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Abstract: Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form
methane through an energetically interdependent metabolic process known as syntrophy. The
microorganisms that perform this process as well as the energy transfer mechanisms involved are
difficult to study and thus are still poorly understood, especially on an environmental scale. Here,
metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key
energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis
was used in order to determine whether potentially syntrophic environments could be distinguished
using these syntroph related COGs as opposed to universally present COGs. We found that COGs
related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic
consortia and environments with the potential for syntrophy from non-syntrophic environments,
indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading
environments using metagenomic data.

Keywords: syntrophy; metagenomics; hydrocarbon biodegradation; principal component analysis;
hydrocarbon metagenomics project; methanogenesis; microbial interactions

1. Introduction

Many hydrocarbon compounds are both toxic to living organisms and difficult to remove from
the environment. Aerobic microorganisms are capable of exploiting the reactive properties of oxygen
to activate and biodegrade these compounds, and these mechanisms are well understood. However,
petroleum contaminated environments quickly become anoxic [1,2]. In these environments, anaerobic
electron acceptors such as nitrate (NO3

´), iron (Fe3+), and sulfate (SO4
2´) are rapidly utilized,

leaving an environment with recalcitrant hydrocarbons which is depleted in electron acceptors [1].
Under these energy-limited methanogenic conditions, mechanisms of hydrocarbon biodegradation
are poorly understood, though this is thought to be the main biodegradation process in contaminated
environments [2,3].

Certain anaerobic bacteria (typically Deltaproteobacteria and Firmicutes, though other groups such
as Epsilonbacteria may also play a role) are capable of breaking down hydrocarbon compounds under
anoxic conditions, generating simple molecules such as hydrogen and acetate [4–6]. Though possible,
these conversions are energetically unfavorable under standard conditions [3,5]. This thermodynamic
barrier can be overcome through cooperation with other microorganisms such as methanogenic archaea
that convert the simple molecules produced by the bacteria to methane and CO2 or H2O [5]. These
latter reactions reduce the concentrations of these hydrocarbon breakdown byproducts, which drives
the reaction kinetics forward and produces an overall reaction that is spontaneous [5]. Known as
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syntrophy (“feeding together”), such cooperation is essential for hydrocarbon biodegradation under
methanogenic conditions, and produces just enough energy to sustain life; the energy gained by the
entire syntrophic consortia is barely enough to synthesize one ATP [5,7].

Methanogenic syntrophy has been found across many environments and species. Wastewater
treatment systems, bogs, ruminant digestive tracts, and landfills can all harbor syntrophic
methanogenic communities that degrade a variety of substrates such as amino acids, aromatic
and aliphatic hydrocarbons, and volatile fatty acids [5,6,8]. Methanogenic biodegradation of all
hydrocarbon compounds relies on syntrophic interactions; however, much about the specific syntrophic
mechanisms involved remains unknown as these communities and microorganisms are often difficult
to culture and study [8]. What is known is that in petroleum-contaminated environments, these
syntrophic activities are of high importance both ecologically as well as industrially, as they are key
in both environmental bioremediation and in the transformation of high quality light oil into heavy
crude in reservoirs [3,9].

In order to better understand the microbes and metabolic processes involved in environments
where hydrocarbons are present, a project known as the Hydrocarbon Metagenomics Project
(www.hmp.ucalgary.ca) was conducted in order to sequence and examine metagenomes from
hydrocarbon resource environments [9,10]. The outcome of this project has led to a database containing
multiple metagenomes that have been sequenced from various hydrocarbon laden environments,
including aerobic and anaerobic waters and soils, oil reservoirs and coal seams, oil sands tailings
ponds, drilling cores, and known syntrophic hydrocarbon-biodegrading laboratory consortia, allowing
researchers to examine the diversity of genes and species present in these complex, difficult to culture
microbial ecosystems [9].

Energy transfer mechanisms that occur during the syntrophic metabolism of any compound are
complex, and there is still much to understand about how energetic coordination occurs. Though
direct interspecies electron transfer (DIET) can be involved in syntrophic metabolism involving
iron-reducing bacteria [8,11], electron transfer through hydrogen and formate is thought to be a
primary mechanism used by most organisms capable of syntrophy (herein referred to as “syntrophs”
or “syntrophic organisms”) by which energy is transferred during syntrophic processes [8]. The
genomes of pure syntroph strains and their methanogenic partners have been found to harbor multiple
formate dehydrogenase and hydrogenase genes [8]. These can be involved in electron confurcation,
coupling the thermodynamically favorable oxidation of ferredoxin to drive the normally unfavorable
production of formate and hydrogen from NADH. Hydrogenases and formate dehydrogenases can
also be membrane associated, potentially using ion gradients to drive reverse electron transfer [8,12].
Membrane associated FeS oxidoreductases present in syntrophic bacteria could be involved in
funneling electrons to redox carriers to facilitate these reactions [8]. Fix proteins, which are
membrane-bound electron transfer flavoprotein:quinone oxidoreductases, are proposed to utilize
the energy in the ion gradient to supply reduced ferreredoxin needed for syntrophic metabolism [8,13].
Fnr proteins, which are ion translocating ferredoxin:NAD+ oxidoreductases, may also function in
reverse electron transfer by using the ion gradient to drive the unfavorable reduction of ferredoxin
with NADH [8,14].

We sought to determine whether environments with the potential for syntrophic hydrocarbon
biodegradation to be the dominant microbial lifestyle could be identified through analysis of
metagenomic data. We hypothesized that gene families associated with syntrophic energy transfer
previously identified in the genomes of pure syntrophic strains [8] could be used to distinguish
syntrophic from non syntrophic communities. In order to do this, metagenomes were classified
based on their potential to have syntrophic processes as a dominant microbial lifestyle according to
their sampling location information and microbial community composition. Clusters of orthologous
groups (COGs) associated with various categories of genes found in syntroph genomes and known
to be involved in syntrophic energy transfer were determined using the Joint Genome Institute’s
Integrated Microbial Genomes Database [8,15]. Detection of these COGs in metagenomes from both
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hydrocarbon-related and non-hydrocarbon related environments was performed utilizing the Joint
Genome Institute’s Integrated Metagenomes Database [16]. The results of this analysis were then
compared using principal component analysis to determine if environments with syntrophic potential
would cluster together with the metagenomes from known syntrophic cultures. Analysis of universally
present COGs was also performed alongside the syntroph associated COGs in order to determine if
the syntroph associated COGs collectively could distinguish syntrophic communities [17].

2. Materials and Methods

2.1. Selection of Metagenomes

Metagenomes from hydrocarbon resource environments were obtained from the Hydrocarbon
Metagenomics Project (HMP) website, and accessed through the Joint Genome Institute’s Integrated
Metagenomes database (IMG) [10,16]. Other metagenomes were obtained by searching the IMG
database for publicly released metagenome datasets from a variety of environments [16]. Information
for each metagenome analyzed in this study along with an associated identification number is listed in
Table 1. Metagenomes were accessed in the IMG database in November of 2015.

Table 1. Metagenomes analyzed in this study. All metagenomes were publically available on the IMG
database. Source indicates whether metagenome was originally obtained through the Hydrocarbon
Metagenomics Project (HMP) or through searching the IMG database [9,10,16]. Classification was
performed according to sampling location information as well as microbial community composition
(Figure 1). † Community information not available.

# Metagenome Name IMG
Genome ID Source Gene

Count Classification

1
Marine microbial communities from Deepwater
Horizon subsurface plume in Gulf of Mexico, 16-4
Below Plume (16-4 Below Plume)

3300005379 IMG 112790 Non-Syntrophic
Hydrocarbon

2
Marine microbial communities from Deepwater
Horizon subsurface plume in Gulf of Mexico, 16-5
In Plume (16-5 In Plume)

3300005380 IMG 114085 Non-Syntrophic
Hydrocarbon

3
Marine microbial communities from Deepwater
Horizon subsurface plume in Gulf of Mexico, 52-1
Below Plume (52-1 Below Plume)

2149837027 IMG 60113 Non-Syntrophic
Hydrocarbon

4
Marine microbial communities from Deepwater
Horizon subsurface plume in Gulf of Mexico, 52-4
In plume (52-4 In Plume)

3300005378 IMG 102800 Non-Syntrophic
Hydrocarbon

5
Oil sands microbial communities from Horse River,
Alberta, Canada—outcrops (H1C: 454
sequencing assembly)

3300001422 HMP 570427 Non-Syntrophic
Hydrocarbon

6
Oil sands microbial communities from Horse River,
Alberta, Canada—outcrops collected from inside
the river (H1R: 454 sequencing assembly)

3300001393 HMP 559882 Non-Syntrophic
Hydrocarbon

7 †

Syncrude MLSB Tailings Pond Water
Surface—Tailings pond microbial communities
from Northern Alberta—Syncrude Mildred Lake
Settling Basin (PDSYNTPWS: 454+illumina
sequencing assembly)

3300001605 HMP 3740874 Non-Syntrophic
Hydrocarbon

8

Syncrude MLSB WIP Surface + Isolates—Tailings
pond microbial communities from Northern
Alberta—Syncrude Mildred Lake Settling Basin
(WIP-PD_SYN_TP_WS_002_003_071511 and
isolates PD8, PD9 joint assembly)

3300001239 HMP 768174 Non-Syntrophic
Hydrocarbon
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Table 1. Cont.

# Metagenome Name IMG
Genome ID Source Gene

Count Classification

9

Wastewater microbial communities from Syncrude,
Ft. McMurray, Alberta—Microbes from
Oil-contaminated ecosystem in Alberta, Canada
Inniskillen 604.3 (Inniskillen 604.3: 454 sequencing
assembly)

3300001190 HMP 25694 Non-Syntrophic
Hydrocarbon

10

Wastewater microbial communities from Syncrude,
Ft. McMurray, Alberta—Microbes from Sediment
core from a heavy oil reservoir, Alberta Canada
Inniskillen 614.3 (Inniskillen 614.3: 454+illumina
sequencing assembly)

3300001197 HMP 204944 Non-Syntrophic
Hydrocarbon

11

Arctic peat soil from Barrow, Alaska—NGEE
Surface sample 210-1 shallow-072012 (NGEE
Surface sample 210-1 shallow-072012,
ASSEMBLY_DATE=20130514)

3300001414 IMG 14379538 Non-Syntrophic

12

Arctic peat soil from Barrow, Alaska—NGEE
Surface sample 210-2 deep-072012 (NGEE Surface
sample 210-2 deep-072012,
ASSEMBLY_DATE=20130514)

3300001396 IMG 8697097 Non-Syntrophic

13

Arctic peat soil from Barrow, Alaska—NGEE
Surface sample 210-2 deep-092012 (NGEE Surface
sample 210-2 deep-092012,
ASSEMBLY_DATE=20130516)

3300001385 IMG 6241552 Non-Syntrophic

14

Arctic peat soil from Barrow, Alaska—NGEE
Surface sample 210-2 shallow-072012 (NGEE
Surface sample 210-2 shallow-072012,
ASSEMBLY_DATE=20130514)

3300001416 IMG 14687361 Non-Syntrophic

15

Freshwater microbial communities from Lake
Mendota, WI—02JUN2012 deep hole epilimnion
(Lake Mendota Deep Hole Epilimnion 02Jun12,
ASSEMBLY_DATE=20140125)

3300002296 IMG 1990049 Non-Syntrophic

16
Human retroauricular crease microbial
communities from NIH, USA—visit 1, subject
338793263

7000000458 IMG 36795 Non-Syntrophic

17
Human right retroauricular crease microbial
communities from NIH, USA—visit 2 of subject
763961826 replicate 2

7000000031 IMG 39970 Non-Syntrophic

18

Marine microbial communities from expanding
oxygen minimum zones in Line P, North Pacific
Ocean—August 2009 P16 10m (Line P August 2009
P16 10m, March 2012 Assem)

3300000149 IMG 238270 Non-Syntrophic

19

Marine microbial communities from expanding
oxygen minimum zones in Line P, North Pacific
Ocean—June 2008 P4 1300m (Line P June 2008 P4
1300m, March 2012 Assem)

3300000141 IMG 256292 Non-Syntrophic

20

Marine microbial communities from expanding
oxygen minimum zones in the Saanich Inlet—54
02/08/11 120m (Saanich Inlet 54 02/08/11 120m,
March 2012 Assem)

3300000146 IMG 169407 Non-Syntrophic

21
Soil microbial communities from Great
Prairies—Iowa, Native Prairie soil (Iowa, Native
Prairie soil, Feb 2012 Assem MSU hiseq + gaii)

3300000364 IMG 8508638 Non-Syntrophic

22

Subsurface groundwater microbial communities
from S. Glens Falls, New York, USA—GMW60B
uncontaminated upgradient, 5.4 m (Subsurface
groundwater monitoring well GMW60B uncontam
upgr,5.4m, Oct 2012 Assem)

3300000571 IMG 1391570 Non-Syntrophic

23

Switchgrass and industrial compost incubating
bioreactor microbial communities from the Joint
BioEnergy Institute, California, USA, that is
aerobic and thermophilic—SG0.5JP960
(454-Illumina assembly) —version 2 (454-Illumina
assembly v2)

3300005442 IMG 62968 Non-Syntrophic
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Table 1. Cont.

# Metagenome Name IMG
Genome ID Source Gene

Count Classification

24
Wastewater treatment Type I Accumulibacter
community from EBPR Bioreactor in Madison,
WI—N_134min_Aerobic

3300002344 IMG 367402 Non-Syntrophic

25
Coal bed methane well microbial communities
from Alberta, Canada (CO182: coal bed cutting
Illumina Assembly)

3300000052 HMP 665055 Other

26
Coal-degrading lab enrichment microbial
communities from Bowden, Alberta,
Canada—QSAFCN5 (QSAFCN5: 454 assembly)

3300000507 HMP 257387 Other

27

Coal-degrading lab enrichment microbial
communities from Bowden, Alberta,
Canada—methanogenic culture: QSAFCN2
(QSAFCN2 454 assembly)

3300000408 HMP 223117 Other

43 Sheep rumen microbial communities from New
Zealand—Rank43_high (high_rank43) 3300001531 IMG 911348 Other

28

Benzene-degrading bioreactor microbial
communities from Toronto, Ontario, Canada, that
are methanogenic—September 2009 gDNA_4
(Assembly with PE data)

2061766000 IMG 207753 Syntrophic
Culture

29

Hydrocarbon resource environments microbial
communities from Canada and USA—Toluene
degrading community from Alberta, Canada
(Toluene: 454+illumina+illuminaFosmid
sequencing assembly)

3300001567 HMP 1184637 Syntrophic
Culture

30
Oil sands microbial community from Northern
Alberta which degrade Naphthaline (NapDC: 454
and illumina hybrid assembly)

3300000032 HMP 749231 Syntrophic
Culture

31

Tailings pond microbial communities from
Northern Alberta—Short chain hydrocarbon
degrading methanogenic enrichment culture
SCADC: (SCADC: 454+illumina assembly)

3300000568 HMP 1513645 Syntrophic
Culture

32
Wastewater bioreactor microbial communities
from Singapore—TA reactor DNA contigs from 4
sample (re-annotation) (MER-FS) (assembled)

3300005443 IMG 95700 Syntrophic
Culture

33

Subsurface groundwater microbial communities
from S. Glens Falls, New York, USA—GMW46
contaminated, 5.4 m (Subsurface groundwater
monitoring well GMW46 contaminated, 5.4m, Oct
2012 Assem)

3300000574 IMG 1250031
Potentially
Syntrophic
Hydrocarbon

34 Tailings pond microbial communities from
Northern Alberta—TP6_2008_30ft: 2228664008 HMP 389458

Potentially
Syntrophic
Hydrocarbon

35 Tar lake microbial communities from La Brea,
Trinidad and Tobago 2228664012 HMP 195772

Potentially
Syntrophic
Hydrocarbon

36

Wastewater microbial communities from Syncrude,
Ft. McMurray, Alberta—Microbes from Suncor
taillings pond 6 2012TP6_6 (2012TP6_6m: illumina
sequencing assembly)

3300001580 HMP 3205687
Potentially
Syntrophic
Hydrocarbon

37

Wastewater microbial communities from Syncrude,
Ft. McMurray, Alberta—Microbes in water sample
from Medicine Hat oil field
-PW_MHGC_2012April2:
(PW_MHGC_2012April2: 454+illumina
sequencing assembly final)

3300001444 HMP 2443755
Potentially
Syntrophic
Hydrocarbon
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Table 1. Cont.

# Metagenome Name IMG
Genome ID Source Gene

Count Classification

38

Wastewater microbial communities from Syncrude,
Ft. McMurray, Alberta—Microbes in water sample
from Medicine Hat oil field
-PW_MHGC_2012April2:
(PW_MHGC_2012April2: 454 + illumina
sequencing assembly)

3300001592 HMP 2251644
Potentially
Syntrophic
Hydrocarbon

39

Tailings Pipe from MSLB 2011 -Wastewater
microbial communities from Syncrude, Ft.
McMurray, Alberta—West In Pit
SyncrudeMLSB2011 (SyncrudeMLSB2011:
454+illumina assembly)

3300000558 HMP 3021632
Potentially
Syntrophic
Hydrocarbon

42

Marine sediment microbial communities from
Arctic Ocean, off the coast from Alaska—sample
from high methane PC12-225-485cm (High
methane PC12-225-485cm Jan 2011 assembly)

2140918005 IMG 674403 Potentially
Syntrophic

2.2. Metagenome Community Composition and Classification

Microbial community composition pertaining to the metagenomes obtained from the HMP was
determined by using the 16s rRNA gene predictions from the 454 single end data available on the
HMP database website for each metagenome [10]. Microbial community composition pertaining to
the metagenomes obtained directly from the IMG database was inferred through the percent BLAST
identities of the genes identified in the metagenome, with the settings set to identity +30% in order
to decrease the proportion of “unclassified” community members [16]. From the total microbial
community composition, only microbial groups with majority representation or those with relevance
to the syntrophic potential of the environment were chosen for display. Metagenomes were then
classified into categories of syntrophic potential based on their community composition as well
as the environment from which the metagenome was obtained, as stated in the HMP and IMG
databases [10,16].

2.3. Selection of Clusters of Orthologous Groups (COGs)

Clusters of orthologous groups (COGs) used for analysis were divided into two divisions—those
that are universally present and those that are associated with genes present in syntroph genomes
known to be involved in syntrophic energy transfer [8] (Table 2).

Universally present COGs were obtained from literature, and grouped into 4 categories as shown
in Table 2 [17]. Genes found in various pure syntrophic strains that are related to syntrophic energy
transfer mechanisms have been previously identified and were used as the predictive syntrophy genes
in this study [8]. These genes were classified into categories based on their function (Table 2). Genes
identified as being associated with DIET processes were excluded from this analysis because very few
COGs were identified as being annotated for these genes, and the COGs that were annotated were
found to be too general in their classification to be associated primarily with syntrophic processes
(e.g., genes for flagella, pili, and cytochromes). In order to obtain clusters of orthologous groups
(COGs) which are associated with these syntrophic processes, each gene listed by Sieber et al. [8] was
examined using the IMG database, and all the COGs associated with each gene were obtained [15]. The
COGs identified for genes belonging to the same category were then grouped, and any multiples were
removed. The individual COGs belonging to each category are listed in Supplemental Tables S1 and S2.
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Table 2. Categories of clusters of orthologous groups (COGs) searched in the metagenomes. Universally
present COGs were obtained from previously published information [17]. Syntroph associated COG
categories were obtained from the annotations in the IMG database for each of the genes for each
respective category from previously published information [8,15]. Further information on the specific
COGs searched in each category can be found in Supplemental Tables S1 and S2.

Universally Present COG Categories

G1-Ribosome and Translation Initiation

G2-Ribosome Associated/ Protein Modification

G3-Transcription/DNA Replication

G4-Unknown

Syntroph Associated COG Categories

FeS Oxidoreductases

Fnr

Fix

Confurcating Hydrogenases

Other Hydrogenases

Membrane Hydrogenases

NADH Linked Formate Dehydrogenases

Other Formate Dehydrogenases

Membrane Formate Dehydrogenases

2.4. Principal Component Analysis

The number of each of the universally present and syntroph associated COGs found in each
metagenome was determined using the IMG database (which utilizes the 2014 COG database) by
viewing the functions vs. genomes in the function analysis profile and alignment tool in the combined
assembled and unassembled metagenomic data [16]. The total numbers of each COG detected in each
metagenome were then summed for each category as listed in Table 2. This number was then divided
by the number of COGs represented by each category, before then being divided by the total number
of genes detected in each of the metagenomes (using assembled and unassembled data) (Table 1) in
order to normalize the total against the metagenome size. Metagenomes were all searched against the
COG database in November of 2015.

The normalized total number of COGs for each category found in each metagenome was then
used for principal component analysis using R [18]. Principal component analysis was performed on
two separate datasets - one with the normalized total COGs per metagenome from each category of
the universally present groups, and one with the normalized total COGs per metagenome from each
category in both the universally present and the syntroph associated groups. Analysis was performed
using the prcomp() function built into the R interface, with scaling set to “TRUE” in order to perform
the analysis using a correlation matrix which normalizes the data by standardizing the variance in the
data to one [18]. For each principal component analysis, a scree plot showing the amount of variance
captured by each of the calculated principal components was generated alongside the statistics of
the principal components to verify that the amount of variation encompassed by the first 2 principal
components would sufficiently represent the major sources of variation in the data (Supplemental
Figure S1 and Table S3 for analysis of universal COGs; Figure S2 and Table S4 for the analysis of both
universal and syntroph associated COGs). Plotting of the resulting principal component analysis plot
was performed using library(ggplot2) [19], combined with the stat_ellipse() function [20] to draw 95%
confidence intervals around the user-defined “Syntrophic” and “Non-Syntrophic” groups (requires
library(devtools) and library(digest) [21,22]). A circle of correlations plot was also drawn for each of
the two datasets in order to better visualize the contribution of the different COG categories to the
principal components.
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The commented R scripts used in order to perform the analyses in this study are included in the
supplemental data, including code to install the required packages. Additionally, the above analysis
was repeated using KO (KEGG Orthology) categories detected for each of the syntroph-associated
categories, as well as with universally present KOs, in order to determine whether similar results
would be obtained using different databases (Table S5).

2.5. Analysis of COGs in Metagenomes

The total normalized number of COGs in each metagenome found for each of the syntroph
associated COG groups was displayed on a surface plot in order to visualize the differences in
COG number for each of the COG categories between metagenomes in the syntrophic group versus
those in the non-syntrophic group. In addition, mean numbers of COGs between syntrophic and
non-syntrophic metagenomes in each syntroph-associated category were examined, and t-tests were
performed to determine if the mean number of COGs found in each category of syntroph associated
COGs was statistically different between the syntrophic and non-syntrophic metagenomes.

3. Results

3.1. Metagenome Selection and Classification

In order to determine the syntrophic potential of hydrocarbon resource environments based on
examining syntroph associated gene families in metagenomes, metagenomes were obtained which
were sequenced and publically available on both the HMP website and the IMG database [10,16].
These included metagenomes that were sequenced from known syntrophic hydrocarbon-degrading
consortia (#31—short chain alkanes, #29—toluene, and #30—naphtha), and metagenomes from various
other aerobic and anaerobic environments where hydrocarbons are present (Table 1) [9].

In order to expand the dataset to include metagenomes from outside of the HMP, metagenomes
sequenced from a variety of different environments were selected from the IMG database (Table 1) [16].
These included known syntrophic benzene (#28) and terephthalate-degrading (#32) mixed cultures,
methanogenic marine sediments (#42), as well as a variety of aerobic and anaerobic environments and
mixed cultures from non-hydrocarbon associated conditions.

We then determined the microbial community compositions of the metagenomes, and the
metagenomes were classified into groups based on their sampling location information and their
microbial community composition (Figure 1 and Table 1). Metagenomes from known syntrophic
laboratory cultures were classified as “Syntrophic Cultures” to be used as a reference point for
syntrophy in the principal component analysis. Hydrocarbon resource environments containing
microbial communities typically associated with syntrophic processes (Deltaproteobacteria, Firmicutes,
and Epsilonproteobacteria together with Euryarchaeota, primarily consisting of methanogens) and
sampled from locations where anaerobic, methanogenic conditions dominate were classified as
“Potentially Syntrophic Hydrocarbon Environments” (Figure 1A) [4–6]. Hydrocarbon environments
that did not display this community signature and/or were sampled from conditions where other
electron acceptors would be present were classified as “Non-Syntrophic Hydrocarbon Environments”.
Three metagenomes from the HMP were classified into their own group (“Other”). Metagenome
#25 was annotated as having been sampled from a coal bed methane sample (where syntrophic
processes would presumably occur); however the microbial community composition indicated
that no methanogens or known potential syntrophs were present in appreciable abundance [9,23].
Metagenomes #26 and #27 were obtained from a methanogenic coal-degrading culture, but sampling
was performed very early in the cultures incubation, and no Deltaproteobacteria were found in the
community profile [9,10]. As the community profile for these two metagenomes differed from the
other known syntrophic cultures where Deltaproteobacteria were detected, and the COGs selected for
this study were obtained primarily from Deltaproteobacteria genes, these metagenomes were classified
separately from the other known syntrophic cultures (Figure 1A).
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Metagenomes obtained directly from the IMG database were classified in a similar manner
(Figure 1B). Metagenomes known to be from syntrophic cultures were classified as “Syntrophic
Cultures”, two environments (#33 and #42) was classified as “Potentially Syntrophic”, and all
other environments were classified as “Non-Syntrophic” primarily based on the lack of a microbial
community which could act to syntrophically generate methane. The only exception to this was the
sheep rumen metagenome (#43) which, as it showed a similar community profile to the coal-degrading
cultures, was classified as “Other”. Certain metagenomes with potentially syntrophic community
compositions were classified into this group based on details about their environment. Metagenome
#22 was sampled from an uncontaminated location in the aquifer that #33 (contaminated) was obtained
from, and as the influx of carbon (present in #33) which could be degraded syntrophically would
not be present in this sample, syntrophy would likely not be the dominant microbial lifestyle of the
microorganisms present. Metagenomes #19 and #20 also contained microorganisms that may be
associated with syntrophic processes, but were sampled from locations where alternative electron
acceptors (O2, SO4

2´) would be present, and therefore syntrophic processes would likely not dominate.
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Figure 1. (A) Microbial community composition of metagenomes sequenced as part of the Hydrocarbon
Metagenomics Project (HMP) [10]. Relevant community members of importance to this study are
colored; all others are grey. Community composition was determined using the HMP database 454
single end data 16S rRNA based prediction (total community composition not shown) [9]. Based
on sample location as well as microbial community, samples were grouped into categories for use
in further analysis. (B) Microbial community composition of metagenomes obtained from the IMG
database using the distribution by BLAST percent identities (cumulative) with percent hits 30%+ (total
community composition not shown) [16]. Based on sample location as well as microbial community,
samples were grouped into categories for use in further analysis.

3.2. Principal Component Analysis

Principal component analysis was performed in order to determine if environments with the
potential to be syntrophic would have a similar profile of syntroph associated COGs as known
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syntrophic cultures, and to see if the profile of syntrophassociated COGs could be used to identify
these metagenomes as being distinctly different than environments where syntrophy would not be
expected as the dominant microbial lifestyle. Using R, the normalized sum total of COGs found in
each metagenome for each category was analyzed (with centering and using a correlation matrix)
and plotted.

3.2.1. Principal Component Analysis of Universally Present COGs

When principal component analysis was performed using only the totals for the universally
present COGs, the resulting scree plot and statistics for each of the resulting principal components
indicated that the majority of the variation (95%) was captured within the first two components
(Supplemental Figure S1 and Table S3). The principal component analysis was then plotted (Figure 2)
according to their previous classification (Table 1). All known and potentially syntrophic metagenomes
grouped together and all non-syntrophic metagenomes grouped together with a 95% confidence ellipse
(Figure 2). The variables making up the plotted principal components, as well as their direction, were
also plotted in a circle of correlations (Figure 3).
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Figure 2. Principal component analysis plot generated from the normalized number of universally
present COGs detected in each metagenome. Categories for the universally present COGs are listed
in Table 2, with the individual COGs for each category listed in Supplemental Table S1. Numbers
of individual COGs found in each metagenome were summed for each COG category, divided by
the total number of COGs for each respective category, and the sum was normalized against the
total number of genes detected in each metagenome (Tables 1 and 2). Principal component analysis
was performed using R [18]. 95% Confidence ellipses were drawn for all metagenomes classified
as syntrophic/potentially syntrophic, and for all metagenomes classified as non-syntrophic. The
first two principal components are shown. The corresponding statistics and scree plot are shown in
Supplemental Figure S1 and Table S3.
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The resulting plot showed no distinction between the group of the potentially syntrophic
metagenomes when compared to the non-syntrophic metagenomes, with each confidence interval
overlapping completely (Figure 2). In addition, the direction of the COG categories comprising the
first two principal components were evenly spread, causing the metagenomes to separate left to right
based on highest to lowest number of COGs in all categories, with no distinct separation in direction
caused by a particular COG category (Figures 2 and 3).Microorganisms 2016, 4, 5 11 of 18 
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3.2.2. Principal Component Analysis of Syntroph-Associated and Universally Present COGs

In order to determine if the abundance of syntroph associated COGs could distinguish known
and potentially syntrophic metagenomes from non-syntrophic metagenomes, principal component
analysis was performed using the normalized totals for the universally present COGs combined with
the normalized totals for the syntroph associated COG categories (Supplemental Tables S1 and S2).

The resulting scree plot and statistics for each of the resulting principal components indicated
that the majority of the variation (82%) was captured within the first two components (Supplemental
Figure S2 and Table S4). The principal component analysis was then plotted according to their previous
classification (Table 1). All known and potentially syntrophic metagenomes grouped together and all
non-syntrophic metagenomes grouped together with a 95% confidence ellipse (Figure 4). The variables
composing the first two principal components were also plotted in a circle of correlations (Figure 5).
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Figure 4. Principal component analysis plot generated from the normalized number of universally
present COGs and normalized number of syntroph associated COGs detected in each metagenome.
Categories for the universally present and syntroph associated COGs are listed in Table 2, with the
individual COGs for each category listed in Supplemental Table S1 (universally present) and Table S2
(syntroph associated). The numbers of individual COGs found in each metagenome were summed
for each COG category, divided by the total number of COGs for each respective category, and the
sum was normalized against the total number of genes detected in each metagenome (Tables 1 and 2).
Principal component analysis was performed using R [18]. 95% Confidence ellipses were drawn for all
metagenomes classified as syntrophic/potentially syntrophic, and for all metagenomes classified as
non-syntrophic. The first two principal components are shown. Corresponding scree plot and statistics
for each principal component are shown in Supplemental Figure S2 and Table S4.
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The resulting plot showed a separation of the metagenomes with potential for syntrophy when
compared to the metagenomes which were classified as non-syntrophic, with only a minimal overlap
of the 95% confidence ellipses for each (Figure 4). Metagenomes that were identified as potentially
syntrophic (#33–#39, #42) cluster away from this overlap, and closely together with the metagenomes
from known syntrophic cultures (#28–#32). The known syntrophic culture metagenomes and ruminant
metagenome previously classified in the “Other” category (#26, #27, #43) were the only samples with
potentially syntrophic communities that showed clustering patterns that were different from other
known syntrophic metagenomes.

When the variables making up the directions of the first two principal component axes were
analyzed, it was found that the directionality of separation and clustering of the syntrophic group of
metagenomes corresponded with an increasing number of syntroph associated COGs. The direction of
separation caused by these COGs and therefore their contribution to the directionality of the first two
principal components was distinct from that caused by the universally present COGs, indicating that
these syntroph specific COGs were primarily responsible for the clustering of the syntrophic consortia
into the top right quadrant of the PCA plot (Figures 4 and 5). The only syntroph-associated COG
category that did not contribute significantly to the separation of the syntrophic metagenomes was
the “Fix” category, consisting of COGs associated with the Fix membrane-bound electron transfer
flavoprotein:quinone oxidoreductases (Figures 4 and 5).

This analysis was repeated using the KO gene families instead of the COG gene families for
the syntroph associated genes as well as universally present genes, and a very similar clustering
pattern was observed between the syntrophic and non-syntrophic metagenomes, indicating that the
functional gene database used does not dramatically affect the results of the analysis (Tables S5 and S6,
Figures S3–S5).

3.3. Comparison of Number of Syntroph-Associated COGs across Metagenomes

As it appeared that the separation of the syntrophic and non-syntrophic metagenomes was driven
by the abundance of the syntroph associated COGs, the sum totals for each syntroph associated COG
category found in each metagenome were compared in order to determine if particular syntroph
associated COGs were responsible for this trend (Figure 6). In addition, t-tests were performed on the
mean numbers for each category between the non-syntrophic group and the syntrophic group in order
to determine if one group had statistically higher amounts of COGs in a category than the other.
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Figure 6. Abundance of each syntroph associated COG category in each metagenome. Numbers
indicated in the legend refer to the sum total of COGs found for each category in a metagenome,
normalized to the number of total genes detected in that metagenome. Individual COGs comprising
each category are listed in Supplemental Table S2. The total number of COGs detected in the
metagenomes were summed for each category, divided by the total number of COGs for each respective
category, and normalized against the number of total genes detected in each metagenome (Tables 1
and 2). Hyd. = hydrogenase, FDH = formate dehydrogenase.
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From this comparison, it was found both visually (Figure 6) as well as statistically (t-test
p values for each category all < 0.05) that the largest differences between syntrophic and
non-syntrophic metagenomes were in the “NADH-linked formate dehydrogenase”, “membrane bound
hydrogenase”, “confurcating hydrogenase”, “other hydrogenases”, “FeS oxidoreductase”, “other
formate dehydrogenase”, and “membrane formate dehydrogenase” categories, where the syntrophic
metagenomes had higher mean overall COGs detected in these categories than the non-syntrophic
metagenomes. The “fix” category, previously shown to not contribute to the overall separation of
syntrophic metagenomes, had the highest p value for the difference of the means of the syntrophic
and non-syntrophic metagenomes of all the syntroph-associated categories tested, at least 2 orders
of magnitude higher than the p values for the other COG categories. Overall, the “confurcating
hydrogenases” category showed the largest difference by a slight margin between mean number of
COGs in this category found in metagenomes in the syntrophic and non-syntrophic metagenomes.

4. Discussion

Syntrophic metabolism is a key process in hydrocarbon biodegradation under methanogenic
conditions, and is of central importance for both environmental remediation strategies as well
as understanding the microbial potential and resource transformation in hydrocarbon resource
environments. This process involves complex coordination between microorganisms in order to
transfer the energy gained from substrate breakdown so that all microorganisms involved may
benefit [3]. Many methanogenic hydrocarbon-degrading enrichment cultures have now been
established from environmental samples and studied using a variety of approaches (e.g., reviewed
in [3]). However, syntrophic partnerships that are important in environmental samples may not always
be mimicked under laboratory conditions [8]. Thus, the use of metagenomics approaches (that do
not involve cultivation) can offer additional insight into the species and genes involved in syntrophic
hydrocarbon metabolism, as well as the energy transfer mechanisms associated with this process to
allow a deeper understanding of in situ communities. We hypothesized that the abundance of clusters
of orthologous groups (COGs) associated with key energy transfer genes prevalent in the genomes of
syntrophic bacteria could be used as a tool to identify environments with syntrophic potential from
metagenomic data, based on gene families associates with hydrogenase and dehydrogenase genes
previously identified in pure strains as being important for syntrophy (Table 2) [8].

In order to examine the relationship between multiple syntroph-associated and universal COG
groups in a variety of metagenomic sequences, principal component analysis was used. This technique
helps to determine the major sources of variation within a multivariate dataset, and can separate
clusters of samples based on their similarities and differences in select variables in the dataset.
It is important to note that the gene count of the metagenomes used in this study was relatively
comparable; using metagenomic data with gene counts that are orders of magnitude higher than the
other samples due to lack of assembly or annotation can lead to the samples not being comparable
after standardization of detected COG number to the total genes detected in the metagenomes. When
principal component analysis was performed on the normalized number of universally present COGs
found in the metagenomes, no distinction between the potentially syntrophic and non-syntrophic
metagenomes could be observed (Figure 2). This is to be expected, as these COGs are universally
present in almost all microbes, and therefore no separation of syntrophic and non-syntrophic groups
of metagenomes should be seen once the numbers found in each metagenome are normalized for the
number of genes found in the metagenome. When a circle of correlations plot was generated for this
analysis, the directionality of the data spread in the metagenome plot seemed to be from the quantity
of these COGs, however no single COG or group of COGs caused any particular metagenomes to
separate out as a distinct cluster (Figures 2 and 3). The resulting scree plot and statistics for each of the
principal components calculated for this analysis indicated that the majority of the variation in the
dataset (95%) was captured in the first two principal components which were plotted, indicating that
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the lack of separation of the two groups is not due to a component of variation in the dataset that was
not plotted (Supplemental Figure S1 and Table S3).

In contrast to the analysis of the universally present COGs alone, when the normalized numbers
of syntroph associated and universal COGs were combined, the principal component analysis showed
separation between metagenomes classified as having syntrophic potential, and those classified as
non-syntrophic (Figure 4). Metagenomes sequenced from known syntrophic laboratory consortia
were found to cluster together, whether or not they were taken from consortia which degraded
hydrocarbons (#28–#31) or consortia that have been reported to utilize non-hydrocarbon substrates (#32)
(Figure 4) [9,10,16]. Metagenomes which were classified as potentially syntrophic, from both
hydrocarbon related (#33–#39) and non-hydrocarbon related environments (#42) were found to
cluster closely together with the metagenomes from known syntrophic consortia, indicating that
these metagenomes all had similar traits based on the COGs used in the analysis (Figure 4) [9,10,16].
The metagenomes previously classified as belonging to the “Other” category which had originally been
collected from syntrophic, methanogenic coal-degrading cultures (#26 and #27) as well as sheep rumen
(#43) were found to not cluster with the other known syntrophic clusters, instead falling to the far
right of the plot with the non-syntrophic metagenomes (Figure 4). Based on the microbial community
composition, this could have be due to the absence of Deltaproteobacteria detected in these cultures,
as the majority of known syntrophy-associated genes (such as the majority of those used to generate
the COG set used in the analysis) are from Deltaproteobacteria (Figure 1, Table 2, and Supplemental
Table S2) [8]. As these metagenomes were dominated by Firmicutes (known to be involved in syntrophic
processes) and Bacteroidetes (found in hydrocarbon environments and syntrophic cultures, however
are usually identified as primary polymer degraders and non-syntrophs), other genes involved in
syntrophic energy transfer may be used in these cultures; therefore, the primarily Deltaproteobacterial
COGs used in this analysis may differ from the COGs involved in the syntrophic cooperation present
in these samples [8,24–26]. Because syntrophic consortia are difficult to establish, and it is even more
difficult to clearly identify the genes involved in energy transfer and the overall coordination of this
process, there very well may be more genes involved in energy transfer which are utilized by this
culture which do not belong to the formate dehydrogenase and hydrogenase families examined in
this study; for example the genes associated with DIET [11]. Alternatively, the difference in clustering
pattern for the coal metagenomes may also be due to the fact that the coal metagenomes were
determined using samples taken from these cultures at a relatively early point in establishment (day
16 for #26 and day 7 for #27) [16]. The syntrophic biodegradation of coal to methane is normally a very
slow process, with lengthy incubation times [5,27]. Because the metagenomes of these cultures were
sequenced so early-on in the incubation period, it is also possible that the full microbial community
responsible for syntrophic biodegradation of coal had not been established yet, and therefore the genes
(and their associated COGs) required for syntrophic energy transfer were not yet in high abundance,
which could explain why these cultures did not cluster with the other known syntrophic laboratory
cultures (Figure 4). In either case, the environmental metagenomes displayed a much more diverse
microbial community composition than the laboratory syntrophic consortia, including increased
diversity in the subset of microorganisms that could comprise a syntrophic community (Figure 1). This
is to be expected, as a syntrophic community in an environmental sample would likely be more diverse
than that of a laboratory culture enriched under specific conditions. Because of this, the type of sample
bias that may be introduced by selecting primarily Deltaproteobacterial COGs when examining simple
laboratory syntrophic communities such as the coal-degrading cultures does not appear to be present
when examining metagenomes from environmental samples (Figure 4). The only other metagenome
belonging to the “Other” category (#25) was taken from a coal bed methane deposit, where a large
portion of the methane produced would have been generated from syntrophic activity [23]. Coal is rich
in organic matter, and isotopic signatures in coal bed methane sites often indicate that methanogenesis
is responsible for the generation of most of the methane at these locations, but this occurs over
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geological time, explaining the lack of a current syntrophic community or syntroph-associated genes
in this sample [23].

The metagenomes classified as non-syntrophic were more spread out than the metagenomes
classified as syntrophic, with separation within this category primarily driven by the number of
universal COGs (Figures 4 and 5). When 95% confidence ellipses were drawn around each group,
it was found that the cluster of potentially syntrophic and syntrophic metagenomes (“Syntrophic”)
could be seen as separate from the “Non-Syntrophic” cluster of metagenomes, with only a small area
of overlap in the confidence ellipses of each group (Figure 4). This slight overlap could be expected, as
many environments outside of laboratory culture would not be expected to be distinctly syntrophic or
non-syntrophic; rather, a gradient between syntrophic and non-syntrophic activity would be expected.

When the variables that made up the principal components were examined using a circle of
correlations plot, it was found that the separation of the syntrophic group to the top right of the
plot was driven by the number of syntroph associated COGs, with metagenomes with a higher
normalized number of syntroph associated COGs being placed farther to the top right than those
with less of these COGs (Figures 4 and 5). Of all of the syntroph associated COG categories analyzed,
only the category “Fix” did not contribute to the separation of the potentially syntrophic and known
syntrophic metagenomes from those which were not syntrophic (Figure 5). This category contained
COGs associated with genes encoding a membrane-bound electron transfer flavoprotein:quinone
oxidoreductase known as Fix, which is believed to use electrons derived from fatty acid oxidation
to carry out the reduction of ferredoxin, which is unfavorable, using the energy stored in the ion
gradient [8]. The Fix genes are also involved in the transfer of electrons during nitrogen fixation
however, and therefore the COGs associated with these genes are likely also found in non-syntrophic
environments [13]. Though this protein is likely important in regenerating reduced ferredoxin used
in syntrophic energy transfer, the principal component composition indicated that the other groups
of syntrophic COGs are more important in separating and identifying metagenomes with syntrophic
potential [8]. The principal component analysis was also run using KO gene families as an alternative
to COG families, with little difference in the end result, indicating that the gene family database used
to perform the analysis does not substantially influence the results (Tables S5 and S6, Figures S3–S5).

In order to identify whether a particular COG group was more important in differentiating
the syntrophic metagenomes from the non-syntrophic metagenomes, the normalized total for each
syntroph-associated COG category for each metagenome was examined more closely. It was found
that the largest differences in COG abundance between the known and potentially syntrophic
metagenomes and the non-syntrophic metagenomes were in all categories of formate dehydrogenase
and hydrogenase genes as well as FeS oxidoreductases (Figure 6). The metagenomes in the syntrophic
group had more overall COGs detected in these categories than the non-syntrophic metagenomes
(Figure 6). Each of these protein types is important in the generation of the small molecules (hydrogen
and formate) which are often responsible for shuttling electrons in between the partner organisms
involved in syntrophy, and the transfer of these two molecules is believed to be one of the main
processes by which energy transfer during syntrophic biodegradation occurs [5,8].

While our analysis indicates that COG gene families can be used to detect syntrophic potential in
metagenomes, it is important to note that many of these gene families are still poorly understood in
metagenomes, especially those outside of medical studies. In addition, certain COG categories (such
as the FeS oxidoreductases) are not well defined and annotated in metagenomes, and encompass a
large amount of different proteins with diverse functions. Thus, work remains to be done in better
refining and annotating these categories in metagenomic datasets, so that the functional genes that
they represent can be narrowed in scope to be more specific for predicting functions and relationships
from metagenomic data. With this in mind, the analysis conducted here shows that even with this lack
of specificity, the presence of the syntroph-associated COGs at a metagenomic scale may be used to
indicate the potential for syntrophic metabolism in a given metagenome.
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5. Conclusions

Overall, it was found that examining key clusters of orthologous groups (COGs) related
to syntrophic energy transfer genes present in different metagenome sequences using principal
component analysis was able to distinguish environments with syntrophic potential from those which
were non-syntrophic. Predominant differences appeared to arise from an increased number of COGs
related to hydrogenase and formate dehydrogenase proteins between syntrophic and non-syntrophic
metagenomes. The outcome of the analysis provides evidence that hydrogenase and dehydrogenase
enzymes, postulated as being key to energy transfer reactions in syntrophic co-cultures, extend to
mixed syntrophic communities that characterize many environments. This kind of analysis could be
used in the future in order to assess the syntrophic potential of other environmental metagenomes
as they become available, as well as to identify other COGs that are correlated with and potentially
involved in syntrophy.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/2076-2607/4/1/5/s1.
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