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Abstract: Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium
chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important
active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this
investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum,
Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum,
and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA)
gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished
between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed
by the ITS region. In addition, these species were distinguished by metabolic markers profiled by
liquid chromatography–high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin,
and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production
by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A
high-performance liquid chromatography (HPLC) method was developed for simultaneous detection
of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was
the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains
of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of
producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In
addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH,
and temperature were monitored for the improved PenV production using promising P. rubens strain
BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale
PenV production.

Keywords: Penicillium chrysogenum/rubens; internal transcribed spacer region; β-tubulin gene; phe-
noxymethyl penicillin; high-performance liquid chromatography

1. Introduction

Fungi are the diverse group of eukaryotic organisms ubiquitous in nature [1]. The
genus Aspergillus, Fusarium, and Penicillium find applications in various fields includ-
ing food, agricultural, and pharmaceutical industries [2]. The Penicillium genus is a fil-
amentous fungus comprising more than 350 species that produce various industrially
important molecules such as penicillin, griseofulvin, mycophenolic acid, andrastin A,
cephalosporins, chrysogine viridicatol, kojic acid sorbicillin, meleagrin, roquefortine C, xan-
thocillin, secalonic acid D, F, lumpidin, compactin, gibberellins, and indoleacetic acid [3–10].

Precise microorganism identification is crucial in natural product research. However,
understanding fungi is a challenging task which solely relies on macromorphological
and micromorphological approaches which may result in incorrect identifications [11].
Multigene approaches are necessary for accurate identifications at the species and strain
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levels [12,13]. Although the internal transcribed spacer (ITS) region of rDNA has been
recommended as an official molecular marker for most fungal classification [14,15], it has
failed to distinguish closely related species and clades [4]. Due to their impediments, β-
tubulin (BenA) and translational elongation factor 1α (TEF-1α) are the recognized molecular
markers for species-level identification of Penicillium and Fusarium species, respectively,
that can segregate the closely related species.

Penicillin was a breakthrough drug in medical history produced by P. chrysogenum/rubens
species. Benzylpenicillin (Penicillin G; PenG) and phenoxymethyl penicillin (Penicillin
V; PenV). Natural penicillins display excellent activity against both Gram-positive and
selected Gram-negative bacteria [16]. Natural penicillins are the substrate for 6-amino peni-
cillanic acid (6-APA) by penicillin acylases, which is important to produce semisynthetic
β-lactam antibiotics. Global demand for semisynthetic β-lactam antibiotics is 6000 metric
tons per year, accounting for approximately 65% of the total antibiotic market [17,18]. PenV
is formed when Phenoxy acetic acid (POA) is added into a fermentation medium along
with a highly stable at acidic pH, whereas PenG is less stable. Hence, it can be used in oral
demonstrations to treat especially, strep throat, otitis, and cellulitis, and helps in preventing
rheumatic fever [19]. Widespread uses of these β-lactam antibiotics lead to antimicrobial
resistance (AMR) globally. AMR is a sign of serious threat to public health which forced
researchers to ascertain new and amended antibiotics [20]. Pharmaceutical production
and trade have been disrupted during the COVID-19 pandemic in many countries world-
wide. In consequence, the use of precise antibiotic for infections is necessary for curing
infection and reducing AMR. Hence, domestic production of antibiotics/medicines/Active
Pharmaceutical Intermediates (APIs) is necessary to replace the bulk of these APIs.

We have explored the preparation of an indigenous P. rubens strain portfolio for
industrial scale PenG/V production. In this study, we isolated 109 Penicillium isolates
from various habitats in India. The obtained strains were evaluated by morphological and
microscopic examination for genus confirmation. The results were also authenticated with
the help of two molecular markers, the ITS and BenA genes. The metabolic taxonomic
marker was profiled by liquid chromatography–high resolution mass spectrometry (LC-
HRMS). A high-performance liquid chromatographic (HPLC) method was developed for
the simultaneous detection of PenV, 6-APA, and POA, which are part of the fermentation
system. All isolates were assessed for quantitative PenV production in the submerged
fermentation process, quantified by HPLC.

2. Materials and Methods
2.1. Chemicals and Reagents

All the media, medium ingredients, ethyl acetate, amyl acetate, acetonitrile, methanol,
and dichloromethane were purchased from HiMedia (Mumbai, India). PenV, POA, 6-APA,
and phosphoric acid (H3PO4) were purchased from Sigma Aldrich (Bangalore, India), and
formic acid was purchased from Tokyo Chemical Industry (TCI) Chemicals (India).

2.2. Isolation and Morphological Characterization of Fungi

Various food grains, poultry feed, soil, and environmental samples were collected
from different sites of Maharashtra, Gujarat, Andhra Pradesh, and Telangana, India. The
obtained samples were processed for isolation of fungi using dilution and blotter method
and incubated at 25± 2 ◦C for 5 days [12]. Pure colonies were preserved on the Potato
Dextrose Agar (PDA) slants at 4 ◦C for further use. The isolated colonies were evaluated
for species identification using traditional characterization of the colony texture on specific
media such as Czapek Yeast Autolysate (CYA), Malt Extract Agar (MEA), Yeast Extract
Supplemented (YES), and Creatine Sucrose (CREA). In addition, surface, reverse colony,
and microscopic observations including phialides, spore, and conidial arrangement were
performed [12].
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2.3. Molecular Identification of Fungi

A precise identification of fungal species was conducted using dual molecular markers,
i.e., ITS region [14] and BenA protein-coding gene [21]. Isolated pure fungal species were
grown in CYA broth for five days, and grown mycelia were harvested and lyophilized using
cold liquid nitrogen. About 100 mg of the powdered mycelium was used for genomic DNA
(gDNA) isolation using DNeasy Plant Mini Kit (QIAGEN, Delhi, India, Pvt. Ltd.) according
to manufacturer’s instructions. The purity and concentration of DNA was determined using
Nanodrop ND 1000 UV–Vis spectrophotometer (Thermo Scientific, Waltham, MA, USA).

2.3.1. ITS Region Amplification

A Polymerase chain reaction (PCR) was performed in a Thermocycler (Eppendorf,
Hamburg, Germany) with gDNA (1 µL), GoTaq Ready-mix (5 µL) (Promega, Mumbai,
India), forward and reverse primers (0.25 µL) and total volume was made 10 µL with
nuclease-free water. The PCR condition was programmed for 35 cycles as follows: initial
denaturation at 94 ◦C (3 min), denaturation at 94 ◦C (30 s), annealing at 40 ◦C (1 min),
elongation at 72 ◦C (1 min) and final elongation at 72 ◦C. After successful PCR, the amplified
product was resolved onto agarose gel electrophoresis (1%) for gene amplification.

2.3.2. BenA Gene Amplification

For BenA gene amplification, a PCR reaction was set up as explained above. The PCR
conditions included initial denaturation at 95 ◦C (5 min), denaturation at 95 ◦C (1 min),
annealing at 55 ◦C (55 s), elongation at 72 ◦C (1 min), and final elongation at 72 ◦C (10 min).
PCR was run for 35 cycles. After successful PCR, the amplified product was resolved onto
agarose gel electrophoresis (1%) for gene amplification.

2.4. ITS and BenA Gene Sequence Analysis

The positive amplicon of both markers was purified using DNA purification kit
(Macherey-Nagel, GmbH, Duren, Germany) according to the manufacturer’s instructions.
The amplified PCR product was sent for sequencing to Eurofins Genomics India Pvt.
Ltd. (Bangalore, India). Obtained sequences were searched in the National Centre for
Biotechnology Information (NCBI) database for the highest sequence similarity and total
scores using a basic local alignment tool (BLAST), and strain names were noted for further
reference. The evolutionary relationship was analyzed using the Neighbor-joining tree
(NJ) method on the maximum composite likelihood model by MEGA 7 software, version
7.1. The bootstrap tree constructed from 1000 replicates and percentage taxa coverage are
shown next to the branch.

2.5. Metabolic Profiling Using LC-HRMS

Secondary metabolites are a very efficient tool in the species-level identification in
the fungal taxonomy. In this investigation, metabolic profiling was performed using LC-
HRMS to differentiate P. chrysogenum and P. rubens [22]. With minor modification, isolated
Penicillium species were grown onto CYA plates for 7 days at 25 ◦C. At the end of the
incubation period, the agar plugs (~6 mm) were taken from the middle of the colony and
transferred to the 10 mL screw-cap glass bottle and extracted twice with ethyl acetate,
methanol (MeOH), dichloromethane (3:2:1), and formic acid (1%). The organic fraction
was concentrated and eluted into MeOH. The final elute was subjected to the further
purification step using Solid Phase Extraction (SPE) cartridge Oasis HLB (Waters, Milford,
MA, USA). Briefly, the cartridge was equilibrated using 1 mL MeOH:water (50:50) before
the purification procedure. Next, the cartridge was washed with 1 mL of MeOH:W=water
(5:95), applied to the cartridge and kept stable until the cartridge became completely dried.
Finally, the samples were eluted into 1 mL of MeOH and characterized using LC-HRMS [13].
Briefly, a gradient method consisting of acetonitrile (ACN) with 0.1% formic acid (C) and
water with 0.1% formic acid (D). The gradient was first at 2% ©, and 98% (D) for 0–30 s.
Next, from 30 s to 10 min (C), it changed from 2% to 45% and (D) from 98% to 55%. From
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10 to 13 min (C), it changed from 45% to 98% and (D) from 55% to 2%, which was then
changed to 2% (C) and 98% (D) in 30 s and held at the same concentration until the next
sample injection. The sample (2 µL) was injected and scanned between 100 and 2000 Da for
15 min. Data acquisition and processing were conducted by X CaliburTM software, version
4.0 (Thermo Scientific, Waltham, MA, USA).

2.6. Biosynthesis of PenV Using Submerged Fermentation

Penicillium chrysogenum/P. rubens are well known for β-lactam antibiotic (PenV/G) pro-
duction. These isolated species were evaluated for PenV production in the submerged fer-
mentation process. Briefly, 7-day-old P. chrysogenum/P. rubens spore suspension
(1 × 108/mL) was prepared using a Neubauer chamber, inoculated into 10 mL of seed
medium containing (g/L); KCl—10, Glucose—20, Yeast nitrogen base—6.6, Citric acid—1.5,
K2HPO4—6, Yeast extract—2, and incubated at 25 ◦C under 180 rpm in a shaker incubator
(Hi-Point, Kaohsiung, Taiwan) for 24 h. Following incubation, the prepared seed inocula
were transferred into 40 mL of newly defined penicillin-producing medium containing
(g/L); Glucose—1, Lactose—20, Yeast extract—10, Corn steep liquor—5, Beef extract—
0.075, Peptone—0.125, (NH4)2SO4—4, KH2PO4—3, ZnSO4·7H2O—0.01, MgSO4·7H2O—
2.3, POA—1, and incubated at 25 ◦C under 180 rpm for 10 days. After incubation, cultures
were harvested and extracted for PenV production.

2.7. Optimization of Fermentation Parameters for PenV Production

The effect of various fermentation parameters including POA concentration (0.05 to
0.10) inoculum size (1 × 106, 1 × 107 and 1 × 108, and 1 × 109 spores/mL), temperature (20,
25, 30, 35, and 40 ◦C), initial pH of the medium (2–11) and incubation period (10 days) on the
growth of P. chrysogenum BIONCL P45 and PenV production were examined. The culture
was grown in a 100 mL working volume in a 500 mL Erlenmeyer flask and incubated as
described earlier for improved PenV production. After every 24 h of incubation, 10 mL
of the sample was withdrawn and analyzed for PenV production by the HPLC method
(described in Section 2.10). All the experiments were carried out in triplicate.

2.8. Downstream Processing (DSP) of PenV

At the end of the incubation period, the fermented broth was harvested by filtering the
fungal biomass using filter paper, and the obtained cell-free supernatant (CFS) was used
for the DSP of PenV [23]. With minor modifications, the CFS was chilled to 4 ◦C for 30 min,
and pH was adjusted to 2.5 with H2SO4. Subsequently, an equal volume of chilled n-butyl
acetate was added and extracted to the acidified broth with horizontal shaking for 5 min.
Further, the organic fraction was separated, and an equal volume of cold 10 mM phosphate
buffer (pH 7.5) was added. Finally, the aqueous fraction was collected in a clean tube and
1 mL of 0.02% calcium carbonate slurry was added to extract the PenV calcium salt and
used for quantitative determination by HPLC. Furthermore, the recovery studies were also
conducted by artificially spiking 1% standard PenV in an aqueous sample (Milli Q) and a
newly defined penicillin-producing medium for 7 days. At the end of the incubation period,
DSP was performed with an equal volume of n-butyl acetate (n 3), as discussed above.

2.9. Antibiotic Sensitivity Assay for PenV Production

A routine antibiotic sensitivity test was performed to check the production of PenV
from the fermented broth of test strains. Antimicrobial sensitivity assay was performed
against the pre-grown culture of Staphylococcus aureus NCIM-2079 on Muller–Hinton Agar
(MHA) plates. A well of 6 mm in diameter was made using a sterile borer, and 50 µL
of filtered and extracted broth was added to each well. Positive control was maintained
with varying concentrations from 1 µg/mL to 50 µg/mL of standard PenV. Thus, prepared
plates were incubated at 37 ◦C for 18–24 h in an incubator (Genaxy Scientific, New Delhi,
India). Following incubation, the zone of inhibition was measured by the Hi antibiotics
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zone scale (HiMedia, Mumbai, India), and the relative PenV concentration was calculated
by comparing it with standard PenV.

2.10. Development of HPLC Method for Detection of PenV, POA, and 6-APA

In this study, the HPLC method for simultaneous detection of 6-APA, PenV, and POA
molecules was developed using C18 analytical column X-Bridge, 4.6 × 250 mm in size with
5 µm particle size, 1525 binary pump, 2489 UV–Visible detector, and 2707 autosampler
system (Waters, USA). The mobile phase consisting of MeOH: water, ACN: water, and
MeOH: ACN: water with varying concentrations and pH were tested for better separation
of these molecules. The chromatography analysis was processed by injecting 20 µL of
the test sample with a flow rate of 1 mL/min and detected at 210 nm. The separation
and quantification of the test sample were compared with the standard graph prepared
with standard molecules, 6-APA, PenV, and POA. The limit of detection (LOD), the limit
of quantification (LOQ), and the precession of the method were measured by preparing
calibration curves of commercial standards.

3. Results
3.1. Isolation and Morphological Identification of Fungal Species

In this study, we aim to landscape an indigenous P. chrysogenum/rubens strain portfolio
for PenV production. We have collected various samples for the isolation of Penicillium
species and authenticated them on Penicillium specific media. Penicillium species have been
identified using traditional approaches such as aerial, reverse colony color and morphology,
conidium, colonial ornamentation, pigment formation, and growth rate on CYA medium
(Table S1). We have isolated various species belonging to the genera Penicillium, Aspergillus,
Scopulariopsis, and Talaromyces based on colonies similar to Penicillium morphology as
selection criteria. As a result, we obtained 109 isolates belonging to the P. chrysogenum,
P. rubens, P. citrinum, P. brocae, P. oxalicum, P. dipodomyicola, A. sydowii, A. fumigatus and T.
tratensis species. Penicillium species were determined to be the dominant genus among
them (Table 1).

Table 1. Molecular characterization and screening of Penicillium chrysogenum/rubens strains and PenV
production.

Isolate Name Molecular Identification PenV (mg/L)

ITS β-tubulin

BIONCL P1 P. chrysogenum P. chrysogenum 48
BIONCL P2 P. chrysogenum P. chrysogenum ND
BIONCL P3 P. chrysogenum P. chrysogenum ND
BIONCL P4 P. chrysogenum P. chrysogenum 42
BIONCL P5 P. chrysogenum P. chrysogenum ND
BIONCL P6 P. chrysogenum P. chrysogenum 18
BIONCL P7 P. chrysogenum P. chrysogenum 16
BIONCL P8 P. chrysogenum P. chrysogenum 24
BIONCL P9 P. chrysogenum P. chrysogenum ND
BIONCL P10 P. chrysogenum P. chrysogenum ND
BIONCL P11 P. chrysogenum P. chrysogenum ND
BIONCL P12 P. chrysogenum P. chrysogenum ND
BIONCL P13 P. chrysogenum P. chrysogenum ND
BIONCL P14 P. chrysogenum P. chrysogenum 18
BIONCL P15 P. chrysogenum P. chrysogenum ND
BIONCL P16 P. chrysogenum P. chrysogenum ND
BIONCL P17 P. chrysogenum P. chrysogenum 3
BIONCL P18 P. chrysogenum P. chrysogenum 63
BIONCL P19 P. chrysogenum P. chrysogenum ND
BIONCL P20 P. chrysogenum P. chrysogenum ND
BIONCL P21 P. chrysogenum P. chrysogenum ND
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Table 1. Cont.

Isolate Name Molecular Identification PenV (mg/L)

ITS β-tubulin

BIONCL P22 P. chrysogenum P. chrysogenum ND
BIONCL P23 P. chrysogenum P. chrysogenum 21
BIONCL P24 P. chrysogenum P. chrysogenum ND
BIONCL P25 P. chrysogenum P. chrysogenum ND
BIONCL P26 P. chrysogenum P. chrysogenum ND
BIONCL P27 P. chrysogenum P. chrysogenum ND
BIONCL P28 P. chrysogenum P. chrysogenum ND
BIONCL P29 P. chrysogenum P. chrysogenum ND
BIONCL P30 P. chrysogenum P. chrysogenum 32
BIONCL P31 P. chrysogenum P. chrysogenum 22
BIONCL P32 P. chrysogenum P. chrysogenum ND
BIONCL P33 P. chrysogenum P. chrysogenum 12
BIONCL P34 P. chrysogenum P. chrysogenum ND
BIONCL P35 P. chrysogenum P. chrysogenum 24
BIONCL P36 P. chrysogenum P. chrysogenum ND
BIONCL P37 P. chrysogenum P. chrysogenum 14
BIONCL P38 P. chrysogenum P. chrysogenum 16
BIONCL P39 P. chrysogenum P. chrysogenum ND
BIONCL P40 P. rubens P. rubens 43
BIONCL P41 P. oxalicum P. rubens 21
BIONCL P42 P. rubens P. rubens 24
BIONCL P43 P. rubens P. rubens 14
BIONCL P44 P. rubens P. rubens ND
BIONCL P45 P. rubens P. rubens 100
BIONCL P46 P. rubens P. rubens ND
BIONCL P47 P. rubens P. rubens ND
BIONCL P48 P. rubens P. rubens ND
BIONCL P49 P. rubens P. rubens 11
BIONCL P50 P. rubens P. rubens ND
BIONCL P51 P. rubens P. rubens ND
BIONCL P52 P. rubens P. rubens 16
BIONCL P53 P. rubens P. rubens ND
BIONCL P54 P. rubens P. rubens ND
BIONCL P55 P. rubens P. rubens ND
BIONCL P56 P. rubens P. rubens ND
BIONCL P57 P. rubens P. rubens ND
BIONCL P58 P. rubens P. rubens ND
BIONCL P59 P. rubens P. rubens ND
BIONCL P60 P. rubens P. rubens 6
BIONCL P61 P. rubens P. rubens 18
BIONCL P62 P. rubens P. rubens 8
BIONCL P63 P. rubens P. rubens ND
BIONCL P64 P. rubens P. rubens ND
BIONCL P65 P. rubens P. rubens 18
BIONCL P66 P. rubens P. rubens ND
BIONCL P67 P. rubens P. rubens ND
BIONCL P68 P. rubens P. rubens 17
BIONCL P69 P. chrysogenum P. rubens ND
BIONCL P70 P. dipodomyicola P. chrysogenum ND
BIONCL P71 P. dipodomyicola P. rubens ND
BIONCL P72 P. oxalicum P. rubens ND
BIONCL P73 P. oxalicum P. rubens ND
BIONCL P74 P. oxalicum P. rubens ND
BIONCL P75 P. rubens P. rubens ND
BIONCL P76 P. rubens P. rubens ND
BIONCL P77 P. rubens P. rubens ND
BIONCL P78 P. rubens P. rubens ND
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Table 1. Cont.

Isolate Name Molecular Identification PenV (mg/L)

ITS β-tubulin

BIONCL P79 P. rubens P. rubens 10
BIONCL P80 P. rubens P. rubens ND
BIONCL P81 P. brocae P. brocae NA
BIONCL P82 P. brocae P. brocae NA
BIONCL P83 P. brocae P. brocae NA
BIONCL P84 P. citrinum P. citrinum NA
BIONCL P85 P. citrinum P. citrinum NA
BIONCL P86 P. citrinum P. citrinum NA
BIONCL P87 P. citrinum P. citrinum NA
BIONCL P88 P. citrinum P. citrinum NA
BIONCL P89 P. citrinum P. citrinum NA
BIONCL P90 P. citrinum P. citrinum NA
BIONCL P91 P. citrinum P. citrinum NA
BIONCL P92 P. citrinum P. citrinum NA
BIONCL P93 P. citrinum P. citrinum NA
BIONCL P94 P. citrinum P. citrinum NA
BIONCL P95 A. Sydowii A. sydowii NA
BIONCL P96 A. Sydowii A. sydowii NA
BIONCL P97 A. Sydowii A. sydowii NA
BIONCL P98 A. Sydowii A. sydowii NA
BIONCL P99 A. Sydowii A. sydowii NA

BIONCL P100 A. Sydowii A. sydowii NA
BIONCL P101 A. Sydowii A. sydowii NA
BIONCL P102 A. Sydowii A. sydowii NA
BIONCL P103 A. Sydowii A. sydowii NA
BIONCL P104 A. Sydowii A. sydowii NA
BIONCL P105 A. Sydowii A. sydowii NA
BIONCL P106 A. Sydowii A. sydowii NA
BIONCL P107 A. fumigatus A. fumigatus NA
BIONCL P108 S. brevicaulis S. brevicaulis NA
BIONCL P109 T. tratensis T. tratensis NA

ND—not detected, NA—not applied.

The phenotypic differentiation of closely related Penicillium species, mostly P. chryso-
genum and P. rubens, is firmly linked, which is difficult to distinguish (Figure 1). The colony
colors of most isolates were creamy white, bluish green to light green aerially, and yellow,
pale yellow to brownish yellow in reverse. Despite this, interestingly, the differential growth
pattern with floccose white growth with dark brown reverse coloration was sown by P.
brocae BIONCL P81 strain which is similar to A. sydowii BIONCL P95 isolated from soil. The
different geographical locations and habitats may cause variations in the growth pattern.
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3.2. Molecular Identification by ITS Regions

The ITS and BenA gene markers have been used to identify fungal species. Following
successful gene amplification, all the strains were chosen for the BLASTn analysis at NCBI.
The nucleotide sequences displayed with high query coverage and sequence similarity (to
98%) were assigned the same species name. A total of 109 isolates were analyzed with ITS
marker, out of which 40 isolates showed the closest similarity with P. chrysogenum, and
34 isolates were similar to P. rubens. The rest of the isolates belong to P. citrinum, P. brocae, P.
oxalicum, P. dipodomyicola, A. sydowii, A. fumigatus and T. tratensis (Figure 2).
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Figure 2. Phylogenetic analysis of the isolates based on the ITS sequencing.
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3.3. Molecular Identification by BenA Gene

All the isolates were analyzed with the BenA gene for precise identification of closely
related species complexes; 39 isolates showed the closest similarity with P. chrysogenum and
41 with P. rubens. Penicillium oxalicum and P. dipodomyicola strains from ITS identification
showed similarity with P. rubens when analyzed with the BenA gene. Other isolates from
Aspergillus, Scopulariopsis, and Tratensis genera fall under the same genus with BenA gene
identification. ITS failed to differentiate between the closely related strains of the Penicillium
genus to some extent. Furthermore, a phylogenetic tree was constructed for all isolates
analyzed and revealed that they clustered in groups with a close resemblance. Concerning P.
chrysogenum and P. rubens differentiation, the BenA marker gene showed a distinct grouping
formation compared to the ITS marker (Figure 3). The BenA gene showed a separate
grouping from the ITS region within the Penicillium genus, mainly P. chrysogenum and
P. rubens.

3.4. Metabolic Profiling by LC–HRMS

Metabolic profiling is a recognizable proof in fungal taxonomy for the precise seg-
regation of species. In this investigation, one representative strain of P. chrysogenum and
P. rubens was profiled by LC-HRMS. Roquefortine C, chrysogine, sorbicillin, meleagrin,
andrastin A, xanthocillin X, secalonic acid D, lumpedin, and penicillin are produced by the
P. chrysogenum (Figure 4). Moreover, P. rubens can produce all metabolites except secalonic
acid, meleagrin, and roquefortine C. The results suggest that P. chrysogenum strain can
be distinguished from P. rubens using metabolite production. Nevertheless, both strains
showed diversity in PenV production and other metabolites.

3.5. PenV Production

Isolated and authenticated Penicillium strains were screened for PenV production in a
newly defined penicillin-production medium. After screening of 80 P. chrysogenum/rubens
strains for PenV production, 28 were determined to be capable of producing 10–100 mg/L
of PenV in submerged fermentation, quantified by HPLC (Table 1). Among all screened
strains, Penicillium rubens strain BIONCL P45 was determined to be the highest PenV
producer. This strain was chosen for further studies for enhanced antibiotics production by
optimizing various fermentation and other important parameters.

3.6. Optimization Fermentation Parameters

Various fermentation parameters including POA concentration, incubation period,
inoculum size, pH, and temperature were monitored for the improved PenV production
using P. rubens BIONCL P45 strain. Here, POA was used as precursor for biosynthesis of
PenV. Moreover, POA has also been used in certain herbicide and antifungal drugs. Hence,
the effect of POA concentration on vegetative growth and PenV production by P. rubens was
studied. Interestingly, no significant impact was observed on vegetative growth (Figure 5).
However, biosynthesis of PenV was severely affected. A maximum PenV production was
observed when inoculated with 0.01% POA, and biosynthesis of PenV was reduced with
increasing and decreasing concentrations (Figure 6A). In addition, at higher concentration,
traces of POA remain unutilized and affect DSP and PenV quantification. Results suggest
that biosynthesis of PenV began at 72 h of incubation, and on the 5th day, there was a
sharp rise in its production. On the 8th day of an extended incubation period, 101 mg/L of
product was produced. However, further incubation did not result in an increase in PenV
titer (Figure 6B).
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Figure 3. Phylogenetic analysis of the isolates based on the BenA marker sequencing.
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with a positive ionization mode. A—roquefortine C, B—chrysogine, C—sorbicillin, D—meleagrin, 
E—andrastin A, F—xanthocillin X, G—secalonic acid, H—lumpidin, I—penicillin. 
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Furthermore, the optimal production of PenV was achieved with 1 × 108 spore inoc-
ulum. With low number of spores in inoculum, mycelium formed a ball-like pellet 

Figure 4. Extrolite analysis of P. chrysogenum by LC-HRMS (Q-exactive-orbitrap Mass Spectrometer)
with a positive ionization mode. A—roquefortine C, B—chrysogine, C—sorbicillin, D—meleagrin,
E—andrastin A, F—xanthocillin X, G—secalonic acid, H—lumpidin, I—penicillin.

Furthermore, the optimal production of PenV was achieved with 1 × 108 spore inocu-
lum. With low number of spores in inoculum, mycelium formed a ball-like pellet structure
in the production medium. As inoculum size increases, the growth of mycelia changes
from pellets to pulpy with decrease in PenV production, and this might occur because of
limitation in nutrients and oxygen supply (Figure 6C). Incubation temperature evaluated
from 20 to 40 ◦C, and P. rubens exhibited high PenV production (101 mg/L) at 25 ◦C, and
bellow and above 25 ◦C it exhibited a sharp reduction in its biosynthesis (Figure 6D). In
addition, since initial pH of the medium affects the PenV production, the optimum pH was
determined to be 5. Below and above, a decrease in PenV, and at extreme pH values (3 and
9), no cell growth was observed (Figure 6E).
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Figure 6. Optimization of fermentation parameters for PenV production by P. rubens BIONCL P45.
(A)—POA concentration optimization, (B)—Effect of incubation time on PenV production, (C)—Effect
of inoculum size on PenV production, (D)—Effect of temperature on PenV production, (E)—Effect of
initial pH on PenV production.

3.7. DSP and Recovery of PenV

DSP was performed to harvest the PenV from the whole fermented broth in pure
form. To evaluate the percent of recovery, the spiking study of standard 1% PenV was
performed in PenV production medium. As mentioned in the methodology, the extraction
was performed three times with butyl acetate, and finally, the eluted PenV in aqueous
phase was quantified by HPLC. In the first extraction cycle, about 61% recovery rate was
observed. Second cycle of extraction was performed with organic phase remaining in first
cycle, and the 8% PenV was extracted. Finally, in the third cycle of extraction, about 3% of
recovery was observed. In all three cycles, overall, a 72% recovery rate was observed, and
28% of PenV was lost during the extraction, which might be due to the lower pH and the
organic solvent used in the process. Finally, PenV was harvested from the fermented broth
and quantified by HPLC.

3.8. Antibiotic Plate Assay

Antibiotic assay is routinely used to confirm the antimicrobial activity of drugs/molecules.
The fermented broth was extracted for PenV production, its activity evaluated against S.
aureus NCIM-2079. The antimicrobial activity and HPLC results were positively correlated
and used to screen the strains for PenV production. The tested strain showed a 10 to 38 mm
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zone of inhibition (Table S2, Figure S1). The data of test samples produce 10 to 100 mg/L
PenV when compared with standard PenV.

3.9. Development of an HPLC Method for the Detection of PenV, POA, and 6-APA

In this investigation, precise HLPC method was developed for simultaneous, quanti-
tative detection of PenV, POA, and 6-APA. Results reported that ACN:water (50:50), pH
3.0 was the most suitable for the distinct separation. Retention times for 6-APA, POA,
and PenV were recorded at 2.49, 3.72, and 4.39 min, respectively, with good resolution
(Figure 7). The calibration curve was plotted by considering the peak area and the relative
concentration (Figure S2), and then the regression equation was computed for each of the
molecules; the values are listed in Table 2. Correlation coefficients (R2), 0.9988 and 0.9999,
were observed for PenV and 6-APA, respectively. However, (R2) 0.9373 was determined
for POA.
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Figure 7. Quantitative analysis of PenV and simultaneous detection of 6-APA, POA, and PenV by
HPLC method.

Table 2. Validation parameters of the developed HPLC method for detection of Pen V, 6-APA, and POA.

Parameter Pen V 6-APA POA

Range 100–500 µg/mL 100–500 µg/mL 100–500 µg/mL
Slope 39,169 22,730 27,287
Intercept 925,634 190,701 400,000
R2 0.9988 0.9999 0.9373
LOD 5 µg/mL 10 µg/mL 7 µg/mL
LOQ 10 µg/mL 10 µg/mL 10 µg/mL

Furthermore, to check the limit of detection (LOD) and limit of quantitation (LOQ),
lower concentrations from 1 to 10 µg/mL were tested, and it was determined that the
developed method can detect the molecules from 5 to 10 µg/mL and can quantify them
from 10 µg/mL. The developed method distinctly separates the PenV, 6-APA, and POA
from the mixture quickly and precisely. All the samples were processed in a triplicate to
check the reproductivity of the method.

4. Discussion

Penicillium rubens (formerly named P. notatum) was the first penicillin-producing mi-
croorganism isolated by Sir Alexander Flaming, and the bioactive molecule penicillin
was characterized by Howard Walter Florey and Ernst Boris Chain [24]. Subsequently,
findings suggest various species of Penicillium, Aspergillus, and Fusarium which have
been characterized for their ability to produce penicillins and their industrially impor-
tant drugs/molecules [25]. In this investigation, we isolated various strains of P. chryso-
genum/rubens from diverse habitats, such as India [26–28]. Isolated species were examined
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on Penicillium-specific media for morphological characterization and distinguishing Penicil-
lium species [27,29,30]. Traditionally, colony color, texture, size, spore shape, and exudate
formation are the key features used for morphological differentiation of Penicillium species
and helpful in species differentiation to date [12,13]. Unfortunately, in most cases, morpho-
logical and microscopic observations help identifying genus and certain species, but not
closely related species, which can be overcome by using molecular markers. Since differ-
entiation of all penicillium species is difficult by morphological observations, multilocous
sequence analysis (MLSA) such as ITS, BenA, CaM, NL, and LR are really helpful to identify
complex species [13]. We have isolated and prepared an indigenous strain portfolio for
the P. chrysogenum/rubens for PenV production. The ITS is the universally accepted official
DNA barcode for the fungal taxonomy [15]. Unfortunately, all closely related species of
verticillate Penicillium and ascomycetes have not differentiated in the ITS barcode. Due
to their taxonomic difficulties, protein-coding genes are often required for species-level
differentiation, which has been validated by BenA marker [31–33]. Recent classification
suggests two clades representing P. chrysogenum and P. rubens, and concludes P. rubens is
the original flaming penicillin-producing strain [4]. In our study, the ITS sequence anal-
ysis of 109 strains revealed that about 40 isolates were closely related to P. chrysogenum,
and 34 strains mapped to P. rubens. Furthermore, these strains were analyzed with the
BenA marker to verify the species identification; unexpectedly, P. chrysogenum, P. oxalicum,
and P. dipodomyicola strains showed similarity with P. rubens mapped in common clade
with P. chrysogenum and P. rubens [34]. Hence, we have performed several assays and
metabolic profiling of reported molecules for distinguishing closely related species [35].
Penicillium strains are known for producing important molecules; of note, P. chrysogenum
strains produce sorbicillin, meleagrin, xanthocillin X, roquefortine C, andrastin A, secalonic
acid, penicillin, and chrysogine [36]. On the other hand, no such reports are available for
the biosynthesis of secalonic acid, meleagrin, and roquefortine C by P. rubens. P. rubens
clade is best known for penicillin, roquefortine C, chrysogine, meleagrin, sorbicillin, and
xanthocillin X [37]. Moreover, P. chrysogenum clade produces secalonic acids D, F, and
lumpidin-like compounds along with metabolites produced by P. rubens strains [4]. Peni-
cillium strains are known for producing essential molecules, including enzymes, organic
acids, terpenoids, and polyketides used in various industries (Table 3) [38–70].

Table 3. Metabolites produced by different fungal species and their applications.

Species Enzyme/Metabolite Application References

P. chrysogenum
Roquefortine C; Chrysogine; Sorbicillin;
Meleagrin; Andrastin A; Xanthocillin X;
Secalonic acid D; Lumpidin; Penicillin

Antimicrobial
Cheese making Present study

P. rubens Chrysogine; Sorbicillin; Andrastin A;
Xanthocillin X; Lumpidin; Penicillin Antimicrobial Present study

P. brocae

Fumigatin chlorohydrin; iso-fumigatin
chlorohydrin; Penicibrocazine A–E; Brocazines
A−G; Spirobrocazine C; Ergosterol;
Brocaenol A–C

Antimicrobial, Cytotoxic,
Symbiotically associated with insect
and provide nutrient

[38–43]

P. citrinum

Epiremisporine B, D, E; Penicitrinone A;
β-glucosidases; Epiremisporine F-H; polyketides
and steroids; Cyclopeniol; Gibberellins;
Fungal conidia

Anti-inflammatory and cytotoxic;
Biomass saccharification;
Antifungal; Antiviral; Mosquito
controller; Plant growth promoter

[44–50]

A. Fumigatus β-xylosidase; Cellulase; Amylase; Pectinase;
Phosphatase and phytase

Bioethanol production; Textile,
detergent, food and feed industries. [51–55]

A. sydowii Keratinase; Sydowione A–B; Acremolin D;
Acremolin C; Lignin and Manganese peroxidase

Degradation of keratinous
materials; Antioxidant;
Antiproliferative; Antibacterial

[56–59]
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Table 3. Cont.

Species Enzyme/Metabolite Application References

T. tratensis Dry powder formulation; Cell free supernatant Antagonistic activity against plant
diseases and growth promotor [60,61]

S. brevicaulis Scopularides A–B; Keratinase
Bioremediation of PAH;
Degradation of keratinous material;
Anticancer and antibacterial activity

[62–64]

P. oxalicum
Polygalacturonase, pectin lyase, pectinesterase;
Cellulase, xylanase and feruloyl esterase;
Polyphenolic compounds; Organic acids

Clarification and Depectinization of
juice; Ferulic acid production;
Antioxidant and genoprotective
activity. Biofertilizer

[65–68]

P. dipodomyicola Peniphenone B–C; β-glucosidase Antibacterial activity;
Biotransformation of ginsenoside [69,70]

The pivotal aim of the study is the development of candidate P. chrysogenum/rubens
strains for PenV production. The prepared library of 80 strains of both or either P. chryso-
genum/rubens were evaluated for production of PenV. The precise method is important
for quantification of the produced molecules in fermentation. Hence, HPLC method is
a critical process in identifying different pharmaceutical products [71]. The separation
of the structurally related compounds is dependent upon the selection of mobile phase
composition, pH, column type, etc. We have developed a precise, sensitive, and reliable
liquid chromatographic method for simultaneous quantitative detection of PenV, 6-APA,
and POA. Among the studied mobile phases, ACN:water (50:50) and pH 3 with H3PO4
showed good separation of studied molecules. The combination of ACN and water (60:40)
with pH 4 by H3PO4 was successfully used for the separation of the β-lactam antibiotic
and 6-APA [72]. Our developed method showed the distinct peaks of individual molecules
in mixture, as well as reproducibility.

In order to enhance the production of PenV, optimization of nutritional parameters
is very important [73]. In our study, the POA concentration from 0.1 to 1% was tested for
effect on growth, and 0.005 to 0.1% concentration was tested for PenV production. The
precursor concentration between 0.1 and 1% did not negatively affect growth. Furthermore,
0.01% POA resulted in higher PenV biosynthesis and further increases in POA concen-
tration there is reduction in PenV titer. Industrial PenV producing strains utilize more
than 2.5% of POA [74]. However, all the strains are unable to utilize the higher precursor
concentration and may affect growth and PenV production. Conventional penicillin pro-
duction in a defined medium containing corn steep liquor, glucose, lactose, minerals, oil,
and specific precursors enhances the production of the P. chrysogenum Q176 strain [75–77].
Inoculum size, temperature, incubation period, and initial pH majorly affects the penicillin
titer [78]. The optimum inoculum size for higher penicillin production and mycelial growth
is 107 spores/dm3, but this is not always the same for all the strains [79]. Kumar and
co-workers [80] studied the optimum penicillin production at 26 ◦C; the optimum produc-
tion temperature varies from 23 to 28 ◦C, but good mycelium growth was discovered at
30 ◦C [81,82]. Our results are positively correlated with those reported by Kumar et al. [80]
at 25 ◦C, and the active time of PenV production is 6–8 days [83]. PenV production is
very sensitive to the initial pH of the inoculum media, and it was observed that a pH less
than 4 or more than 7 was not suitable for growth and product formation [79]. Finally, the
studied P. rubens BIONCL P45 strain produced the highest PenV at pH 5 on the 8th day
with 1 × 108 spores and 0.01% POA concentration. Furthermore, more studies are needed,
including classical and genetic engineering approaches, for the development of industrial
PenV-producing P. rubens strains to ensure bulk API production.
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5. Conclusions

In the present study, 80 P. chrysogenum/rubens strains were collected from diverse
habitats in India. Dual molecular markers, ITS, and BenA barcodes were used for species
differentiation. An array of new techniques and molecular and biochemical methods must
be improved in the fungal taxonomy of industrial importance. An inherent variability in
species of Penicillium constitutes a serious problem for taxonomists due to new physiological
approaches. Furthermore, 35% of isolated strains were capable of producing PenV at very
low levels. Further, repetitive DSP could able to achieve 72% of PenV. The chromatographic
method precisely detected the product, precursors, and by-products. A promising strain
of P. rubens BIONCL P45 was explored for PenV production, and various fermentation
parameters were optimized for enhanced PenV production at the lab scale. It can be
explored for the industrial-scale production of PenV to substitute imports. More detailed
studies are needed to understand the biosynthetic pathway genes, compartmentalization,
nutrient uptakes, and transporter proteins for commercial PenV production.
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morphological and molecular identification of fungal spp. isolated from food and environmental
samples; Table S2: Antimicrobial test zone of inhibition.
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