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Abstract: Disease outbreaks are a common problem in aquaculture, with serious economic conse-
quences to the sector. Some of the most important bacterial diseases affecting aquaculture are caused
by Gram-negative bacteria including Vibrio spp. (vibriosis), Photobacterium damselae (photobacteriosis),
Aeromonas spp. (furunculosis; haemorrhagic septicaemia) or Tenacibaculum maritimum (tenacibaculo-
sis). Lipopolysaccharides (LPS) are important components of the outer membrane of Gram-negative
bacteria and have been linked to strong immunogenic responses in terrestrial vertebrates, playing a
role in disease development. To evaluate LPS effects in fish, we used a hot-phenol procedure to extract
LPS from common fish pathogens. A. hydrophila, V. harveyi, T. maritimum and P. damselae purified
LPS were tested at different concentrations (50, 100, 250 and 500 µg mL−1) at 3 days post-fertilisation
(dpf) Danio rerio larvae, for 5 days. While P. damselae LPS did not cause any mortality under all
concentrations tested, A. hydrophila LPS induced 15.5% and V. harveyi LPS induced 58.3% of zebrafish
larvae mortality at 500 µg mL−1. LPS from T. maritimum was revealed to be the deadliest, with a
zebrafish larvae mortality percentage of 80.6%. Analysis of LPS separated by gel electrophoresis
revealed differences in the overall LPS structure between the bacterial species analysed that might be
the basis for the different mortalities observed.

Keywords: aquaculture; bacterial diseases; lipopolysaccharides (LPS); Aeromonas hydrophila;
Photobacterium damselae; Tenacibaculum maritimum; Vibrio harveyi

1. Introduction

Aquaculture provides a controlled environment to produce aquatic animals and plants,
aiming to answer the global human nutritional needs [1]. The occurrence of disease out-
breaks represents a significant constraint to the expansion and development of sustainable
aquaculture [1]. Gram-negative bacteria are responsible for some of the most common
bacterial diseases affecting aquaculture. Examples include Aeromonas spp. (furunculosis;
haemorrhagic septicaemia), Vibrio spp. (vibriosis), Photobacterium damselae (photobacterio-
sis) or Tenacibaculum maritimum (tenacibaculosis) [2–5]. The lack of extensive knowledge
regarding virulence factors and host–pathogen interactions for some of these microorgan-
isms, and the wide range of aquaculture fish species produced worldwide, are important
factors contributing to the emergence and spread of bacterial infectious diseases [1].
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Lipopolysaccharides (LPS), a major component of the outer membrane of Gram-
negative bacteria, are considered a significant virulence factor and are linked to strong im-
munogenic responses in both mammals and teleost fish [6–12]. LPS are typically constituted
by three components: the lipid domain, Lipid A; an oligosaccharide core (attached to Lipid
A); and a repeating hydrophilic distal oligosaccharide, known as the O-antigen [10,12].
Lipid A is the most conserved portion of LPS, although variability between bacterial
strains can be observed [10,12]. In mammals, this component triggers innate immune
responses in the early stages of the infection through the activation of toll-like receptors
(TLR) [10,12]. However, given its non-polar nature, Lipid A is only detected by immune
cells when released during cell division or bacterial death upon autolysis or phagocyto-
sis [10]. The O-antigen has the highest variability of the three LPS components [10]. In some
bacterial strains, LPS lack the O-antigen portion, being named rough LPS (R-LPS), while
complete LPS with the three components are named smooth LPS (S-LPS) [10]. O-antigen
variability in terms of length and repeats determines the specific immune responses ob-
served between and within bacterial strains [12]. In fact, several studies suggest that the
composition and size of the O-antigen are reliable indicators of bacterial virulence during
infection and might explain why different bacterial strains cause different immunological
responses in the same host [8,10,13,14].

In mammals, LPS, as other pathogen-associated molecular patterns (PAMPs), are recog-
nised by TLRs (especially by TRL4 that is the primary receptor for LPS detection), which
trigger the MyD88-dependent pathway, activating nuclear factor-kB (NF-kB), ultimately
resulting in the production of pro-inflammatory cytokines [12,14–16]. For a successful LPS
recognition, TLR4 forms a complex along with three co-stimulatory molecules: the myeloid
differentiation protein 2 (MD2), the LPS binding protein (LBP) and the cluster of differenti-
ation 14 (CD14) [12,14,15]. Fish and amphibians, however, show a higher tolerance to LPS
when compared to mammals [12,14,15]. Higher doses, within the µg range, are needed
to activate the immune cells in fish, whereas, in mammals, only ng are required [12].
A possible explanation for these observations might be that most fish lack the molecules
specifically involved in TLR4-mediated LPS recognition and signalling [12]. Some fish are
found to express TLR4; however, in those, TLR4 seems to act as a negative regulator of the
transcription factor, nuclear factor-kB (NF-kB), through the MyD88-dependent pathway.
Simultaneously, the encoding genes for the co-stimulatory molecules, MD2 and CD14,
are not found in the available fish genomes, thus suggesting that, in fish, LPS might not be
recognised through TLR4-dependent signalling [10,12,14,15].

Independently of the recognition pathways involved, whose knowledge in teleosts
is just emerging, LPS from the most common bacterial pathogens affecting aquaculture
have not yet been deeply studied. With the exception of a few research works with
Aeromonas hydrophila [7,17–20], no other aquaculture pathogens have been the target of
dedicated studies to correlate their LPS structure and potential role in virulence and fish
mortality. Thus, to start elucidating this subject, in this study, LPS from common fish
pathogens, namely Vibrio harveyi, Tenacibaculum maritimum and Photobacterium damselae,
were extracted and tested at different concentrations in zebrafish (Danio rerio) larvae.
Differences in the overall LPS structure from the various bacterial species analysed might
be the basis for the different mortalities observed.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

Five bacterial fish pathogens were used in this study, namely, Aeromonas hydrophila
LMG 2844; Tenacibaculum maritimum LMG 11612; Pseudomonas aeruginosa PAO1 LMG 12228;
Vibrio harveyi, a fish isolate from Nutrition and Immunobiology (NUTRIMU) collection;
and Photobacterium damselae subsp. piscicida strain Lgh41/01 [21]. Strains were grown
aerobically at 25 ◦C in tryptic soy broth (TSB, BD Difco) medium, except for T. maritimum,
which was grown in marine medium (MA, BD Difco).
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2.2. LPS Extraction and Quantification

Bacterial LPS were extracted using a standard hot phenol–water method [22] with
minor modifications. In brief, an inoculum of each bacterial strain (OD600 = 0.1) was
prepared in 25 mL of TSB or MA medium from overnight cultures. A. hydrophila, V. harveyi
and P. damselae subsp. piscicida were grown for 24 h, while T. maritimum was grown for 48 h,
at 25 ◦C and 120 rpm. Bacterial pellets were obtained after centrifugation at 18,300 g for
10 min at 4 ◦C and washed in 10 mL of Wash Buffer (205 mM NaCl, 40 mM KCl, 150 mM
Na2HPO4, 20 mM KH2PO4, 0.15 mM CaCl2, 0.5 mM MgCl2), followed by centrifugation at
18,300 g for 10 min at 4 ◦C. After two washes, bacterial pellets were dissolved in 10 mL of
PBS (137 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 1 mM KH2PO4) and sonicated for 10 min
on ice. Then, bacterial cells were subjected to a Proteinase K treatment (100 µg mL−1),
for 1 h at 65 ◦C, followed by the addition of RNAse (Sigma-Aldrich, Darmstadt, Germany),
1 µL mL−1 of DNase (Roche, Basel, Switzerland) and 4 µL mL−1 of 20% (v/v) MgSO4
(Sigma-Aldrich). After overnight incubation at 37 ◦C, an equal volume of 90% hot phenol
(70 ± 2 ◦C, Sigma-Aldrich) was added to the mix, followed by incubation for 30 min at
70 ◦C with vigorous shaking. Mixtures were then cooled on ice and centrifuged at 10,400 g
for 15 min at 4 ◦C, and the aqueous phase was collected. The remaining LPS in the phenol
phase was re-extracted by adding and mixing hot distilled water (70 ± 2 ◦C), followed
by new centrifugation (10,400 g, 15 min, 4 ◦C) and collection of the new aqueous phase.
After mixing the two aqueous phases, 0.5 M sodium acetate (Merck, Darmstadt, Germany)
was added, followed by an equal volume of absolute ethanol to precipitate the LPS. After
the precipitation step (overnight at −20 ◦C), the suspension was centrifuged at 3000 g for
30 min at 4 ◦C, and the pellet was suspended in 1 mL of autoclaved distilled water. The LPS
suspension was then dialysed against distilled water using a 3.5 kDa cut-off membrane
(Thermo Fisher Scientific, Waltham, MS, USA) for 24 h at 4 ◦C. The dialysed suspension
was frozen at −80 ◦C and then lyophilised. The LPS products were weighted and dissolved
in PBS to a final concentration of 10 mg mL−1. LPS quantification and protein profile was
performed as described previously [23]. Briefly, LPS suspensions were 10-fold diluted,
resolved on 16% (w/v) SDS-polyacrylamide gel and stained with the Pro-Q® Emerald 300
Lipopolysaccharide Gel Stain Kit (Life Technologies, Thermo Fisher Scientific, Waltham, MS,
USA). LPS was visualised on a GelDocTM XR+ (Bio-rad, Algés, Portugal) system with UV-
light radiation. Further, stained gel images were analysed by measuring the pixel’s intensity
in each band/sample using ImageJ software v1.54, and quantification was determined by
comparing those values with a calibration curve established with commercial P. aeruginosa
LPS (Sigma-Aldrich L9143 purified by phenol extraction from P. aeruginosa ATCC 27316)
used as control.

2.3. Ethical Statement

All experiments and handling of zebrafish were conducted following the European
directive 2010/63/EU for the care and use of laboratory animals and were approved by the
Animal Welfare Committee of the Interdisciplinary Centre of Marine and Environmental
Research (ORBEA-CIIMAR-27-2019). The work was carried out in a registered installation
(N16091.UDER) and performed by trained scientists with FELASA category B.

2.4. Zebrafish Husbandry and Breeding

Wild-type zebrafish were maintained in a thermo-regulated water recirculation system
and kept under optimal husbandry conditions (water temperature of 28.0 ± 0.5 ◦C; oxygen
level around 7.8 mg L−1; ammonia and nitrite levels around 0 mg L−1; natural photoperiod
of 14 h light:10 h dark). Adult fish were fed twice a day with TetraMin tropical mix
(Aquapex, Orni-ex, Vila Nova de Gaia, Portugal), containing 55% of total crude protein and
7% of lipids. Zebrafish embryos were produced by pair-wise mating of adult zebrafish,
collected and incubated at 28 ◦C with natural photoperiod. Zebrafish embryos were
kept in EggWater (0.06 g L−1 of Instant Oceans) and were daily cleaned. To prevent
contaminations, 0.38 mg L−1 of methylene blue (Sigma-Aldrich, St. Louis, MO, USA)
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was added to the EggWater in the first 24 h. After hatching, larvae were kept under the
same conditions, and from 5 days post-fertilisation (dpf), larvae were fed twice a day with
zebrafeed (Sparos, Olhão, Portugal) containing 60% of total crude protein and 12% of total
lipids. At the end of all trials, the remaining larvae were euthanised with an overdose of
tricaine methanesulfonate (MS-222, 300 mg L−1).

2.5. Challenge Tests with LPS and Live Bacteria on Zebrafish

The virulence effects of bacterial LPS and corresponding live bacteria were evaluated
using zebrafish (Danio rerio) larvae at 3 days post-fertilisation (dpf) as a model organism.

To assess the LPS effect on zebrafish survival, 12 larvae at 3 dpf were distributed in
6-well plates containing 6 mL of EggWater and exposed for 5 days by immersion to different
concentrations of LPS from A. hydrophila (50, 100, 250, 500 µg mL−1), V. harveyi (50, 100, 250,
500 µg mL−1), P. aeruginosa (50, 100, 250 µg mL−1), P. damselae and T. maritimum (50, 100,
250, 500 µg mL−1). Cumulative mortalities were registered for 5 days (120 h), and dead
larvae were removed. Larvae exposed to 45 µg mL−1 LPS of P. aeruginosa (Sigma-Aldrich),
known to cause at least 50% mortality, were considered as positive control, and larvae kept
in EggWater (without LPS exposure) were considered the negative control. The experiment
is composed of three independent and biological replicates.

The evaluation of the effect of live bacteria on zebrafish mortality was done as pre-
viously described [24] with minor modifications. Briefly, A. hydrophila, V. harveyi and
Ph. damselae were cultured for 24 h in TSB at 25 ◦C with 140 rpm, pelleted by centrifugation
(6000 g, 15 min, room temperature) and then diluted to different concentrations in PBS.
Before the assay, the non-lethal dose (not causing mortality) and the lowest concentration
causing 100% mortality were determined by exposing zebrafish to a wide range of bacterial
concentrations (105 up to 1010). A total of 10 larvae at 6 dpf were distributed in 6-well
plates containing 6 mL of EggWater and exposed by immersion to A. hydrophila (1 × 1010,
5 × 109, 1 × 109), V. harveyi (1 × 109, 5 × 108, 1 × 108) and Ph. damselae (5 × 107, 2 × 107,
1 × 107). After 24 h of challenge, larvae were transferred to new and sterile EggWater and
cumulative mortalities were registered for 5 days (120 h) with the dead larvae removed.
Larvae exposed to PBS and EggWater were considered as control groups. The experiment
was composed of three independent and biological replicates.

2.6. Statistical Analysis

Survival data were plotted using Kaplan–Meier, and differences between treatments
were accessed using the log-rank test and a significant level of 0.05 in the GraphPad Prism
v8 software (Stortford, UK).

3. Results
3.1. Fish Pathogens A. hydrophila, V. harveyi, T. maritimum and P. damselae subsp. piscicida Have
Different Lipopolysaccharides (LPS) Profiles

The LPS profile of A. hydrophila, V. harveyi, T. maritimum, P. damselae subsp. piscicida
and P. aeruginosa extracted (hereafter Ext) was evaluated by resolving different quantities
(2, 5 and 10 µL) of hot phenol–water-extracted LPS on a 16% (w/v) SDS-polyacrylamide gel
(Figure 1). To assess extractability, commercial LPS from P. aeruginosa extracted by phenol
methodology was used as control (hereafter referred to as Com). The band profile of the
LPS extracted from P. aeruginosa (Ext) is similar to the LPS commercially available from
P. aeruginosa (Com), showing both smooth (S-LPS) and rough LPS (R-LPS). Nonetheless,
S-LPS extracted from P. aeruginosa showed a lower molecular weight than the S-LPS com-
mercially available from P. aeruginosa. On the other hand, when comparing the LPS profile
of A. hydrophila, V. harveyi, T. maritimum and P. damselae subsp. piscicida with the LPS from
P. aeruginosa, the absence of S-LPS is clear. The R-LPS from A. hydrophila and V. harveyi have
lower molecular weight accumulating in the lower part of the gel, while the P. damselae
subsp. piscicida R-LPS have a high molecular weight. Additionally, in T. maritimum, only
two LPS bands could be detected.
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Figure 1. Band profile of the lipopolysaccharides (LPS) extracted from A. hydrophila, V. harveyi,
T. maritimum, P. damselae subsp. piscicida and P. aeruginosa (Extracted). LPS from bacterial cultures
were extracted using a standard phenol method, resolved on a 16% (w/v) SDS-polyacrylamide gel
and stained with the Pro-Q® Emerald 300 Lipopolysaccharide Gel Stain Kit. Commercial LPS from
P. aeruginosa (Commercial) were used as reference. Smooth LPS represent high molecular-weight
LPS with a complex structure (composed of the O-antigen, a core polysaccharide chain and Lipid A),
while the rough LPS represent low molecular-weight LPS with a simpler structure (composed only of
a core polysaccharide chain and Lipid A).

3.2. Virulence of A. hydrophila, V. harveyi, P. damselae subsp. piscicida and T. maritimum Cells
and LPS Is Highly Variable and Strain Specific

To assess LPS contribution to fish pathogen virulence and larvae-induced mortality,
two different assays were performed in which zebrafish larvae were exposed to (i) dif-
ferent concentrations of live bacteria (following our own previously established infection
protocols) for 24 h or (ii) increased concentrations of corresponding LPS (ranging from
50 µg mL−1 to 500 µg mL−1) for up to 5 days.

In all the experiments, a group composed of larvae kept in EggWater and non-exposed
to live bacteria or LPS was used as negative control, having a total survival rate of 99.4%.
Additionally, the LPS from P. aeruginosa (Com) were used as positive control at 45 µg mL−1

since it has been previously described to cause ~50% and ~80% mortality in larvae after
8 h and 24 h of exposure, respectively [25]. In all our experiments, this control showed the
highest virulence, causing a cumulative mortality rate of 83% during the 120 h experiment.

Zebrafish larvae infected with 1 × 1010 and 5 × 109 CFU mL−1 of A. hydrophila began to
show mortalities after 16 h post-infection (hpi) and progressed through time, reaching ~60%
and ~15%, respectively, at 120 hpi (Figure 2). By comparing with the control group after the
120 h of trial, these two concentrations of A. hydrophila significantly decrease zebrafish sur-
vival (p < 0.05; Table S1). On the contrary, challenge with the lowest concentration of
A. hydrophila used in this study (1 × 109 CFU mL−1) did not induce any mortalities
in zebrafish larvae. Accordingly, only the highest concentration of LPS extracted from
A. hydrophila (500 µg mL−1) was able to induce significant mortalities on zebrafish lar-
vae (~15%; p = 0.0005) after 96 hpi when compared to the control group composed of
non-exposed larvae (Figure 2, Table S2).
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Figure 2. Effects of live bacteria (A) or lipopolysaccharides (B) of Aeromonas hydrophila on ze-
brafish survival. To evaluate A. hydrophila virulence on zebrafish larvae, 6 dpf zebrafish larvae
were exposed for 1 day to different concentrations of A. hydrophila (1 × 109, 5 × 109, 1 × 1010 CFU
A. hydrophila mL−1) by immersion. To assess the LPS effect on zebrafish survival, 3 dpf zebrafish
larvae were exposed for 5 days by immersion to different concentrations of extracted LPS from
A. hydrophila (50, 100, 250, 500 µg mL−1). Commercial LPS from P. aeruginosa (PA-Com) at 45 µg mL−1

were used as a positive control, and unchallenged larvae kept in EggWater were used as a negative
control (Control). Cumulative mortalities were registered for 5 days (120 h). Data are composed of
three independent biological experiments.

The virulence of V. harveyi on zebrafish larvae was evaluated as illustrated in Figure 3.
Challenge using V. harveyi bacterial cells induced mortalities in zebrafish larvae that pro-
gressed rapidly, reaching 100% after only 2 h of exposure to 1 × 109 and 5 × 108 CFU mL−1.
Moreover, the V. harveyi inoculum of 1 × 108 CFU mL−1 started to induce mortalities after
16 hpi, reaching ~25% at 120 hpi (Figure 3). When comparing with the control group,
composed of non-exposed larvae, these results showed that all the tested concentrations of
V. harveyi cells induced significant mortalities on zebrafish larvae (p < 0.001; Table S3). LPS
extracted from V. harveyi was able to induce mortalities on zebrafish larvae when exposed
not only to 500 but also to 250 µg mL−1 (p < 0.01; Table S4). Zebrafish larvae exposed
to 500 µg mL−1 of LPS extracted from V. harveyi started to show mortalities after 72 hpi
and progressed until the end of the trial (120 h) with an average mortality rate of ~58%
(Figure 3). Additionally, 250 µg mL−1 of LPS extracted from V. harveyi induced mortalities
(~11.1%) after 120 hpi.
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Figure 3. Effects of live bacteria (A) or lipopolysaccharides (B) of Vibrio harveyi on zebrafish survival.
To evaluate V. harveyi virulence on zebrafish larvae, 6 dpf zebrafish larvae were exposed for 1 day to
different concentrations of V. harveyi (1 × 108, 5 × 108, 1 × 109 CFU V. harveyi mL−1) by immersion.
To assess the LPS effect on zebrafish survival, 3 dpf zebrafish larvae were exposed for 5 days by
immersion to different concentrations of extracted LPS from V. harveyi (50, 100, 250, 500 µg mL−1).
Commercial LPS from P. aeruginosa (PA-Com) at 45 µg mL−1 was used as positive control, and un-
challenged larvae kept in EggWater were used as negative control (Control). Cumulative mortalities
were registered for 5 days (120 h). Data is composed of three independent biological experiments.
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Zebrafish larvae exposed to 5 × 107 and 2 × 107 CFU mL−1 of P. damselae subsp.
piscicida started to show mortalities after 16 hpi, progressing through time, and reaching
~78% and ~20%, mortality respectively at 22 hpi (Figure 4). Due to P. damselae subsp.
piscicida Lgh41/01 slower growth rate, the extraction of LPS resulted in lower amounts
when compared to the other bacterial pathogens. Thus, the effect of P. damselae LPS on
zebrafish survival was determined by testing only 2 different LPS concentrations (100 and
500 µg mL−1). As illustrated in Figure 4B, LPS from P. damselae subsp. piscicida did not
induce significant mortalities in zebrafish larvae (~2.8%) after 120 hpi, independently of
the concentration used, when compared to the control group composed of non-exposed
larvae (Table S5). On the contrary, live bacterial exposure resulted in a significant zebrafish
mortality (p < 0.05, Table S6).
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Figure 4. Effects of live bacteria (A) or lipopolysaccharides (B) of Ph. damselae subps. piscicida on
zebrafish survival. To evaluate Ph. damselae subps. piscicida virulence on zebrafish larvae, 6 dpf
zebrafish larvae were exposed for 1 day to different concentrations of Ph. damselae subps. piscicida
(1 × 107, 2 × 107, 5 × 107 CFU Ph. damselae subps. piscicida mL−1) by immersion. To assess the LPS
effect on zebrafish survival, 3 dpf zebrafish larvae were exposed for 5 days by immersion to different
concentrations of extracted LPS from Ph. damselae subps. piscicida (100, 500 µg mL−1). Commercial
LPS from P. aeruginosa (PA-Com) at 45 µg mL−1 were used as positive control, and unchallenged
larvae kept in EggWater were used as negative control (Control). Cumulative mortalities were
registered for 5 days (120 h). Data are composed of three independent biological experiments.

Since T. maritimum is a marine fish pathogen that requires high salt concentrations
(>30 g L−1) to grow and survive in the environment [26], we first tested T. maritimum
cells stability in zebrafish EggWater (that contains only 0.06 g L−1 of NaCl) for 24 h and
discovered them to be unable to survive under our experimental conditions. On the other
hand, increasing EggWater salt concentration to the needs of T. maritimum was deleterious
to zebrafish. Thus, for this pathogen, we only tested the virulence effect of the extracted
LPS (Figure 5). The 500 µg mL−1 of T. maritimum LPS started to induce mortalities after
96 hpi that progressed through the experiment, reaching 80.6% after 120 hpi (p < 0.001;
Table S7).

Finally, after observing that the commercial LPS from P. aeruginosa (PA-Com) showed,
in all our experiments, a much higher virulence than the extracted LPS from fish pathogens,
we decided to evaluate if the LPS extracted manually from P. aeruginosa (PA Ext) could
induce the same toxic effects on zebrafish. As illustrated in Figure 6, larvae exposed to
100 µg mL−1 and 50 µg mL−1 of commercial LPS showed 100% mortality after 2 and
4 h post-incubation, respectively. On the other hand, when larvae were exposed to
250 µg mL−1 and 100 µg mL−1 of extracted LPS from P. aeruginosa, mortalities only began
after 48 hpi and did not surpass 2.8% and 5.6%, respectively. By comparing with the con-
trol group, composed of non-exposed larvae, these results showed that the LPS extracted
from P. aeruginosa did not induce any virulence of zebrafish larvae (Table S8), whereas the
commercial LPS is highly virulent under the tested conditions (p < 0.001; Table S8).
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far from elucidated. In this study, immersion trials with zebrafish larvae including both 
live cells and LPS extracted from problematic fish bacterial pathogenic species, such as A. 
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Figure 5. Effects of lipopolysaccharides from Tenacibaculum maritimum on zebrafish survival.
The 3 dpf zebrafish larvae were exposed for 5 days by immersion to different concentrations of
LPS extracted from T. maritimum (50, 100, 250, 500 µg mL−1). Commercial LPS from P. aeruginosa
(PA-Com) at 45 µg mL−1 were used as positive control, and unchallenged larvae kept in EggWater
were used as negative control (Control). Cumulative mortalities were registered for 5 days (120 h).
Data are composed of three independent biological experiments.
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Figure 6. Effects of lipopolysaccharides from Pseudomonas aeruginosa on zebrafish survival. The 3 dpf
zebrafish larvae were exposed for 5 days by immersion to different concentrations of LPS commer-
cially available from P. aeruginosa (LPS PA-Com at 50 and 100 µg mL−1) and LPS extracted from
P. aeruginosa (LPS PA-EXT at 50, 100 and 250 µg mL−1). Unchallenged larvae kept in EggWater were
used as negative control (Control). Cumulative mortalities were registered for 5 days (120 h). Data
are composed of one independent biological experiment with three technical replicates.

4. Discussion

LPS are often considered one of the most important virulence factors in Gram-negative
bacteria [10]. LPS contribution to the virulence of aquaculture pathogens is, however,
far from elucidated. In this study, immersion trials with zebrafish larvae including both
live cells and LPS extracted from problematic fish bacterial pathogenic species, such as
A. hydrophila (furunculosis), V. harveyi (vibriosis), P. damselae subsp. piscicida (photobacterio-
sis) and T. maritimum (tenacibaculosis), were tested simultaneously.

Very distinguishable LPS profiles were obtained from strains A. hydrophila LMG 2844,
V. harveyi isolate, P. damselae subsp. piscicida Lgh41/01 and T. maritimum LGM 11612, produc-
ing only R-LPS. To rule out extractability issues, LPS from a Pseudomonas aeruginosa strain
(PAO1 LMG 12228, ATCC 15692) were also manually extracted and compared to the com-
mercially available LPS from P. aeruginosa (Sigma-Aldrich L9143) obtained using a similar
extraction methodology (phenol-based) but from a different strain (ATCC 27316). While
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the R-LPS of P. aeruginosa PAO1 LMG 12228 and those commercially available LPS from
P. aeruginosa ATCC 27316 appeared to be very similar, the S-LPS region revealed observable
differences. S-LPS from P. aeruginosa LMG 11612 had their bands more dispersed and with
lower molecular weight than bands of S-LPS from commercially available P. aeruginosa.
Because the composition and the size of the O-antigen (part of S-LPS) are considered deter-
minants of bacterial virulence [6,10,13,27], such differences in LPS structure between the
two P. aeruginosa strains may explain the significant differences observed in the zebrafish
larvae survival assay, with 100 µg mL−1 of commercial P. aeruginosa LPS resulting in 100%
mortality within only 2 h, whereas 250 µg mL−1 LPS of P. aeruginosa PAO1 LMG 11612
led to only 2.8% mortality after 120 h. Nevertheless, by using the P. aeruginosa control
strain (whose LPS were extracted simultaneously with LPS from other bacterial strains)
and obtaining a similar profile to P. aeruginosa LPS commercially available, we confirmed
that the LPS extraction methodology used in our study is able to extract both S-LPS and
R-LPS, thus ruling out extractability issues.

The LPS profiles obtained for A. hydrophila LMG 2844, V. harveyi isolate, P. damselae
subsp. piscicida Lgh41/01 and T. maritimum LGM 11612 under our experimental condi-
tions produced only R-LPS. A similar observation of low molecular-weight LPS has been
previously described for V. harveyi [28,29] and for T. maritimum O3 serotype strains [30],
although with a higher number of bands, but not for T. maritimum O1 and O2 serotypes,
to which the type of strain of T. maritimum NCIMB 2154T (LMG 11612) used in our study
belongs [31]. The LPS profile of T. maritimum O1 and O2 serotypes detected by Western
blot analysis revealed a typical laddering pattern, although without a clear separation
of S-LPS and R-LPS [32]. LPS detection by Western blot analysis (a much more sensitive
technique), rather than by staining, might be the reason for failing to observe a typical
LPS pattern in our study. In fact, LPS staining approaches, such as silver stain, have been
previously described to work differently depending on the target strain, being successful
in detecting LPS from control E. coli ATCC 25922 but failing to reveal clear laddering for
LPS of T. maritimum strains [33]. Thus, we cannot rule out that a similar phenomenon
might have happened under our experimental conditions, using the Pro-Q® Emerald
300 Lipopolysaccharide Gel Stain Kit, for the LPS obtained for A. hydrophila LMG 2844,
V. harveyi isolate, P. damselae subsp. piscicida Lgh41/01 and T. maritimum LGM 11612 while
working perfectly with the LPS extracted from Pseudomonas aeruginosa strain (PAO1 LMG
12228, ATCC 15692). The fact that we could not detect high molecular-weight LPS in
A. hydrophila, as previously described for strains of different serotypes [18–20,34], might be
an indication of this detection failure. Additionally, the Pro-Q® Emerald 300 Lipopolysac-
charide Gel Stain Kit reacts with periodate-oxidised carbohydrate groups, and it is possible
that the S-LPS carbohydrates of our strains are not oxidised, thus not being stained. On the
other hand, the obtained low molecular-weight R-LPS might also represent the real LPS
pattern for the strains under study, since the absence of S-LPS is not an unprecedant
observation. As previously said, both V. harveyi [28,29] and T. maritimum O3 serotype
strains [30] present only low molecular-weight R-LPS, and although this is the first analysis
of P. damselae subsp. piscicida LPS, a closely related species named P. phosphoreum was also
reported to present only low molecular-weight R-LPS [35]. In addition, we observed in a
previous work [23] that the extraction method used in this study recovers efficiently the
polar forms of LPS (S-LPS) from the aqueous phase, and the extracted LPS profiles obtained
for Pseudomonas aeruginosa strain PAO1 (LMG 12228), presenting both S- and R-LPS and a
similar profile as the commercial LPS, which corroborates this analysis. In mammals, both
R-LPS and S-LPS trigger a strong innate immune response, yet by different signalling mech-
anisms [9,36]. Whether this is also true for fish remains unclear, since the LPS recognition
mechanism in fish is noticeably different and not yet fully understood [12,15,36].

The virulence of the different LPS extracted from the target aquaculture pathogens
under study was highly variable, strain-specific and not directly correlated with the mor-
talities observed when exposing zebrafish larvae to live cells of the corresponding strains.
T. maritimum, V. harveyi and P. damselae subsp. piscicida are all marine fish pathogens,
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while A. hydrophila can be found in both fresh and marine waters. Although zebrafish
are a fresh-water fish species, they were also susceptible to the tested marine pathogens
and their LPS. Cells of P. damselae subsp. piscicida Lgh41/01 were the deadliest ones, with
a 5 × 107 CFU mL−1 inoculum being sufficient to induce more than 50% mortality in
zebrafish larvae (Figure 7A). To achieve similar levels of mortality with V. harveyi or
A. hydrophila, it was necessary to use 5 × 108 CFU mL−1 and 1 × 1010 CFU mL−1 of bac-
terial inoculum, respectively (Figure 7A). On the contrary, LPS extracted from P. damselae
subsp. piscicida did not induce significant mortalities, even when using a high concentration
of 500 ug mL−1 (Figure 7B). A recent study with P. damselae subsp. piscicida revealed that
its extracellular products are highly toxic to red-banded seabream, but such toxicity is
independent of LPS [37], thus corroborating our results that the LPS from this species might
not be a potent virulent factor in fish.
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Figure 7. (A) Fish pathogen (A. hydrophyla, V. harveyi, P. damselae subps. piscicida) bacterial cells
inoculum (CFU mL−1) used to induce a zebrafish larvae mortality higher than 50%. (B) The %
of dead larvae obtained after challenging with 500 µg mL−1 LPS purified from fish pathogens
A. hydrophyla, V. harveyi, P. damselae subps. piscicida and T. maritimum.

The aquaculture pathogen with the deadliest LPS to zebrafish larvae was T. maritimum
(80.6% mortality when using 500 µg mL−1 LPS; Figure 7B), and the virulence of the live cells
could not be tested due to the susceptibility of T. maritimum cells to the low-salt EggWater
used for zebrafish larvae survival experiments. This observation suggests that, contrary
to P. damselae subsp. piscicida, LPS is a key virulence factor in T. maritimum. Although
LPS from different T. maritimum strains have been previously characterised [30–32], their
contribution to T. maritimum virulence and disease establishment and fish mortality was
for the first time addressed in this study. Further studies, using susceptible marine fish
species allowing to simultaneously test T. maritimum cells and LPS, will shed light on the
contribution of LPS to T. maritimum virulence.

Given the 58.3% mortality observed in zebrafish larvae when challenged with 500 µg mL−1

LPS of V. harveyi, LPS are also likely an important virulent factor in this species. Despite
being one of the most problematic aquaculture pathogens [2,38–40] and one of the most
studied bacterial species, in particular to understand quorum sensing [41–43], little is still
known about V. harveyi LPS and their contribution to virulence and disease in fish. Our
work suggests it is worth investigating.
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5. Conclusions

In summary, our results demonstrate that LPS extracted from different bacterial
aquaculture pathogens have very distinguishable structures and virulence potentials.
The mortalities observed when exposing zebrafish larvae to purified LPS did not cor-
relate with the virulence observed when exposing zebrafish larvae to the corresponding
live bacteria. Under our experimental conditions, LPS from V. harveyi and T. maritimum are
a major virulence factor, whereas LPS from P. damselae subsp. piscicida are not, although
cells of the latter are the deadliest ones for zebrafish larvae. The LPS from P. damselae subsp.
piscicida were for the first time isolated and, together with LPS from T. maritimum and
V. harveyi (previously isolated but not tested for mortality induction), were all tested for
the first time in vivo to establish their virulence in fish. New studies are now underway to
further clarify our observations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms11092205/s1, Tables S1–S8, reporting the p-values of
pairwise comparisons using Log-rank (Mantel-Cox) test of zebrafish survival curves when submitted
to live bacteria (CFU mL−1) or extracted LPS (µg mL−1).
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