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Abstract: Probiotics per definition should have beneficial effects on human health, and their 

consumption has tremendously increased in the last decades. In parallel, the amount of published 

material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic 

reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. 

The present review describes the dark side of the probiotics, in terms of problematic research design, 

incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential 

virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome 

equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines 

applied worldwide. The shift in the scientific world towards a better understanding of the human 

microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better 

knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy 

and substantiate their beneficial effects. 

Keywords: probiotics, autoimmune disease, horizontal gene transfer, virulent factor, antibiotic-

resistant genes, public health 

 

1. Introduction 

For a long time and mainly in the last decades the scientific, medical, industrial, and consumer 

communities have started to unravel the “superorganism” or “the second brain” presented by the 

prokaryotes dwelling inside the human enteric lumen [1–3]. The gut microbiome is a key player in 

intestinal eco-events, modulation, homeostasis, and function, dispersing systemically to impact 

human health [4,5]. Despite the bacterial part in the microbiome, it also contains viruses, archaea, 

fungi, and protozoa, reaching roughly 1014 cells, equaling the human body’s cell number and 

outnumbering the number of human genes by 100 fold. On the evolutionary aspect, microorganisms 

inhabited our globe 3.8 billion years ago, much earlier than the genus Homo emerged in Africa, 2.5 

million years ago [6]. Thus, microbes had a much longer time outside us to adjust and adapt, by 

developing survival mechanisms enabling them to overcome even extreme environments. [7,8]. 

Notably, human enteric physiological microbiota composition and diversity, beyond infancy, are 

equilibrated, demonstrating amazing resilience to various perturbations, thus keeping it in the enteric 

compartment for the benefit of both kingdoms [9]. 

The situation is completely different with the much later evolutionary introduction of probiotics, 

most probably during the Neolithic layer of the stone age period, nearly 10,000 years ago [10,11]. 

Louis Pasteur and E. Metchnikoff should be acknowledged for further defining probiotics toward 

their actual definition “live microorganisms, which when administered in adequate amounts, confer 
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a health benefit on the host.” Since then numerous publications expanded on the beneficial aspects 

of probiotic intake on human disease, conditions, mood, behaviors, and performances [12–16]. Just 

to cite a recent example: “The strongest evidence in favor of probiotics lies in the prevention or 

treatment of five disorders: necrotizing enterocolitis, acute infectious diarrhea, acute respiratory tract 

infections, antibiotic-associated diarrhea, and infant colic” [15]. The repertoire of the most consumed 

probiotics contains lactic acid producing bacteria, mainly lactobacilli, Bifidobacterium, lactococci, and 

streptococci. Yeast, bacilli, and some non-pathogenic E. coli strains are less often used. The ingested 

and nutritional, industrially used probiotics and starter cultures were generally considered as safe, 

for many years, but recently a change in trend has appeared. 

The present review will summarize the questionable or unsubstantiated benefits of probiotics in 

a meta-analysis, highlighting their negative side, side effects, and expanding on their potential 

harmful capacities, mechanistic pathways, and potential hazards for human health. 

1.1. The Probiotic Market is Booming Sky High 

According to several reports, probiotics were used, unintentionally, nearly 10,000 years ago, but 

spread as fermented milk in previous centuries, mainly in Europe, where in the Balkan regions life 

span longevity and healthy life were attributed to their fermented yogurt. Their food application 

expanded earlier and on a larger scale compared to the sales in sachets, capsules, or other 

pharmaceutical preparations [17]. It seems that the trend is changing since direct personal 

consumption is surging abruptly alongside the adoption of self-care, integrative medicine, social 

enterprises, and aggressive media advertisement [18,19]. In fact, according to global market analysts, 

the global probiotic market size is predicted to exceed 3 billion US dollars by 2024 [20]. The market 

size for lactobacilli strains was valued at 1.2 billion US dollars in 2017, while the Bifidobacterium market 

size prediction will increase close to 6% until 2024 and the Bacillus strain market size may surpass 180 

million US dollars by 2024 [21]. According to the discussion group at the 2017 meeting of the 

International Scientific Association for Probiotics and Prebiotics, the estimate of product creation and 

sales will reach 50 billion US dollars within the next five years [19]. 

1.2. Probiotic: Medical and Non-Medical Uses 

The medical and non-medical indications to consume, over the counter, probiotics is constantly 

increasing. Table 1 summarizes some of those applications. 
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Table 1. Medical and non-medical indications for probiotic consumption. 

Medical Applications 1 Medical Applications 2 Functional Applications 

Lactose intolerance [20,22,23] Chronic renal failure [22,24] Functional digestive complains [22] 

Hyperlipidemia [18,22] HIV infection [25] Mood and behavior changes [26] 

Nephrolithiasis (oxalate stones) [27] Cirrhosis, liver encephalopathy, NAFLD [15,23] Memory improvement [28] 

Inflammatory bowel disease [22–24] Organ transplant [23] Anxiety, fatigue, weakness, body or localized pains, nausea [26,29] 

Irritable bowel syndrome [13,22,23,30] Metabolic diseases [12,22] Constipation/loose stools changes [22] 

Eczema, allergic rhinitis, asthma [12,22,24,30] Constipation [22] Day care health [24] 

Infectious diarrhea [22–24,30] Periodontitis [22] Working places health [24] 

Respiratory tract infections [12,22,24] Depression [26] Wellbeing [17,24] 

Traveler’s diarrhea [22–24] Stay in Intensive care unit [31] Anti-stress [29] 

Necrotizing enterocolitis [13,24] Prematurity [32] Increase longevity [33] 

Pouchitis [34] Infant colic [13,15] Improve sexuality [35] 

Helicobacter pylori [22,30] Autoimmune diseases [13,22–24,30] Impaired “intestinal integrity” [22,24] 

Neurological disorders [21] Cystic fibrosis, pancreatitis [23,30]  

Overweight and obesity [18,21] Ethanol-induced liver disease [23]  

Various cancers [22,23,30] Small bowel bacterial overgrowth [22]  

Along or after antibiotics therapy [22] Enhancement of oral vaccine administration [30]  

Clostridium difficile induced colitis [22,23,30] Ischemic heart disease [18,22]  

Respiratory/urinary tract, rotavirus infections [22–24] Hypertension [36]  

Vaginosis [24,30] Neuropsychiatric/degenerative diseases [37,38]  

Dental caries [22–24,30] Enhance growth [22,24,39]  

Diabetes type 2 [23] Enhance weight gain [22,24,39]  
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The present review is not intended to cover or update on the various indications for probiotic 

ingestion but will highlight their usage as a supplement to pharmaceutical therapy of, for example, 

autoimmune conditions. 

1.3. Can Probiotic Intake Change Microbiotic Composition and Restore Eubiosis? 

The holistic enteric compartment with its active luminal organ, presented with abundant 

prokaryotic flora, creates multifunctional defense mechanisms, preventing pathogenic invaders 

while keeping the microbiome at bay [5,8,9]. However, when failed or transformed to the dysbiome, 

chronic pathological conditions evolve, resulting in allergic, inflammatory, cancerous, and 

autoimmune diseases. The hen and chicken dilemma remains an enigma, and the issue of 

association/causality is far from being resolved. Despite this, taking probiotics to restore the normal, 

protective microbiome and to “balance” the human body’s flora is booming. The question arises over 

whether probiotics can modify dysbiosis and reverse the process. According to many recent scientific 

observations, the ways that the enteric microbiota/dysbiota is influenced by “good bacteria,” or the 

probiotic, is still unknown, and it seems that probiotic intake does not significantly affect gut flora 

composition [39–49]. Interestingly, probiotics affect the upper small bowel more than the colon 

[41,45]. Two major aspects ensue from recent studies: 1. The effects are influenced by the individual 

microbiome composition and structure, eluding to personal medicine [40,42,43,45]; 2. The probiotics 

impact is much more related to functional aspects, praising the mobilome, bacterial constituents, 

metabolomics, as well as the proteinomic effects [40–46]. After setting the stage of the probiotic 

clinical usages and impacts, the following is a clinical example of probiotics and the autoimmunity 

relationship. 

1.4. Probiotics as a Supplemental Therapy in Autoimmune Diseases 

The etiology, pathomechanisms, initiation, maintenance, progression, and modulation of 

autoimmunogenesis are continuously evolving. On the other hand, it is not yet understood why 5–

8% of the general public is affected by autoimmune conditions. Four mechanisms were suggested for 

autoimmunity generation: molecular mimicry, self-antigen modification, bystander activation, and 

immune reactivity modulation [49]. The place of the wide “exposome” and more specifically the 

dysbiosis associated autoimmune disorders, is far from being clarified. Noteworthy, the relations of 

the changed composition and diversity in the enteric microbial kingdom to the four pathogenic 

mechanisms enumerated above is still poorly understood. Despite the lack of the dysbiotic scientific 

background, the patients and the treating clinical teams are trying to advance the supplemental 

therapeutic modalities in the direction of restoring the altered microbiome. The application of fecal 

transplantation, prebiotics, and probiotics are constantly expanding. Multiple autoimmune 

conditions are treated by probiotics including systemic lupus erythematosus (SLE), rheumatoid 

arthritis, Celiac and Crohn’s diseases, ulcerative colitis, multiple sclerosis, Sjogren’s syndrome, 

systemic sclerosis, antiphospholipid syndrome, myasthenia gravis, diabetes type 1 [13,50–62]. In 

many local and international scientific conferences, the probiotics trial as a supplement of adjunct 

therapy is presented. Moreover, the main argument favoring it is: “If it does not help it does not do 

any harm.” 

The purpose of the current review is to protest against that repetitive declaration and to justify 

the opposite of its dual messages: 1. According to multiple recent meta-analyses, probiotic clinical 

benefits are questionable or disqualified. 2. Probiotics can present a Trojan horse that works against 

human health. 

2. The Dark Side of Probiotics 

Microbes possess an extended arsenal of hostile factors, capable of suppressing or destroying 

vital eukaryotic host mechanisms, for their advantage. Probiotics are an integral part of the 

prokaryotic kingdom with evolutionary conserved self-survival systems, in ex vivo and in vivo 
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environments; above all, mainly in the overpopulated, extremely competitive, harsh ecological niche 

of the human gut. Ingestion of probiotic bacteria or products creates a survival struggle between the 

well-established inhabitant microbiome. Microbiome in the enteric compartment with the new 

probiotics. 

In addition to the clinically reported multiple side effects in the literature, several pathogenic 

virulent potential pathways can be expressed in and executed by probiotics, thus affecting human 

health integrity. The following details several such pathomechanistic avenues. 

2.1. Horizontal Gene Transfer (HGT) 

HGT is the lateral movement of mobile genetic elements between unicellular or multicellular 

organisms. It enables the transfer of genes even between distant species mediated usually by 

transformation, transduction, conjugal transfer, or with specific gene transfer agents [63]. The topic 

of HGT in the human gut and the transfer of virulent genes to the endogenous microbiome was 

summarized recently [8]. The human gastrointestinal tract is an ideal environment and represents a 

hot spot for HGT [8]. As probiotics are extensively used in the processed food and fermented 

product’s industries and as over the counter additives, the question arises whether they can deliver 

hostile genetic elements to the microbiome? 

Screening the literature, multiple publications describe the existence and transfer of hostile 

mobile genetic elements in and from probiotics [8]. Taking, for example, the most explored ones, the 

antibiotic-resistant genes, were found in various dietary supplements [64]. The problem is so 

widespread that it requires risk assessment measures to be implemented in those nutritional 

supplements [65]. More so, virulent mobile genetic elements are of a concern when transferred by 

HGT from probiotics to the enteric commensal communities [66]. More specifically, HGT between 

probiotic strains was reported for Lactobacillus paracasei [67], Lactobacillus rhamnosus [68], Lactobacillus 

reuteri [69–71], Lactobacillus gasseri [72], Lactobacillus plantarum [71], among other probiotics. 

Generally, gene flux of antibiotic-resistant genes, from gram-positive cocci to gram-negative microbes 

has been suggested [73], involving numerous antibiotics [74]. Even if probiotic ingestion does not 

impact stool microbial composition [48], HGT between ingested probiotic and the endogenous 

dwellers exist [75]. The cumulative risk of the probiotic double-edged sword effect of lateral genetic 

transfer of virulent elements is an ongoing enigma [76]. 

A special compliment should be given to Rosander et al. [77] who wrote a rare publication on 

the removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730, 

which is not commonly reported in probiotic research. However, antibiotic gene transfer is only one 

aspect of virulent genes and was taken just as an example. Gelatinase and hemolytic activities and 

several enzymes like peptidases, acid phosphatase, phosphohydrolases, α + β- galactosidases, and N-

acetyl-β-glucosaminidase were depicted in lactic acid bacteria of aquatic origin intended for use as 

probiotics in aquaculture [78]. Most recently, microbial transglutaminase, a heavily consumed 

additive by the industrial processed food industry and a prokaryotic survival factor, was recently 

found to possess virulent factors, with anti-phagocytic being one of them [79,80]. Interestingly, 

probiotics also secrete the enzyme that was described as a novel potential environmental factor in 

celiac disease induction [81–85]. Microbial transglutaminase can be considered as a secreted toxin 

[86], with functional capacities even in pathogenic microbes [87–90]. Complexed to gliadin, when the 

microbial transglutaminase is crosslinking gliadin, the complex is immunogenic in celiac patients 

[84], and multiple deleterious effects on human health were described [91]. Finally, lateral gene 

transfer might influence the holobiont repertoire in intestinal niches whereby external prokaryotes, 

including probiotics, can affect genetic stability and evolutionarily conserved processes, threatening 

human health [92–99]. 

2.2. Bacteriophages of Probiotics Transfer Mobile Virulent Genes 

The success and efficiency of probiotics depends on numerous factors that can be divided into 

microbiotic-exogenous, host-endogenous, and luminal-environmental [100]. One of the luminal 

factors are the bacteriophages. They are bacterially infectious small viruses that lyse microbes. The 
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gastrointestinal tract harbors a wide variety of viruses, called the virome, and the phageome 

constitutes the largest part of this virome [101]. It is estimated that more than 30 billion 

bacteriophages transcytose human epithelial layers every day. They play a pivotal role shaping the 

microbiome’s taxonomic and functional compositions. The enteric prophages serve as a mobile 

repository of genetic elements and are transmitted via our microbiome, thus impacting on the 

microbiota/dysbiota or symbionts/pathbionts ratios and health and disease [101,102]. The enteric 

phageome virulence is controlled by the neighboring microbes, fungi, and helminths, thus creating a 

luminal trans-kingdom relationship [103,104]. 

They can be regarded as human pathogens, interacting directly or indirectly with prokaryotic, 

probiotics, as well as eukaryotic cells, including involved in protein misfolding, carrying prion-like 

domains [102,105]. Probiotics are prokaryotic and as such, are under the influence of the 

bacteriophages [100–105], many of the probiotic strains, orally consumed or used in food industries 

have their specific phages. A broader view will disclose a global environmental distribution of 

bacteriophages, carrying their hostile genetic cargo, to most environmental biomes where the bacteria 

reside [106,107]. Wastewater treatment plants, human fecal samples, food and medical isolates, dairy 

fermentations, agriculture, and even in the air are where virulent genes were most recently detected 

in multiple congested metropolitan urban air [108–113]. Screening the bacteriophages of commonly 

used probiotics, Lactobacillus paracasei or gasseri [67,72,114,115], Lactococcus lactic [116–121], and many 

more, were found to have close contact with specific phages. 

The probiotic bacteriophages are a potential carrier of hostile genes that by transfecting 

prokaryote or eukaryote cells, can spread genetic material. Finally, it appears that some 

bacteriophages contain virulent transglutaminase genes, thus representing additional 

tranglutaminase activity in the intestinal lumen [86,90], in addition to the microbiome, archaeal, 

probiotic, and industrially added one [8,82–85,91]. Finally, the evolution of novel transglutaminase-

like peptidase from eukaryotic ciliary compartments was traced back to prokaryotic 

transglutaminase-like peptidases, thus, deciphering key evolutionary events along the course of the 

eukaryotic emergence from prokaryotes [122]. 

2.3. Processed Food and the Probiotic Mobilome 

Probiotics are heavily used in the processed food industries, spanning not only dairy fermented 

products, but also in wider industrial applications including medical, diagnostic, pharmacological, 

and biotechnological industries [123–128]. For many industrial applications, including dairy starter 

fermentation cultures, they acquired the GRAS (generally regarded as safe) status, which was defined 

before recent safety concerns were raised, such as the carriage of virulent mobile genetic elements. 

Notably, genetic transfers in bacteria are more prone to occur in crowded environments, such as the 

human GI tract, not excluding food reservoirs, manipulations, and products. Probiotics are heavily 

used, for many years, for processed food manipulations and production. Many of them are used in 

fermented foods like dairy products, cheese, fermented sausage, fermented vegetables, soy-

fermented foods, and fermented cereal products [129]. It is very logical that one of the concerns of 

their massive usage is the lateral exchange of hostile genes, in-between them, or to the physiological 

microbiome, to the dysbiota, or even to human cells, as summarized here [8]. Gene acquisition/loss 

within or between various microbes and probiotic strains were widely described, all across the food 

chain, be it dairy, meat, or vegetable products and even in the ready-to-go food items [121,130–134]. 

HGT of antibiotic resistance is wide and was reported for a wide range of probiotics, including 

Lactobacillus rhamnosus, Lactobacillus gasseri, Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus 

plantarum, and many others [8]. In addition to antibiotic-resistant genes, the most extensively 

explored, numerous additional virulent genes are carried by the probiotic microbial genome. 

Microbial transglutaminase, mentioned above, is only one of them [79–91]. 

2.4. D-lactate, Metabolic Acidosis, and Brain Fogginess 

Probiotic consumption is associated with D-lactic academia and acidosis in adults and infants 

on probiotic-containing formula [41,135–139]. Lactobacillus and Bifidobacterium species are the most 
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used bacteria in probiotic formulations and they produce D-lactate [139–142] and their consumption 

was suggested to be avoided in D-lactic acidosis [139]. Intriguingly, D-lactic acidosis and other 

etiologies for acidosis are associated with neurocognitive symptoms, neurological impairments, and 

chronic fatigue syndrome [137,143,144], including brain fogginess [41,139]. The syndrome of brain 

fogginess has, in fact, multiple etiologies, one of which is short bowel syndrome associated with D-

lactic acidosis [41,139,144,145]. Despite the critical view on the association with probiotic intake 

[146,147], the discontinuation of the antibiotics and the resolution of the symptoms on antibiotic 

therapy, strengthen the causative association [41,139]. 

2.5. Intestinal Bacterial Overgrowth, Gas, and Bloating 

This paragraph is related to the above paragraph and might explain the pathophysiology of the 

acidosis and brain fogginess described above. Rao et al. described a new syndrome relating post-

prandial brain fogginess, gas, and abdominal bloating to small intestinal bacterial overgrowth and 

probiotic-induced D-lactic acidosis [41,139]. Additional complaints were fatigue, weakness, 

disorientation, and restlessness. The authors put forward the hypothesis that probiotic fermented 

carbohydrates in the proximal small bowel induce intestinal bacterial overgrowth, resulting in D-

lactic acid production, increased gas output, and abdominal bloating. The D-lactic acidosis is the 

culprit for the brain fogginess. They suggested that this unique entity is an additional side effect of 

probiotic consumption. 

2.6. Additional Clinical Probiotic Side Effects 

The medical literature warns against probiotic consumption in congenital or acquired immune 

debilitating conditions, heart anomalies, chemo- and radiotherapies, surgical abdomen, HIV-

infected, critically ill, post-organ transplantation, post-operation, central venous catheters, 

autoimmune disease on immune suppression, pregnancy, neutropenia, critically ill patients, 

including antibiotic-associated diarrhea, active ulcerative colitis, and potential for translocation of 

probiotic across bowel wall [74,148,149]. Although it is not the main focus of the present review, to 

wrap up the subject, Table 2 summarizes the reported toxic, unintended, adverse effects following 

probiotic usage. 

Table 2. Summary of the reported toxic, unintended, adverse effects following probiotic 

consumption. 

Infectious/gastrointestinal Allergic Genetic Patho-toxogenicity 

Bacteremia [41,74,150] Rhinitis [149] Transfer of virulent factors: 
Enhanced adhesion and 

protein aggregation [74,149] 

Sepsis [41,74] 
Wheezing 

bronchitis [151] 

Antibiotic resistance 

[74,149,152–154] 
Mucolysis/hemolysis [74,149] 

Fungemia [41,155] Rash [149] Hemolysin [149,152] Bile salt hydrolysis [74] 

Endocarditis, meningitis, endometritis, 

peritonitis, pneumonia [150,156,157] 
 Gelatinase [149] 

DNA degradation and 

proteolysis [149] 

Liver abscess [150] Metabolic DNAse [149] 
Innate defense resistance 

[52,149] 

Diarrhea, Abdominal cramps [74] 
D-lactic acidosis 

[41,74,149] 

Enolase activating 

plasminogen [149] 
Food poisoning [149] 

Nausea, vomiting, flatulence, taste 

disturbance [41,74] 
 Metalloendopeptidase [158] 

Immune evasion or over 

stimulation [74,149] 

Low appetite [159]  
Cytolysin modification, 

transport, activation [160] 

Facilitated microbial 

conjugation/translocation 

[74,149] 

  Sex pheromones [161] 
Macrophage/monocyte 

chemotactism [162] 

   
Nanoparticles: 

Lactomicroselenium [163] 

   
Gastrointestinal ischemia 

[41,74] 

   Mechanical choking [74] 
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   Peptide deamidation [164] 

   
Epigenetic and mobilome 

manipulation [52] 

The list of probiotic’s adverse effects is expanding, however, due to a lack of safety and toxicity 

standardized protocols and regulatory implementations, the list is under-representative. It is clear 

that more safety and toxicity designed studies are needed to reveal the negative side of probiotic use 

[74,148,149,154,165]. Figure 1 is a schematic presentation of the local and systemic adverse effects and 

mechanisms by which the probiotics exert their deleterious effects. 

 

Figure 1. The local and systemic adverse effects of probiotics. 

3. Problematic Inadequate Design, Incomplete Reporting, and Lack of Transparency 

The current review aims to highlight the negative side of probiotic consumption. As such, 

followed herein are the most recent systemic reviews and meta-analyses that criticize multiple 

aspects of the medical publications on probiotic efficacy and safety (Table 3). Many of them detected 

a lack of qualified experimental designs, a shortage of standardization, extended data variance, 

incomplete reporting, high patient withdrawal, and all of which increase the publications’ biases. In 

a recent review of existing meta-analyses, the authors tried to analyze the contradictory results of the 

probiotic effectiveness in many frequent conditions [165]. The final results were quite restricted: 

“Only for antibiotic- and Clostridium difficile-associated diarrhea, and respiratory tract infections the 

effects of probiotics are considered "evidence-based". Concerning other fields, meta-analyses fail to 

define the type and biologic effect of probiotic strains, as well as the outcome in a disease state. The 

authors concluded that: “Further studies are needed, because the available evidence is insufficient to 

show the efficacy of probiotics themselves. Carefully designed clinical trials are needed to validate 

the effects of particular strains of probiotics given at specific dosages and for specific treatment 

durations.”  
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Table 3. A summary of recent meta-analyses and systemic reviews criticizing microbiome and 

probiotic publications. 

Publication Mal-Designed 
Lack of 

Standardization 

High Data 

Variance 
Biased 

High 

Withdrawal 

Incomplete 

Reporting 
Reference 

Review + + + + +  [154] 

Systemic review + + +  + + [148] 

Review + + + +  + [74] 

Systemic review + +  +  + [166] 

Systemic review + + + +  + [148] 

Systemic review + + + +  + [167] 

Meta-analysis    + +  [168] 

Meta-analysis +   +  + [169] 

Meta-analysis +  + + +  [170] 

Meta-analysis +   +   [171] 

Meta-analysis + + + +   [172] 

Meta-analysis + + + +   [173] 

Systemic review +   +   [174] 

Meta-analysis + +  +  + [175] 

Meta-analysis + +  +   [62] 

Meta-analysis + +  +   [176] 

Meta-analysis + +     [177] 

Meta-analysis + +  +   [178] 

Meta-analysis + +  +   [179] 

Meta-analysis +   +   [180] 

Meta-analysis + + + +   [181] 

Meta-analysis + +  +   [182] 

Systemic review + + + +   [183] 

Meta-analysis + + + +   [184] 

+ = exist in the publication. 

4. Lack of Effective Regulation of Probiotics 

More recent systemic reviews or meta-analyses, from 2018, did not demonstrate differences of 

outcomes, using probiotics, on the treatment success of: constipation [180], traveler’s diarrhea [179], 

cancer [173,175], anxiety [171,177], rheumatoid arthritis [62], urinary tract infections [174], decrease 

in fat mass [172], food allergy [169], childhood asthma [178] and eczema [185], preterm 

neurodevelopment [182], and adiponectin and leptin levels [181]. Van den Nieuwboer et al. 

summarized it clearly: “generalizability of conclusions are greatly limited by the inconsistent, 

imprecise, and potentially incomplete reporting as well as the variation in probiotic strains, dosages, 

administration regimes, study populations, and reported outcomes” [148]. 

It seems that scientific and medical societies should “mind the gaps” between published studies 

praising probiotic therapeutical efficacy and a lack of substantiation when analyzed by more 

objective, standardized methodologies, such as critical systemic reviews or meta-analyses. More so, 

when intestinal microbiota composition was assessed on probiotic intake, no significant changes were 

depicted [44–48,140]. Intriguingly, probiotic effects diminish with time, in mice [186] and their 

stability and survival markedly decline in frozen capsules [187]. Probiotic colonization is also 

controversial since studies done on fecal samples alone are insufficient—colonized intestinal biopsies 

are more indicative [149]. 

5. Probiotic Safety is Under-Reported 

The present review cannot be completed without an update on probiotic safety. The food and 

drug administration consider some probiotics, as GRAS, when added to food [188], especially when 

intended to impact taste, aroma, or nutritional value [74,189]. However, most of the reviews, 

analyzing the safety of probiotics highlight the issue of a lack of structural classification and a wide 

generalization of conclusions that is limited by imprecise, inconsistent, and incomplete reporting 
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intermingled with variations in strains used, dosages, regimes of administration, experimental 

designs, and the participating populations [74,148,149,167]. Many contrast the differences that exist 

between the long history of the large consumption of “safe” probiotics compared to the scarcity of 

scientific proof for their safety [74,149,167]. Missed microbial identification, misnumbering and 

mislabeling, and lack of dose-response relationships are additionally reported aspects [149,190–194]. 

Insufficient and uncontrolled research designs, underpowered studies, and mixed research and 

outcome results are often encountered [195]. The allergic reaction, or anaphylaxis, is an additional 

aspect of safety, since probiotic preparations can contain allergens, including cow milk and hen egg 

proteins [196,197]. Safety is further complicated by the fact that various companies use duplicate 

cultures of the original strains, by applying fingerprinting techniques, potentially increasing the risk 

of detrimental effects [149]. To fill the gap in reliability and transparency in probiotics effectiveness 

and safety the following need to be considered: eliciting side effects data from participants [198], 

suboptimal adherence to reporting guidelines [199–201], over food industry funding mounting to 

60% of the screened studies [202], lack of long-term effects in normal and vulnerable populations 

[203], and occasional lack of viable organisms [204]. Most recently, skepticism was raised concerning 

the labeled number of bacteria in probiotic preparations, publication bias, the generalizability of 

findings, and the safety in immune deficient hosts [13]. Finally, it appears that few studies on 

probiotics are designed to probe safety aspects and much should be improved in this domain 

[149,205,206]. 

Quite often patients consume probiotics while physicians encourage probiotic consumption, 

despite their potentially harmful effects. The notion of “good bacteria” and the manufacturers’ claim 

of “health promotion” or “balancing” normal gut flora should be taken with a “grain of salt.” In two 

seminal studies from an Israeli group recently published [42,43] it was shown that “mucosal 

colonization resistance to empiric probiotics” is host and microbiome dependent and that “post-

antibiotic gut mucosal microbiome reconstruction is impaired by probiotics” [40]. Those and multiple 

reviews, meta-analyses, and studies, mentioned above, reinforce the need for regulation of probiotics 

for public health protection. It seems that real life habits, hopes, and media-directed information 

overcome scientific knowledge in real-time. Even the basic categorization of probiotics as drug, food, 

or dietary supplements is still undetermined and confused [30]. However, there is some light in the 

regulatory tunnel. The European Food Safety Authority (EFSA) changed their regulatory policy 

based on the lack of convincing evidence on the claim that probiotics improve human health or 

wellbeing [195,207,208]. Moreover, when regulation is enforced, consequences are predicted. Within 

the European Union, all health claims for probiotics were rejected, except for lactose intolerance 

improvement [209]. Since 2013, no claims concerning the change or improved gut microbiome 

composition was approved by the EFSA. The American FDA is taking a different approach. Probiotics 

can be categorized as food, food additive, cosmetics, dietary supplement, or drugs [210], and the 

responsibility for accuracy and truthfulness of the product is the responsibility of the producer 

[209,211]. It should be notified that no probiotic was approved for health claims by the FDA in recent 

years [209]. The tightened regulations impacted the scientific community and the manufacturer’s 

policies profoundly, as mirrored by the number of publications on the subject in the last two decades. 

The number of publications or registered studies increased significantly on microbiota while 

plateauing on probiotics [209]. The shift to explore the microbiota presents an opportunity to uncover 

new probiotics and understand their mode of action, and explore relationship with their neighboring 

prokaryotes, eukaryotes, and their secreted mobilomes [212,213]. 

6. Conclusions 

The present review intended to summarize the somber side of probiotics, highlighting the 

potential detrimental effects embedded in the fact that probiotics are prokaryotes, and as such, 

contains hostile factors, in order to survive. They are capable of inducing local and systemic adverse 

effects (Figure 1) thus contradicting their definition as beneficial for human health. More caution, 

safety exploration, and stringent regulation can prevent these mal-effects. The absence of associated 

virulence factors should be demonstrated, especially when the probiotic belongs to a bacterial genus 
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with pathogenic capabilities. Consideration of risk-benefit ratio before suggesting probiotics should 

be highly recommended. In view of potential pathogenic pathways, problematic inadequacy of 

design, reporting and transparency, and under-reported probiotic safety and non-defined 

implementable international criteria for regulation, it is encouraging to follow the contemporary back 

shift to the microbiome. It is hoped that by widening the knowledge of the human intestinal 

microbiome, that salvation will come from “the ascent of the blessed” probiotics as a 

preventive/beneficial/therapeutical health promoter. Finally, since intestinal microbiota is a recent 

new frontier in medicine, further exploration might stage probiotics as a preventive barrier or as a 

product capable of balancing the dysbiome associated with chronic human morbidity and mortality. 
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