.5 mg/mL. the Prosur
NATPRE-T10+ mix, naringenin, and ferulic acid. (c) S. aureus challenged with the Prosur NATPRE-T10+ mix, naringenin, and ferulic acid. (d) L. monocytogenes
challenged with thymol, caffeic acid, and vanillin. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates.
Error bars indicate SEM (±); asterisks denote statistical significance.
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Table 1. Frequency of selection of thymol-tolerant mutants.

Microorganism Frequency of Mutant Selection

S. Typhimurium 6.84 × 10−9

S. aureus 1.47 × 10−7

P. aeruginosa 3.01 × 10−8

L. monocytogenes N/D *
Average for all species 3.77 × 10−8

* N/D: not determined due to an absence of identifiable colonies.

3.4. Thymol-Selected Mutants of S. Typhimurium Display Tolerance Rather Than Resistance
to Thymol

Eight randomly selected S. Typhimurium mutant colonies were characterised for
thymol susceptibility; no strain grew at or above the MIC of 0.5 mg/mL, but at 0.25 mg/mL
thymol the candidate mutant strains produced larger colonies than the parental strain
(Figure A6).

3.5. S. Typhimurium Mutant Sequencing Reveal Efflux-Associated SNPs

The mutant strains of S. Typhimurium were sequenced, and a total of four SNPs were
identified. S. Typhimurium mutant strain #2 was found to harbour a substitution within the
putative class I SAM-dependent methyltransferase yafS gene, causing a H107Q substitution
within the protein. This strain #2 also possessed a unique substitution within the tetR/acrA
family transcriptional regulator ramR gene, resulting in the substitution of phenylalanine
amino acid 48 of RamR to cysteine, a change not currently identified within the literature. S.
Typhimurium mutant strain #1 contained another known mutation within ramR, resulting
in a G96D amino acid residue substitution.

One final SNP identified within three mutants (#1, #5, and #6) was the insertion of a
thymine base between STM14_18795 (a putative cytoplasmic protein, glpF homologue) and
STM14_18790 encoding the putative DeoR family transcriptional regulator glpR.

3.6. Thymol-Tolerant S. Typhimurium Mutants Display Decreased Susceptibility to Antibiotics

As sequencing of the thymol-selected mutant strains revealed the presence of SNPs
within loci associated with efflux activity, the antibiotic sensitivity of the strains was
determined (Table 2). Mutant strains #1 and #2 demonstrated small increases in the MICs
of tetracycline, ampicillin, chloramphenicol, and nalidixic acid, all antibiotics subject to
efflux, which is consistent with the ramR mutations seen in these strains.

Table 2. Changes in antibiotic susceptibility of thymol-selected S. Typhimurium mutants. Parental
strain MICs for the listed antibiotics, in order as presented, are as follows: 2.67 µg/mL, 1 µg/mL,
6 µg/mL, 3.33 µg/mL, and 4 µg/mL. A # denotes the allocated number of the mutant strain.

Average MIC Fold Changes of Mutant Strains Relative to Parent

Antibiotic

Kan Tet Amp Chl Nal

S. Typhimurium

WT 1.00 1.00 1.00 1.00 1.00
#1 1.00 2.67 4.21 3.42 4.17
#2 0.83 2.67 4.21 3.42 4.17
#6 1.00 1.67 2.38 1.67 2.00

Values show the average MIC fold changes for five antibiotic compounds (Kan = kanamycin,
Tet = tetracycline, Amp = ampicillin, Chl = chloramphenicol, and Nal = nalidixic acid)
against mutants of S. Typhimurium compared to the parental (WT) strain. Data are the
average of three biological replicates (each with three technical replicates).
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3.7. S. Typhimurium Mutant Growth in the Presence of Thymol

S. Typhimurium mutant strains #1 and #2 were further investigated via growth curves
to quantify their growth kinetics under 0.25 mg/mL thymol challenge; the results of these
experiments are presented in Figure 4. Thymol at 0.25 mg/mL reduced the growth of both
the mutant strains and the parental S. Typhimurium strain, whereas all cultures grew with
no significant differences if unchallenged (Figure A7). No statistically significant difference
was seen between the mutants and the parent in growth in the presence of thymol.
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Figure 4. Characterisation of thymol-tolerant S. Typhimurium mutants. (a) Growth of parent and
mutant strains in the presence of thymol (data show averages from nine replicates); asterisks denote
statistical significance. (b) Resazurin accumulation assays (points show average values from five
technical replicates of three biological replicates); asterisks denote statistical significance. (c) Biofilm
biomass measured by crystal violet assays (points show average values from nine replicates). (d) S.
enterica wild-type and mutant #2 TEM images under thymol and equivalent solvent vehicle exposure.

3.8. S. Typhimurium Mutants Accumulate Less Resazurin Then Parent Strain

Figure 4 depicts the accumulation of resazurin by selected S. Typhimurium strains
and shows lower accumulations for both the ramR mutant S. Typhimurium strains #1 and
#2 compared to the parental control (statistically significant for mutant #2 only). This is
consistent with increased efflux activity.

3.9. S. Typhimurium Mutants Display a Decreased Biofilm Capacity

Crystal violet staining assays were performed to determine the thymol-tolerant mu-
tants’ biofilm-forming capacity. Figure 4 shows the biomass of biofilms produced by the
parent and mutants. The thymol-tolerant S. Typhimurium mutants exhibited decreased
biomass production compared to the parental strain. This trend was further observed in
congo red plating, with a lesser degree of staining for the resulting colonies (Figure A8).
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3.10. Thymol Exposure Induces Damage to the Bacterial Envelope

Transmission electron microscopy (TEM) was used to observe the morphological
effects of thymol exposure on bacterial cells of S. Typhimurium. Figure 4 presents the
morphologies of the parental and mutant #2 strains with and without exposure to 1 mg/mL
thymol. The parental strain presented a classic envelope and bacillary morphology when
unchallenged with thymol. After 2 h of exposure, the parental S. Typhimurium strain
presented a significantly altered rod shape with a decreased cytoplasmic density and
envelope thickness and a “fluffy” cellular surface (Figure 4, Table 3). In contrast, the
efflux-associated mutant S. Typhimurium strain #2 presented a more rounded morphology
with a thinner envelope and rougher surface even under control conditions. However, this
morphology was largely unaltered when exposed to 1 mg/mL thymol (Figure 4, Table 3).

Table 3. Quantitative ImageJ analysis of TEM images from thymol-exposed S. Typhimurium. Values
in bold denote statistically significant samples.

S. Typhimurium TEM Image Analysis

Sample Average Cytoplasmic Density SEM (±) p-Value

WT control 128.2 1.92 -
WT solvent control 98.6 8.66 0.0045

WT 1 mg/mL thymol 140.5 5.96 0.1986
S. enterica #2 control 145.5 2.66 -

S. enterica #2 solvent Control 139.8 1.90 0.0912
S. enterica #2 1 mg/mL Thymol 128.5 1.26 <0.0001

Quantitative values produced through analysis of five randomly selected cells across
two TEM images are presented above. Average cytoplasmic density relates to mean grey
values; the higher the value, the less dense the cytoplasmic contents of the analysed cells.
Values presented at two decimal places. Statistical analysis was performed using GraphPad
software v.8 using a one-way repeated measures ANOVA Test with Fischer’s LSD test.
Values in bold are statistically significant compared to the relevant control.

4. Discussion

The initial panel of 14 phytochemicals screened for antimicrobial activity against food-
borne pathogens was chosen considering previous reports of activity and availability; of
these, nine showed some activity. Previous work has suggested hesperidin [32], rutin [33],
and vanillic acid [34] to have antimicrobial activity, but this was not observed at any tested
concentration against any pathogen tested here. Of the nine phytochemicals selected for
further testing, seven displayed a capacity to inhibit the growth of at least one microorgan-
ism tested. Naringenin at a concentration of 0.5 mg/mL did not present significant activity
against S. Typhimiurium, corroborating other works that present an MIC of 1 mg/mL [35],
although it did exert a significant reduction in OD(600 nm) measurements against S. aureus,
adding to earlier work in the field that has found this to be the compounds’ MIC [36].
Quercetin, although unsuitable for the OD-based assays devised here due to its natural
yellow pigmentation, has previous evidence supporting its antimicrobial capacity [37] and
was thus carried forward for further investigation. Kaempferol was also selected on a
similar basis [38]. Other compounds from the selected nine have also had previous studies
reporting on their antimicrobial activity, such as eriodictyol [39]. Thymol, however, was
the most potent phytochemical and showed consistent bioactivity against the panel of
organisms, which supports previous studies reporting MIC ranges of 0.005–0.662 mg/mL
against these organisms [40–44]. Alternative evidence supporting the antimicrobial activity
of thymol suggests an MIC of 0.25 mg/mL against S. aureus and a minimum bactericidal
concentration (MBC) of 0.5 mg/mL [45]. In contrast we observed an increase in CFU/mL
from under the detection threshold after eight hours of incubation in the presented growth
curves, suggesting that, although 0.5 mg/mL may be the MIC, the MBC under these con-
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ditions may in fact be higher due to various environmental, methodological, and genetic
factors. Research to improve the solubility and stability of antimicrobial phytochemicals,
including the nanocomplexation and production of thymol composites, have also shown
an increase in antimicrobial activity against many foodborne pathogens [45,46].

In addition to direct antibacterial activity, there is potential for phytochemicals to be
deployed in combination with other antimicrobials [47–50]. Although checkerboard assays
have traditionally been utilised for this end and remain a promising methodological avenue
for future research, drug accumulation assays were used to infer synergistic capacities via
the phytochemical’s action of permeabilising the bacterial cell within the present work.
Four of the selected nine phytochemicals (caffeic acid, ferulic acid, naringenin, and vanillin)
displayed an ability to increase accumulation of resazurin/ethidium bromide, suggesting
applications as potentiating agents [23,49,51–59]. Caffeic acid’s potential to synergise with
conventional antimicrobials has been described previously against E. coli, P. aeruginosa,
and S. aureus strains [47,60,61]. We extend these data to now include S. Typhimurium.
In contrast, researchers have published data providing evidence that thymol possesses
synergistic effects [42,62–64], including Miladi H. et al. (2016) [65], who employed a
similar methodology in the ethidium bromide accumulation assay. The authors found
that thymol (in addition to the related compound carvacrol) at 0.5 mg/mL inhibited the
efflux of ethidium bromide from cells of S. aureus, E. coli, S. Typhimurium, and Salmonella
entiriditis [65]. We did not predict this conclusion from our data, potentially because thymol
was found to be rapidly bactericidal in our experiments, making synergies hard to detect. In
addition, there are differences in the employed methodologies; we used drug accumulation
assays to directly identify compounds that were likely to impact membrane permeability
or inhibit efflux. Other work has relied on checkerboard assays, which identify synergies
but provide no mechanistic information.

Few studies to date have investigated the potential of phytochemicals to select for
resistant populations. To explore this, we determined the frequency of mutant selection for
S. Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes when exposed to caffeic acid,
thymol, and the Prosur NATPRE T-10+ mix. Of these, caffeic acid and the Prosur NATPRE
T-10+ mix were unable to inhibit bacterial growth on agar plates when challenged with the
large inocula used for mutant selection. Thymol, however, did select for mutant colonies at
an average rate of 3.77 × 10−8 across the four pathogens tested. This mutation frequency
was similar (approximately ~10−8 to 10−9 [66–68]) to that found for multiple bacterial
species, including the common foodborne pathogens tested here, when challenged with
classical antibiotics such as quinolones [66], fluoroquinolones [68], and norfloxacin [67].

The S. Typhimurium mutants demonstrated a mild level of tolerance to thymol itself,
with no MIC change, but evidenced improved growth in the presence of thymol. Two of the
mutants also showed decreased susceptibility to antibiotics (tetracycline, ampicillin, chlo-
ramphenicol, and nalidixic acid), reduced accumulation of the efflux substrate resazurin,
and lower biofilm biomass production (Figure 4). Sequencing of the thymol-selected S.
Typhimurium mutants revealed the presence of SNPs within the yafS gene [69,70], not
characterised in detail for S. Typhimurium, and upstream of glpR, a repressor of the
sugar/carbohydrate transport and metabolization glp operon. Perhaps more relevant,
however, were the multiple SNPs within the AcrAB efflux pump transcriptional repressor
ramR [71] identified within different mutants. RamR is a well-known repressor of RamA,
which in turn controls expression of many genes, including the acrAB multidrug efflux
system [72]. Similar work with E. coli [73] selected a thymol-resistant strain (JM109-Thyr)
via repeated exposure to sub-lethal thymol concentrations. Resulting isolates demonstrated
two-fold increased thymol MICs and had mutations in acrR, the local repressor of acrAB [73].
Our data further suggest that thymol can select for mutants with decreased susceptibility
and that they are efflux over-expression mutants (via ramR rather than acrR in Salmonella).
These mutants demonstrate a classic efflux phenotype of low-level multidrug resistance,
further supported by the decreased capacity for biofilm production presented in this work,
which may have implications for the selection of collateral resistance following thymol
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exposure. This potential for the selection of phytochemical and cross-resistance in bacterial
pathogens is an important line of scientific enquiry with consequences for the practical
adoption of phytochemicals as substitute antimicrobials in the clinic, farm, household, or
food industries. The latter is particularly true given the push for non-chemical food preser-
vatives [74,75] and the status of phytochemicals as generally recognised as safe (GRAS)
for inclusion in food products [76]. If antimicrobial phytochemicals are to be employed en
masse, the possibility of bacterial resistance to these and extraneous compounds evolving
along the same lines as the current AMR crisis must be considered.

Finally, the identification of efflux-associated SNPs within the thymol-selected mutants
prompted the application of TEM to observe the effect of thymol challenge on the cell
envelope morphology of S. Typhimurium. Here, we observed significant envelope damage
and cytoplasmic shrinkage of the parental strain, with a greater robustness exhibited by
the thymol-tolerant mutant when exposed to thymol (Figure 4, Table 3). This disruption
of the bacterial envelope/membrane is in line with other studies that observed similar
results both in S. enterica and in other bacterial species [77–81] and supports previous
suggestions for interactions with the bacterial envelope as mediating the antimicrobial
mechanism of action for thymol. Although there is a strong evidence base to support an
envelope-targeting mechanism for thymol, the TEM imaging implemented within this
study only provides a semi-qualitative observation. Future work may focus on the use of
scanning electron microscopy to better observe the envelope surface and assays designed
to investigate the impact of the observed effects on cell viability and cellular functions.
There have also been, however, multiple mechanisms of antimicrobial action reported
for this monoterpenoid phenol. There are numerous reports supporting the inhibition of
efflux pumps, the disruption of natural biofilm functions, the inhibition of motility and
key bacterial enzymes [82], and the dysregulation of protein and DNA synthesis [75]. This
phenomenon of multiple inhibitive mechanisms is not unique to thymol, as it appears that
many phytochemicals share a multi-pronged paradigm of antibacterial activity [75].

5. Conclusions

We have shown that various phytochemicals have antimicrobial effects against im-
portant foodborne pathogens, that this differs between compounds and species, and that
some phytochemicals also demonstrate good promise as potentiators/synergisers in com-
bination with other antimicrobial agents. Thymol was the most active compound tested,
and although we were able to select for mutants with decreased susceptibility to thymol,
they were efflux mutants, which has implications for thymol application, as these mutants
also displayed a decreased susceptibility to antibiotics. Although phytochemicals represent
an alternative source of directly and synergistic antimicrobial compounds to be exploited,
further research is needed into their mechanisms of action and potential for selection
of resistance.
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Appendix A

Table A1. Summary of results of the growth inhibition assays against Gram-negative species.

Gram-Negative Pathogen OD(600 nm) after Polyphenol Exposure as a Percentage of Solvent Controls

Phytochemical Concentration (mg/mL)
S. Typhimurium P. aeruginosa

OD(600 nm) p-Value SEM (±) OD(600 nm) p-Value SEM (±)

Prosur
0.5 103.01 0.3594 0.03 106.07 0.3583 0.07
0.25 106.26 0.0004 0.02 100.99 0.4665 0.03

0.125 106.43 0.0002 0.02 101.87 0.4057 0.05

Eriodictyol
0.5 103.48 0.2970 0.03 109.58 0.1476 0.05
0.25 103.25 0.0571 0.02 102.22 0.1080 0.01

0.125 104.92 0.0042 0.02 103.09 0.1741 0.03

Naringin
0.5 101.28 0.7033 0.03 106.58 0.3198 0.07

0.25 105.03 0.0038 0.01 104.13 0.0037 0.02
0.125 107.18 <0.0001 0.02 103.91 0.0859 0.04

Ferulic acid
0.5 84.23 <0.0001 0.05 89.97 0.1301 0.10

0.25 102.70 0.1101 0.02 102.18 0.1159 0.02
0.125 106.65 0.0001 0.02 104.52 0.0475 0.04

Hesperidin
0.5 98.03 0.5523 0.07 110.10 0.1279 0.06

0.25 102.74 0.1072 0.05 103.04 0.0307 0.02
0.125 104.30 0.0117 0.05 103.18 0.1643 0.04

Rutin
0.5 97.74 0.4925 0.02 104.79 0.4648 0.07

0.25 105.17 0.0030 0.02 103.18 0.0240 0.02
0.125 106.69 0.0001 0.02 103.83 0.0917 0.03

Quercetin
0.5 21.07 - - 48.83 - -

0.25 22.87 - - 44.82 - -
0.125 23.64 - - 45.37 - -

Caffeic acid
0.5 96.19 0.3627 0.04 94.87 0.3005 0.04

0.25 105.08 0.0107 0.04 104.81 0.0006 0.02
0.125 106.07 0.0018 0.03 104.09 0.0165 0.02

Cinnamic acid
0.5 82.39 <0.0001 0.04 79.82 <0.0001 0.06

0.25 103.48 0.0767 0.04 100.18 0.8788 0.02
0.125 106.03 0.0019 0.03 102.22 0.1899 0.02

Thymol
0.5 51.18 <0.0001 0.09 57.41 <0.0001 0.07

0.25 106.26 0.0018 0.03 103.27 0.0159 0.02
0.125 108.42 <0.0001 0.03 104.57 0.0080 0.03

Kaempferol
0.5 83.69 - - 86.34 - -

0.25 86.28 - - 91.15 - -
0.125 85.42 - - 90.78 - -

Naringenin
0.5 101.25 0.7656 0.04 95.43 0.3555 0.05

0.25 103.89 0.0490 0.04 101.50 0.2604 0.03
0.125 106.25 0.0013 0.03 102.52 0.1333 0.03

Vanillin
0.5 79.20 <0.0001 0.05 72.19 <0.0001 0.08

0.25 100 0.9953 0.02 98.37 0.2299 0.02
0.125 102.17 0.2556 0.03 102.57 0.1279 0.03

Vanillic acid
0.5 91.25 0.0373 0.03 81.49 0.0003 0.09

0.25 99.59 0.8344 0.02 102.27 0.0941 0.02
0.125 102.17 0.2581 0.02 104.48 0.0088 0.03

Data show the average OD(600 nm) achieved after 16 h by four biological replicates, with three technical replicates
each. Statistical analysis was performed using GraphPad software v.8, using a one-way ANOVA test with Fischer’s
least significant difference test. Values in bold denote statistically significant samples.
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Table A2. Summary of results of the growth inhibition assays against Gram-positive species.

Gram-Positive Pathogen OD(600 nm) after Polyphenol Exposure as a Percentage of Solvent Controls

Phytochemical Concentration (mg/mL)
S. aureus L. monocytogenes

OD(600 nm) p-Value SEM (±) OD(600 nm) p-Value SEM (±)

Prosur
0.5 93.20 0.0317 0.07 91.08 0.2676 0.08
0.25 107.79 0.0628 0.06 104.97 0.3098 0.06

0.125 108.47 0.0049 0.02 106.29 0.1934 0.07

Eriodictyol
0.5 13.13 <0.0001 0.03 87.84 0.1321 0.12
0.25 24.16 <0.0001 0.04 93.38 0.1795 0.13

0.125 41.59 <0.0001 0.09 87.69 0.0118 0.10

Naringin
0.5 97.97 0.5192 0.06 93.19 0.3982 0.09
0.25 115.93 0.0002 0.03 103.20 0.5112 0.06

0.125 108.61 0.0043 0.02 104.81 0.3160 0.07

Ferulic acid
0.5 102.80 0.3778 0.02 94.76 0.5139 0.09

0.25 114.62 0.0007 0.06 108.89 0.0712 0.08
0.125 110.07 0.0009 0.04 107.12 0.1405 0.07

Hesperidin
0.5 97.88 0.4930 0.04 89.35 0.1857 0.18

0.25 112.91 0.0025 0.03 97.13 0.5583 0.08
0.125 109.50 0.0017 0.03 94.05 0.2170 0.13

Rutin
0.5 96.67 0.2857 0.05 93.73 0.4368 0.06

0.25 112.11 0.0043 0.02 107.50 0.1281 0.08
0.125 108.01 0.0077 0.02613 105.23 0.2771 0.07

Quercetin
0.5 −4.57 - - 10.19 - -

0.25 −17.87 - - 28.36 - -
0.125 −15.60 - - 35.90 - -

Caffeic acid
0.5 97.20 0.7960 0.1843 88.86 0.2032 0.09

0.25 107.29 0.0645 0.05955 96.17 0.4586 0.05
0.125 105.24 0.0088 0.03398 97.12 0.5536 0.06

Cinnamic acid
0.5 120.28 0.0641 0.03617 101.14 0.8942 0.11

0.25 115.33 0.0002 0.04502 104.13 0.4269 0.08
0.125 108.90 <0.0001 0.02623 104.85 0.3181 0.08

Thymol
0.5 101.01 0.9279 0.1631 76.65 0.0088 0.16

0.25 116.53 <0.0001 0.04039 102.53 0.6218 0.06
0.125 110.21 <0.0001 0.03669 106.74 0.1673 0.08

Kaempferol
0.5 37.98 - - 20.30 - -

0.25 48.16 - - 33.36 - -
0.125 50.70 - - 27.03 - -

Naringenin
0.5 7.204 <0.0001 0.01476 118.59 0.0353 0.14

0.25 10.47 <0.0001 0.01797 108.13 0.1184 0.14
0.125 91.06 <0.0001 0.03105 103.90 0.4215 0.11

Vanillin
0.5 102.91 0.7894 0.1753 98.05 0.8256 0.10

0.25 113.84 0.0091 0.03674 109.27 0.0765 0.10
0.125 110.20 0.0051 0.03132 107.05 0.1485 0.10

Vanillic acid
0.5 104.49 0.2035 0.02422 113.57 0.1211 0.10

0.25 113.84 0.0106 0.01306 112.73 0.0158 0.10
0.125 110.20 0.0242 0.02254 108.60 0.0786 0.10

Data show the average OD(600 nm) achieved after 16 h by four biological replicates, with three technical replicates
each. Statistical analysis was performed using GraphPad software v.8, using a one-way ANOVA test with Fischer’s
least significant difference test. Values in bold denote statistically significant samples.
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Table A3. Summary of the growth potentiation assays with phytochemicals and 2 µg/mL chloram-
phenicol against Gram-negative species.

Gram-Negative Pathogens OD(600 nm) Potentiative Assay Optical Densities, Percentage of Solvent Controls

Phytochemical Concentration (mg/mL)
S. Typhimurium P. aeruginosa

OD(600 nm) p-Value SEM (±) OD(600 nm) p-Value SEM (±)

PaβN-positive
control 0.512 13.95 <0.0001 0.02 18.74 <0.0001 0.01

Prosur
0.5 103.57 0.3124 0.04 98.20 0.5309 0.02
0.25 80.89 <0.0001 0.02 81.58 <0.0001 0.03

0.125 77.62 <0.0001 0.02 77.16 <0.0001 0.03

Eriodictyol
0.5 98.64 0.6938 0.01 101.10 0.6932 0.04
0.25 85.37 <0.0001 0.01 85.48 <0.0001 0.03

0.125 83.91 <0.0001 0.01 81.64 <0.0001 0.02

Naringin
0.5 101.04 0.7756 0.04 94.27 0.0463 0.04
0.25 80.06 <0.0001 0.02 81.08 <0.0001 0.04

0.125 78.37 <0.0001 0.02 77.47 <0.0001 0.03

Ferulic acid
0.5 103.70 0.2932 0.04 99.68 0.9135 0.03
0.25 81.53 <0.0001 0.02 81.17 <0.0001 0.03

0.125 82.09 <0.0001 0.01 79.12 <0.0001 0.03

Hesperidin
0.5 100.45 0.8964 0.07 92.08 0.0062 0.04
0.25 78.65 <0.0001 0.04 78.86 <0.0001 0.03

0.125 76.91 <0.0001 0.03 77.51 <0.0001 0.04

Rutin
0.5 100.13 0.9658 0.04 96.20 0.1855 0.02
0.25 79.24 <0.0001 0.03 79.17 <0.0001 0.04

0.125 78.24 <0.0001 0.01 76.73 <0.0001 0.03

Quercetin
0.5 39.29 - - 40.78 - -
0.25 20.45 - - 21.57 - -

0.125 18.44 - - 19.48 - -

Caffeic acid
0.5 87.87 0.0002 0.03 86.92 0.0003 0.04
0.25 78.28 <0.0001 0.02 81.13 <0.0001 0.03

0.125 75.44 <0.0001 0.02 81.86 <0.0001 0.04

Cinnamic acid
0.5 80.42 <0.0001 0.04 86.98 0.0003 0.03

0.25 75.22 <0.0001 0.02 82.71 <0.0001 0.01
0.125 77.97 <0.0001 0.02 82.69 <0.0001 0.03

Thymol
0.5 50.82 <0.0001 0.07 42.20 <0.0001 0.07
0.25 76.50 <0.0001 0.02 82.40 <0.0001 0.02

0.125 75.62 <0.0001 0.02 82.86 <0.0001 0.03

Kaempferol
0.5 93.75 - - 86.67 - -

0.25 71.56 - - 80.58 - -
0.125 67.51 - - 71.38 - -

Naringenin
0.5 100.76 0.8085 0.02 97.59 0.4949 0.03

0.25 86.47 <0.0001 0.01 85.39 <0.0001 0.04
0.125 85.42 <0.0001 0.01 82.08 <0.0001 0.04

Vanillin
0.5 92.04 0.0117 0.01 91.73 0.0197 0.02

0.25 77.50 <0.0001 0.02 79.45 <0.0001 0.03
0.125 78.24 <0.0001 0.01 79.34 <0.0001 0.02

Vanillic acid
0.5 93.30 0.0329 0.02 92.97 0.0471 0.03

0.25 78.33 <0.0001 0.01 83.76 <0.0001 0.03
0.125 77.44 <0.0001 0.02 81.91 <0.0001 0.03

Data show the average OD(600 nm) achieved after 16 h by four biological replicates, with three technical replicates
each. Statistical analysis was performed using GraphPad software v.8, using a one-way ANOVA test with Fischer’s
least significant difference test. Values in bold denote statistically significant samples.
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Table A4. Summary of the growth potentiation assays with phytochemicals and 2 µg/mL chloram-
phenicol against Gram-negative species.

Gram-Positive Pathogens OD(600 nm) Potentiative Assay Optical Densities, Percentage of Solvent Controls

Phytochemical Concentration (mg/mL)
S. aureus L. monocytogenes

OD(600 nm) p-Value SEM (±) OD(600 nm) p-Value SEM (±)

PaβN-positive
control 0.512 5.79 <0.0001 0.01 −8.33 <0.0001 0.10

Prosur
0.5 17.85 <0.0001 0.03 108.54 0.1263 0.06
0.25 19.50 <0.0001 0.05 100.55 0.9260 0.10

0.125 54.26 <0.0001 0.13 96.74 0.6431 0.14

Eriodictyol
0.5 10.41 <0.0001 0.01 90.54 0.0915 0.07
0.25 9.41 <0.0001 0.01 90.48 0.1138 0.07

0.125 13.81 <0.0001 0.06 89.55 0.1370 0.11

Naringin
0.5 116.92 0.1361 0.12 105.89 0.2878 0.05
0.25 90.95 0.0187 0.02 102.91 0.6277 0.11

0.125 82.82 <0.0001 0.02 97.69 0.7414 0.15

Ferulic acid
0.5 95.37 0.6795 0.11 109.95 0.0750 0.05
0.25 86.93 0.0008 0.06 105.18 0.3870 0.12

0.125 80.06 <0.0001 0.05 101.44 0.8388 0.14

Hesperidin
0.5 81.25 0.0980 0.13 106.38 0.2502 0.10

0.25 86.38 0.0005 0.04 96.63 0.5751 0.10
0.125 79.26 <0.0001 0.05 92.99 0.3179 0.13

Rutin
0.5 96.73 0.7700 0.18 111.89 0.0339 0.08

0.25 84.22 <0.0001 0.05 105.69 0.3413 0.13
0.125 74.53 <0.0001 0.06 100.68 0.9231 0.16

Quercetin
0.5 9.34 - - 44.61 - -

0.25 −36.27 - - 56.81 - -
0.125 −35.57 - - 59.77 - -

Caffeic acid
0.5 0.580 <0.0001 0.01 101.19 0.8888 0.09

0.25 2.15 <0.0001 0.02 100.97 0.8795 0.11
0.125 2.45 <0.0001 0.02 97.31 0.7074 0.14

Cinnamic acid
0.5 84.64 0.1805 0.12 101.78 0.8364 0.13

0.25 90.60 0.1190 0.05 105.18 0.4193 0.14
0.125 80.43 0.0184 0.11 101.25 0.8622 0.16

Thymol
0.5 32.05 <0.0001 0.13 86.49 0.1251 0.20

0.25 80.55 0.0016 0.10 100.76 0.9069 0.10
0.125 73.78 0.0018 0.11 97.77 0.7555 0.16

Kaempferol
0.5 26.20 - - 32.62 - -

0.25 20.99 - - 21.45 - -
0.125 21.12 - - 16.51 - -

Naringenin
0.5 4.41 <0.0001 0.01 108.43 0.3349 0.10

0.25 22.71 <0.0001 0.13 103.16 0.6209 0.10
0.125 44.14 <0.0001 0.24 100.57 0.9377 0.12

Vanillin
0.5 62.72 0.0015 0.17 106.49 0.4586 0.10

0.25 81.56 0.0027 0.09 103.79 0.5505 0.12
0.125 74.20 0.0022 0.13 99.47 0.9391 0.15

Vanillic acid
0.5 56.74 0.0003 0.18 111.51 0.1879 0.10

0.25 81.31 0.0023 0.07 101.64 0.7967 0.12
0.125 70.32 0.0005 0.14 96.89 0.6627 0.15

Data show the average OD(600 nm) achieved after 16 h by four biological replicates, with three technical replicates
each. Statistical analysis was performed using GraphPad software v.8, using a one-way ANOVA test with Fischer’s
least significant difference Test. Values in bold denote statistically significant samples.
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Figure A1. Growth curves of all tested microorganisms challenged with 0.5 mg/mL of all nine tested 
phytochemicals. Viable numbers (based on CFU/mL) of the following: (a) S. Typhimurium, (b) S. 
aureus, (c) P. aeruginosa, and (d) L. monocytogenes following exposure to different phytochemicals. 
Experiments were repeated with three biological replicates (three technical replicates each) over an 
incubation period of 16 h. Graphs display the averaged values of three technical replicates for three 
biological replicates. Error bars indicate SEM (±). 
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Kaempferol 104.51 0.06 0.7482 112.78 0.07 0.2584 
Naringenin 42.56 1.12 <0.0001 114.99 0.07 0.1859 

Vanillin 85.28 0.72 0.2952 98.66 0.06 0.9053 
Data presented are the average values as percentages of the controls for the calculated growth ve-
locity (CFU/mL/min) metric. Experiments were repeated with three biological replicates (three tech-
nical replicates each) over an incubation period of 16 h. Values in bold denote statistically significant 
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Figure A1. Growth curves of all tested microorganisms challenged with 0.5 mg/mL of all nine tested
phytochemicals. Viable numbers (based on CFU/mL) of the following: (a) S. Typhimurium, (b) S.
aureus, (c) P. aeruginosa, and (d) L. monocytogenes following exposure to different phytochemicals.
Experiments were repeated with three biological replicates (three technical replicates each) over an
incubation period of 16 h. Graphs display the averaged values of three technical replicates for three
biological replicates. Error bars indicate SEM (±).

Table A5. Summary of growth curves challenging the Gram-negative pathogens with various
phytochemicals at 0.5 mg/mL concentrations.

Gram-Negative Pathogens Growth Curve Average Growth Velocities (%)

Phytochemical
(0.5 mg/mL)

S. Typhimurium P. aeruginosa

Normalised
Growth
Velocity

(CFU/mL/min)

SEM
(±) p-Value

Normalised
Growth
Velocity

(CFU/mL/min)

SEM
(±) p-Value

Solvent control 100 0.08 - 100 0.73 -
Prosur 98.20 0.08 0.8981 102.86 0.07 0.8000

Eriodictyol 79.10 1.00 0.1385 114.09 0.07 0.2135
Ferulic acid 75.89 0.96 0.0883 89.87 0.99 0.3705
Quercetin 89.37 0.75 0.4486 106.83 0.04 0.5446

Caffeic acid 96.50 0.08 0.8026 96.08 0.70 0.7281
Thymol 29.80 0.27 <0.0001 12.41 0.32 <0.0001

Kaempferol 104.51 0.06 0.7482 112.78 0.07 0.2584
Naringenin 42.56 1.12 <0.0001 114.99 0.07 0.1859

Vanillin 85.28 0.72 0.2952 98.66 0.06 0.9053
Data presented are the average values as percentages of the controls for the calculated growth velocity
(CFU/mL/min) metric. Experiments were repeated with three biological replicates (three technical replicates
each) over an incubation period of 16 h. Values in bold denote statistically significant samples.
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Table A6. Summary of growth curves challenging the Gram-positive pathogens with various phyto-
chemicals at 0.5 mg/mL concentrations.

Gram-Positive Pathogens Growth Curve Average Growth Velocities (%)

Phytochemical
(0.5 mg/mL)

S. aureus L. monocytogenes

Normalised
Growth
Velocity

(CFU/mL/min)

SEM
(±) p-Value

Normalised
Growth
Velocity

(CFU/mL/min)

SEM
(±)

p-
Value

Solvent control 100 0.08 - 100 0.08 -
Prosur 85.48 0.63 0.1563 102.31 0.06 0.7756

Eriodictyol 15.32 0.29 <0.0001 38.76 0.31 <0.0001
Ferulic acid 86.26 0.64 0.1793 101.51 0.07 0.8530
Quercetin 30.18 0.36 <0.0001 59.70 0.91 <0.0001

Caffeic acid 20.92 0.44 <0.0001 78.43 0.60 0.0086
Thymol 24.12 0.36 <0.0001 0 0.00 <0.0001

Kaempferol 43.11489362 0.1693 <0.0001 86.40903881 0.04408 0.0940
Naringenin 1.925106383 0.1131 <0.0001 51.95677092 0.1677 <0.0001

Vanillin 81.95744681 0.6132 0.0791 84.93532012 0.6532 0.0638
Data presented are the average values as percentages of the controls for the calculated growth velocity
(CFU/mL/min) metric. Experiments were repeated with three biological replicates (three technical replicates
each) over an incubation period of 16 h. Values in bold denote statistically significant samples.

Table A7. Summary of growth curves challenging the Gram-negative pathogens with various
phytochemicals at 0.5 mg/mL concentrations.

Gram-Negative Pathogens Growth Curve Average Endpoint States (%)

Phytochemical
(0.5 mg/mL)

S. Typhimurium P. aeruginosa

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Solvent control 100 1.07 - 100 0.06 -
Prosur 114.48 0.06 0.2964 88.45 1.04 0.2687

Eriodictyol 86.45 1.08 0.3283 101.77 0.08 0.8647
Ferulic acid 107.90 0.08 0.5678 99.85 0.08 0.9886
Quercetin 115.10 0.04 0.2762 101.78 0.03 0.8636

Caffeic acid 84.63 1.36 0.2679 98.32 0.06 0.8723
Thymol 33.22 0.76 <0.0001 70.53 0.12 0.0057

Kaempferol 113.03 0.10 0.3469 97.92 0.11 0.8417
Naringenin 53.76 1.44 0.0012 53.77 1.59 <0.0001

Vanillin 112.25 0.03 0.3764 87.32 1.02 0.2249
Data presented are the average values as percentages of the controls for the calculated endpoint state (CFU/mL)
metric at the end of the 16 h incubation period. Experiments were repeated with three biological replicates (three
technical replicates each) over an incubation period of 16 h. Values in bold denote statistically significant samples.

Table A8. Summary of growth curves challenging the Gram-positive pathogens with various phyto-
chemicals at 0.5 mg/mL concentrations.

Gram-Positive Pathogens Growth Curve Average Endpoint States (%)

Phytochemical
(0.5 mg/mL)

S. aureus L. monocytogenes

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Solvent control 100 0.05 - 100 0.12 -
Prosur 97.78 0.09 0.7720 61.21 1.35 <0.0001
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Table A8. Cont.

Gram-Positive Pathogens Growth Curve Average Endpoint States (%)

Phytochemical
(0.5 mg/mL)

S. aureus L. monocytogenes

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Normalised
Endpoint

State
(CFU/mL)

SEM
(±) p-Value

Eriodictyol 55.89 0.18 <0.0001 64.69 0.26 <0.0001
Ferulic acid 97.96 0.06 0.7904 104.53 0.03 0.5754
Quercetin 85.21 0.95 0.0559 98.17 0.11 0.8206

Caffeic acid 73.99 0.84 0.0010 64.17 0.73 <0.0001
Thymol 56.81 0.27 <0.0001 29.84 0.81 <0.0001

Kaempferol 100.77 0.16 0.9194 102.77 0.05 0.7321
Naringenin 19.76 0.70 <0.0001 55.79 0.60 <0.0001

Vanillin 90.00 0.20 0.1934 102.92 0.03 0.7183
Data presented are the average values as percentages of the controls for the calculated endpoint state (CFU/mL)
metric at the end of the 16 h incubation period. Experiments were repeated with three biological replicates (three
technical replicates each) over an incubation period of 16 h. Values in bold denote statistically significant samples.

Table A9. Summary of growth curves challenging the Gram-positive pathogens with various phyto-
chemicals at 0.05 mg/mL concentrations.

Gram-Positive Pathogens Growth Curve Endpoint States (%)

Phytochemical
(0.05 mg/mL)

S. aureus L. monocytogenes

Normalised
Endpoint

State
(vCFU/mL)

SEM
(±) p-Value

Normalised
Endpoint

State
(vCFU/mL)

SEM
(±) p-Value

Solvent control 100 0.22 - 100 0.12 -
Prosur 103.83 0.14 0.7205 105.73 0.03 0.4484

Eriodictyol 68.26 1.29 0.0038 99.64 0.14 0.9623
Ferulic acid 101.26 0.08 0.9069 104.34 0.07 0.5657
Quercetin 106.52 0.03 0.5427 54.06 1.17 <0.0001

Caffeic acid 107.36 0.03 0.4916 44.85 1.15 <0.0001
Thymol 25.86 1.15 <0.0001 99.63 0.06 0.9601

Kaempferol 102.30 0.21 0.8297 106.39 0.04 0.3983
Naringenin 22.61 0.80 <0.0001 102.74 0.03 0.7159

Vanillin 75.59 0.86 0.0246 84.58 0.56 0.0435
Data presented are the average values as percentages of the controls for the calculated endpoint state (CFU/mL)
metric at the end of the 16 h incubation period. Experiments were repeated with three biological replicates (three
technical replicates each) over an incubation period of 16 h. Note the significant p-values obtained for the use of
vanillin against L. monocytogenes at 0.05 mg/mL, which were not observed at 0.5 mg/mL. Values in bold denote
statistically significant samples.
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Figure A2. Drug accumulation curves of S. Typhimurium challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) S. Typhimurium challenged with the 
Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) S. Typhimurium challenged with thymol, caffeic acid, and vanillin. (c) S. Typhimurium 
challenged with eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates. Error 
bars indicate SEM (±). 
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Figure A2. Drug accumulation curves of S. Typhimurium challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) S. Typhimurium challenged with the
Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) S. Typhimurium challenged with thymol, caffeic acid, and vanillin. (c) S. Typhimurium
challenged with eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates. Error
bars indicate SEM (±).
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Figure A3. Drug accumulation curves of S. aureus challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) S. aureus challenged with the 
Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) S. aureus challenged with thymol, caffeic acid, and vanillin. (c) S. aureus 
challenged with eridictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological rep-
licates. Error bars indicate SEM (±). 
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Figure A3. Drug accumulation curves of S. aureus challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) S. aureus challenged with the Prosur NATPRE
T-10+ mix, naringenin, ferulic acid, and quercetin. (b) S. aureus challenged with thymol, caffeic acid, and vanillin. (c) S. aureus challenged with eridictyol and
kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates. Error bars indicate SEM (±).
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Figure A4. Drug accumulation curves of P. aeruginosa challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) P. aeruginosa challenged with 
the Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) P. aeruginosa challenged with thymol, caffeic acid, and vanillin. (c) P. 
aeruginosa challenged with eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three 
biological replicates. Error bars indicate SEM (±). 
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Figure A4. Drug accumulation curves of P. aeruginosa challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) P. aeruginosa challenged with the Prosur
NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) P. aeruginosa challenged with thymol, caffeic acid, and vanillin. (c) P. aeruginosa challenged with
eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates. Error bars indicate
SEM (±).
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Figure A5. Drug accumulation curves of L. monocytogenes challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) L. monocytogenes chal-
lenged with the Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) L. monocytogenes challenged with thymol, caffeic acid, and 
vanillin. (c) L. monocytogenes challenged with eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical rep-
licates for three biological replicates. Error bars indicate SEM (±).
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Figure A5. Drug accumulation curves of L. monocytogenes challenged with 0.5 mg/mL of all nine tested phytochemicals. (a) L. monocytogenes challenged with the
Prosur NATPRE T-10+ mix, naringenin, ferulic acid, and quercetin. (b) L. monocytogenes challenged with thymol, caffeic acid, and vanillin. (c) L. monocytogenes
challenged with eriodictyol and kaempferol. Points show the blank-adjusted and averaged values of five technical replicates for three biological replicates. Error
bars indicate SEM (±).
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Table A10. Summary of drug accumulation assays challenging the Gram-negative pathogens with
various phytochemicals at 0.05 mg/mL concentrations.

Gram-Negative Pathogens Drug Accumulation Assays Average Fluorescence Accumulation Velocities (%)

Phytochemical
(0.5 mg/mL)

S. Typhimurium P. aeruginosa

Normalised Fluorescence
Accumulation Velocity

(Fluorescence Units/min)

SEM
(±) p-Value

Normalised Fluorescence
Accumulation Velocity

(Fluorescence Units/min)

SEM
(±) p-Value

Solvent control 100 12.28 - 100 14.55 -
Positive control 197.30 5.95 <0.0001 506.62 30.74 <0.0001

Prosur 169.80 15.57 <0.0001 300.56 37.47 <0.0001
Eriodictyol 108.53 4.03 0.3430 24.96 2.73 0.0449
Ferulic acid 129.14 26.82 0.0014 186.53 3.56 0.0210
Quercetin 2.23 N/D N/D −282.52 N/D N/D

Caffeic acid 140.80 47.14 <0.0001 108.54 3.41 0.8184
Thymol 2.36 0.43 <0.0001 4.18 0.21 0.0108

Kaempferol 108.91 18.82 0.3218 57.33 10.80 0.2521
Naringenin 117.93 30.66 0.0473 16.63 2.84 0.0261

Vanillin 104.80 25.57 0.5938 84.21 2.65 0.6713

Data presented are the average values as percentages of the controls for the calculated fluorescence accumulation
velocity (fluorescence units/min) metric. Experiments were repeated with three biological replicates (five technical
replicates each) over an incubation period of 16 h, trimmed to an appropriate timescale where the accumulation
curves begun to plateau. Values in bold denote statistically significant samples.

Table A11. Summary of drug accumulation assays challenging the Gram-positive pathogens with
various phytochemicals at 0.05 mg/mL concentrations.

Gram-Positive Pathogens Drug Accumulation Assays Average Fluorescence Accumulation Velocities (%)

Phytochemical
(0.5 mg/mL)

S. aureus L. monocytogenes

Normalised Fluorescence
Accumulation Velocity

(Fluorescence Units/min)

SEM
(±) p-Value

Normalised Fluorescence
Accumulation Velocity

(Fluorescence Units/min)

SEM
(±) p-Value

Solvent control 100 97.15 - 100 12.02 -
Positive control 95.34 61.60 0.7157 565.91 64.85 <0.0001

Prosur 52.46 36.82 0.0003 −27.54 8.23 0.0310
Eriodictyol 62.45 80.66 0.0038 267.68 50.83 0.0048
Ferulic acid 12.96 5.768 <0.0001 57.69 2.36 0.4713
Quercetin 7.20 6.64 N/D 8.72 12.84 N/D

Caffeic acid 13.10 3.10 <0.0001 −10.70 9.43 0.0608
Thymol −34.90 16.69 <0.0001 89.11 18.20 0.8528

Kaempferol 14.01 10.41 <0.0001 48.06 13.63 0.3768
Naringenin 16.69 9.03 <0.0001 −5.39 8.68 0.0740

Vanillin 1.38 1.48 <0.0001 5.02 0.55 0.1071

Data presented are the average values as percentages of the controls for the calculated fluorescence accumulation
velocity (fluorescence units/min) metric. Experiments were repeated with three biological replicates (five technical
replicates each) over an incubation period of 16 h, trimmed to an appropriate timescale where the accumulation
curves began to plateau. Values in bold denote statistically significant samples.
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Table A12. Summary of drug accumulation assays challenging the Gram-negative pathogens with
various phytochemicals at 0.05 mg/mL concentrations.

Gram-Negative Pathogens Drug Accumulation Assays Average Steady State Fluorescence Accumulation (%)

Phytochemical
(0.5 mg/mL)

S. Typhimurium P. aeruginosa

Normalised Steady State
Fluorescence

Accumulation
(Fluorescence Units)

SEM
(±) p-Value

Normalised Steady State
Fluorescence

Accumulation
(Fluorescence Units)

SEM
(±) p-Value

Solvent control 100 887.2 - 100 5517 -
Positive control 100 789.6 0.7690 370.21 4027 <0.0001

Prosur 76.99 9701 0.0007 318.34 3969 <0.0001
Eriodictyol 79.63 1133 0.0026 36.11 1192 <0.0001
Ferulic acid 59.64 11683 <0.0001 250.17 807.5 <0.0001
Quercetin 4.06 N/D N/D N/D N/D N/D

Caffeic acid 53.70 9890 <0.0001 107.66 1496 0.5869
Thymol 4.37 380.6 <0.0001 4.09 189.2 <0.0001

Kaempferol 51.63 1199 <0.0001 44.49 2722 <0.0001
Naringenin 88.52 2307 0.0867 74.02 1565 0.0668

Vanillin 75.64 6260 0.0003 171.61 3806 <0.0001

Data presented are the average values as percentages of the controls for the calculated steady state fluorescence
accumulation (fluorescence units/min) metric. Experiments were repeated with three biological replicates (five
technical replicates each) over an incubation period of 16 h, trimmed to an appropriate timescale where the
accumulation curves began to plateau. Values in bold denote statistically significant samples.

Table A13. Summary of drug accumulation assays challenging the Gram-positive pathogens with
various phytochemicals at 0.05 mg/mL concentrations.

Gram-Positive Pathogens Drug Accumulation Assays Average Steady State Fluorescence Accumulation (%)

Polyphenol
(0.5 mg/mL)

S. aureus L. monocytogenes

Normalised Steady State
Fluorescence

Accumulation
(Fluorescence Units)

SEM
(±) p-Value

Normalised Steady State
Fluorescence

Accumulation
(Fluorescence Units)

SEM
(±) p-Value

Solvent control 100 20488 - 100 2901 -
Positive control 108.03 20032 0.5893 1024.55 23660 <0.0001

Prosur 106.33 9631 0.6704 809.83 15129 <0.0001
Eriodictyol 16.82 11308 <0.0001 128.89 2630 0.7475
Ferulic acid 13.11 1894 <0.0001 71.58 769.6 0.7515
Quercetin 5.91 N/D N/D 12.27 1095 N/D

Caffeic acid 7.02 986.9 <0.0001 −1.51 1590 0.2588
Thymol 93.37 3219 0.6558 386.07 10075 0.0017

Kaempferol 31.46 3307 <0.0001 148.95 1307 0.5855
Naringenin 20.46 3114 <0.0001 59.46 1381 0.6515

Vanillin 0.77 155.5 <0.0001 11.02 330.2 0.3220

Data presented are the average values as percentages of the controls for the calculated steady-state fluorescence
accumulation (fluorescence units/min) metric. Experiments were repeated with three biological replicates (five
technical replicates each) over an incubation period of 16 h, trimmed to an appropriate timescale where the
accumulation curves began to plateau. Values in bold denote statistically significant samples.

Viable numbers (based on CFU/mL) of the S. Typhimurium parental and two thymol-
selected mutant strains. Experiments were repeated with three biological replicates (three
technical replicates each) over an incubation period of 16 h. Graphs display the averaged
values of three technical replicates for three biological replicates. Error bars indicate
SEM (±).
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Figure A6. Colony morphologies of thymol-selected mutant and parental strains of S. Typhimurium.
S. Typhimurium parental and thymol-selected mutant colonies grown overnight at 37 ◦C on LB agar
laced with 0.25 mg/mL thymol. Note the larger, healthier colonies of mutant strain #1, in particular.
The experiment was performed in biological duplicate.
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Figure A8. Congo red staining of the S. Typhimurium parental and thymol-selected mutant colonies.
S. Typhimurium parental and thymol-selected mutant colonies grown overnight at 37 ◦C on LB-
NaCl agar laced with 40 µg/mL congo red. Note the lesser degree of congo red staining for the S.
Typhimurium mutant strains #1 and #2 compared to the parental strain. Compare these also to mutant
strain #6, which lacks efflux-associated SNPs. The experiment was performed in biological duplicate.
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