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Abstract: The evolution, habitat, and lifestyle of the cryptic clade II of Escherichia, which were first
recovered at low frequency from non-human hosts and later from external environments, were poorly
understood. Here, the genomes of selected strains were analyzed for preliminary indications of
ecological differentiation within their population. We adopted the delta bitscore metrics to detect
functional divergence of their orthologous genes and trained a random forest classifier to differentiate
the genomes according to habitats (gastrointestinal vs external environment). Model was built with
inclusion of other Escherichia genomes previously demonstrated to have exhibited genomic traits of
adaptation to one of the habitats. Overall, gene degradation was more prominent in the gastrointestinal
strains. The trained model correctly classified the genomes, identifying a set of predictor genes that
were informative of habitat association. Functional divergence in many of these genes were reflective
of ecological divergence. Accuracy of the trained model was confirmed by its correct prediction of
the habitats of an independent set of strains with known habitat association. In summary, the cryptic
clade II of Escherichia displayed genomic signatures that are consistent with divergent adaptation to
gastrointestinal and external environments.
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1. Introduction

Closely related bacterial lineages can have very different habitats and niches; ecological
differentiation was reported between Vibrionaceae strains coexisting in coastal ocean [1], as well
as between typical E. coli (host-associated) and environmental cryptic clades of Escherichia [2,3].
Furthermore, multiple ecotypes often exist within traditionally defined species. In fact, the survival
and distribution of a species were partly influenced by intra-species diversity [4]. For example,
Bacillus simplex ecotypes were adapted to different microhabitats in the “Evolution Canyons” in
Israel [5], while different host range was observed among Legionella pneumophila [6] and among
Salmonella enterica [7,8]. Identifying and characterizing bacterial populations with distinct ecological
niches (ecotypes) has been fundamental to understand their ecology and evolution [9,10].

Many studies delineate ecologically distinct populations based on macroscopic characteristics such
as gene absence/presence and pseudogene analysis, others focused on finer scale differentiation, examine
impacts of gene mutations and indels on protein function [8]. The bloom of “omics” analyses—genomics,
transcriptomics, proteomics, phenomics, etc.—with many valuable insights particularly attained
from the ever-expanding collection of bacterial genome sequence data substantially benefited our
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understanding of ecological differentiation and niche adaptation of bacteria [3,8,11–13]. Attempts to
gain further functional insight into the underlying biological mechanisms of niche adaptation among
closely related bacteria has been greatly facilitated by artificial intelligence approaches such as machine
learning, which added invaluable depth and possibility to the interpretation of massive and complex
genomic data. Combining data across whole genome or proteome, prediction of phenotypes from
genotypes, and identification of genetic signatures of niche adaptation in pathogenic bacteria were
made possible by machine learning, which otherwise would be difficult if not impossible to execute
with other methods [13–16].

Typically, the identification and characterization bacterial populations starts with identifying
distinct genotypic clusters [9]. The distinctness of putative ecotypes could then be validated by the
distribution of microhabitats, difference in genome content, gene expression profile, physiology,
and phenotypes, as ecotype adaptation to habitat and ecological niche are often reflected in these
aspects [1,3,8,10–12]. Source and virulence attributes of isolates could be predicted based on their
inferred phenotypes and the association of phenotypes with ecological attributes such as host type or
range, which is especially invaluable for public health management [13,16].

In lineages that have diverged recently, disruptive frameshifts, truncations and complete deletion
of genes have yet to occur. Instead, mutational (or small indels-induced) function loss or alteration
occurred as an immediate response to a new environment [17]. These changes would be overlooked by
macroscopic approaches but could be detected by a recent.delta-bitscore (DBS) approach that identify
functional divergence induced by genetic variations could detect them [8]. DBS successfully identified
signatures of host adaptation among different Salmonella enterica serovars, showing consistency with
pseudogene analyses but with additional sensitivity in detecting protein variants that are functionally
altered or non-functional [7,8]. It is important to discover the types of functional divergence favoring
rapid adaptations that could support the coexistence of most closely related yet ecologically distinct
populations (i.e., within a named species). Probing such fundamentals of adaptation for their coexistence
would ultimately advance our understanding of the functions of different ecotypes, their complex
interactions within bacterial community, and with their habitats [10].

Our group has published the genome sequences of 16 strains affiliated with cryptic clade II of
Escherichia [18]. The strains were isolated from intertidal sediment, whereas prior to the publication
strains belonging to this lineage were rarely isolated and only a handful of genome sequences, all of fecal
origins, were publicly available [19–23]. Therefore, many of their ecological attributes were yet to be
uncovered. As clade II strains were found in contrasting habitats, and strains from fecal sources and
coastal marine sediment were phylogenetically more distantly related [18], we proceed to examine
if clade II is comprised of strains that were ecologically divergent. Capitalizing on the capability of
computational approaches to infer metabolic capacities from genomic data, we subjected the genomes
of selected strains to DBS analysis [8] to detect functionally significant genetic variations. Utilizing
bitscore difference as the input, we adapted the random forest model from Wheeler et al. [13] to
detect signals of niche divergence in selected Escherichia cryptic clade II strains, identifying genes that
displayed signs of functional divergence, which corresponded to their niche adaptation to hosts and
external environments, respectively. The findings could facilitate the selection of candidate genes and
functions for further ecological studies to confirm their ecological distinctness.

2. Materials and Methods

2.1. Strain Selection and Genome Data

Six Escherichia clade II strains were compared in this study. Three clade II strains (E4742, E4385,
and E4930) isolated from coastal marine sediment in our previous study [18] were selected for
PacBio sequencing. Another three clade II strains (B1147, ROAR019, and EC5350) were of fecal
origins. [20,23,24], and their genomes were retrieved from the NCBI database. Genomes of other
Escherichia, including E. coli (ECOR66), cryptic clade I (E. TW15838 and E. TW10509), clade III
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(E.TW09276 and E. TW09231), clade IV (E. TW14182 and E. TW11588), clade V (E1118 and E. TW09308),
and Shigella dysentriae (Sd197), were also retrieved for machine learning training and assessment.
Accession numbers and information of the genomes can be found in Table A1 in Appendix A.

2.2. Genomic DNA Extraction

Genomic DNAs of the three clade II strains (E4742, E4385 and E4930) were extracted from overnight
pure cultures cultivated in LB broth using Qiagen RNA/DNA Mini Kit (Qiagen, Hilden, Germany).

2.3. PacBio Sequencing

For each genomic DNA sample, a 10 kb SMRTbell library was constructed according to
manufacturer’s instructions (PacBio, Menlo Park, CA, USA). Each sample was first sheared and
treated with Exo VII, followed by the DNA damage repair and end-repair steps. Following end-repair,
barcoded adapters are ligated to the sample. Samples were then pooled and underwent Exo III and VII
treatments, followed by two 0.45X AMPure PB bead purification rounds. The libraries were sequenced
using a PacBio RSII instrument and P6C4 chemistry (PacBio, CA, USA).

2.4. Genome Assembly Assessment and Annotation

CANU assembler V1.5 [25] with the standard pipeline and default parameters was utilized to
create assembly from PacBio long-reads, resulting in two draft genomes (E4835 and E4930) and one
complete genome (E4742). The genomes were submitted to Dfast web server (https://dfast.nig.ac.jp/)
for annotation. Generated gff files and predicted protein files were used for subsequent comparison
study. The completeness of genome assembly and annotation for all genomes were assessed with
the Benchmarking Universal Single-Copy Orthologs (BUSCO) V3.0 software [26]. OrthoDB v9.1
“enterobacteriales_odb9” base was used as a reference (781 BUSCOs among 216 species of the order
Enterobacteriales). Each individual genome was examined for the copy number of 781 BUSCO genes
(single-copy orthologues present in at least 90% of enterobacteriales). For each BUSCO gene, a consensus
protein sequence was produced using HMMER [27] hidden Markov models (HMMs) and then used as
search query against each genome to identify up to three putative genomic regions by tBLASTn [28,29].
The de novo gene structure of putative genomic regions was then predicted by AUGUSTUS [30].
These predicted genes were aligned to HMM alignment profile of the BUSCO gene and only those with
alignment bitscore higher than cutoff value (90% of the lowest bit-score among reference genomes)
were kept. If no predicted gene from a specific genome was retained, the absent gene is assigned as
“missing.” Genes with aligned lengths shorter than 95% of the expected BUSCO group lengths were
classified as “fragmented.” Predicted genes were classified as “complete” if only one copy was present
in a genome or “duplicated” if more than one “complete” predicted genes were present in a genome.

2.5. DBS Calculation and Hypothetically Attenuated Coding Sequences (HACs) Definition

We retrieved the Pfam HMMs collection from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_
release and use the curated Pfam-A.hmm database in this study. Annotated protein sequences
(from Section 2.4) were aligned to corresponding profile HMM in the Pfam database using hmmsearch
from the HMMER3.0 package (http://hmmer.org) to produce bitscore values for each query sequence.

When comparing the proteomes of two strains, for two orthologous sequences (each from one strain)
aligned to the same profile HMM, delta-bitscore (DBS) was calculated following Equation [8]

DBS = Xref − Xvar (1)

where Xref and Xvar each stand for bitscore of reference strain and variant strain, respectively,
which come from the alignment to the same profile HMM in Pfam database using hmmsearch from the
HMMER 3.0 package.

https://dfast.nig.ac.jp/
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release
http://hmmer.org
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Subsequently, for pairwise comparison of two proteomes, loss-of-function mutations were
identified using empirical distributions of DBS for all orthologues, with 2.5% of DBS on the least
dispersed end as cutoff as described in Wheeler et al. [8]. Proteins with scores falling outside the cutoff

are considered as HACs, i.e., hypothetically attenuated coding sequences (HACs). For concurrent
comparison of multiple proteomes, as in Wheeler et al. (2016), bitscores from all compared proteomes
were first sorted. Then, the median score was used as a benchmark to compare the bitscore of each
gene to obtain DBS. Subsequently, HACs were identified from DBS distribution using the same cutoff

as the pairwise comparison above (2.5% of DBS on the least dispersed tail). The Wilcoxon signed
rank test and one-way ANOVA were performed to test for significant differences in the degree of
functional loss between two proteomes and between two groups of proteomes (gastrointestinal vs.
environmental), respectively. Analyses were done using the Minitab R v18.1 software (Minitab Inc.,
State College, PA, USA). Boxplot for ANOVA was created via the ggpubr package in R.

2.6. Random Forest Classifier Constructing and Training

As the clade II strains were from two isolation sources with disparate environmental conditions
(external environment vs gastrointestinal), we proceed to train a random forest classifier model to
separate the strains based on their isolation sources, which presumably would return a set of genes that
were indicative of adaptations to the different habitats. To minimize the inclusion of genes that were
phylogenetic markers rather than informative of phenotype, we included another three more distantly
related genomes, i.e., Shigella dysenteriae Sd197, E. coli ECOR66 (both gastrointestinal), and Escherichia
clade IV TW14182 (environmental). Previous studies on these genomes showed evidences of adaptations
to either external environment or gastrointestinal habitats for the genomes [3,21,22,31–36]. Functional
importance of sequence variations were scored using the DBS metric by comparing the protein coding
genes of each strain to the profile HMMs of Gammaproteobacterial proteins (gproNOG.hmm) from
the eggNOG database (http://eggnogdb.embl.de/). As we have performed with Pfam A in above
pairwise comparisons, each protein sequence was searched against the gproNOG.hmm database using
hmmsearch from HMMER3.0 package.

In this study, orthologs were selected using filtering criteria similar to Wheeler et al. (2018) [13].
We trained the random forest model on a set of 6709 orthologous genes to differentiate strains of external
environment and gastrointestinal origins, with the performance of model assessed by out-of-bag (OOB)
accuracy. The random forest classifier was built and trained using the R packages “randomForest”
and “caret.” Tree parameters were tested to evaluate the best combinations. Number of trees (ntree)
were set at 10,000 to optimize mtry (number of genes randomly sampled at as candidates at each node)
as OOB error rate stabilized at this ntree. We tested different values for mtry (1, n/10, n/5, n/3, n/2,
and n, where n = the number of predictor genes) and decided on mtry = n/10, as it would reduce the
chances of sampling correlated predictors and with lower OOB error (OOB error = 0.2).

Model performance was sequentially improved through several rounds of iterative feature
selection [37]. At the first iteration (model 1), all predictor genes were included in building the model,
followed by sparsity pruning of predictors with variable importance (VI) ≤0. The model building and
pruning rounds were repeated (rebuilding model with pruned predictors set, followed by pruning
of predictor genes with lowest 50% of VI) until perfect OOB accuracy was obtained. We performed
permutation testing to test the null hypothesis of random association between the predictor genes and
response variables (gastrointestinal or external environment). Model building pipeline was repeated on
1000 permutated datasets where the response variables were randomized. The p value, i.e., the frequency
of models with the same accuracy as that of the original data was determined. The final model was
used to predict the isolation source of another set of seven cryptic Escherichia clades genomes with
known isolation sources to assess the accuracy of the trained classifier model. CIII (E. TW14182 and
E. TW11588) and CIV (E.TW09276 and E. TW09231) strains showed signatures of adaptation to aquatic
environments, CI (E. TW15838 and E. TW10509) strains were enteric, and CV (E1118 and E. TW09308)
strains have been reported to retain the ability to survive in the external environments without loss the

http://eggnogdb.embl.de/
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ability to in persist in gastrointestinal tracts [3,21,22,31,33,34,36]. The top predictor genes of the best
model were assigned to functional categories based on COG and KEGG database annotation matching
via online web server KOBAS3.0 (http://kobas.cbi.pku.edu.cn/anno_iden.php).

Summary of the pipelines used to obtain DBS and to construct the random forest classifier can be
found at https://gist.github.com/szypanther/0cd83513e07aa9e1f9929f5df9214864.

3. Results

3.1. Genome Assembly, Annotation, and Completeness

We achieved about 800 MB of PacBio raw data for the three strains (E4385, E4742, and E4930)
from coastal marine sediment. The total coverage ranged from 151× to 179× (with assumed genome
size of 5 Mb) after assembly, we obtained two draft genomes (E4385 and E4930) and one complete
genome (E4742). The summary of raw data and assembly statistics are shown in Tables A2 and A3
respectively. We first annotated the genomes and then assessed the completeness of assembly in terms
of gene contents using the BUSCO set of 781 universal single copy orthologs found among 216 species
of the order Enterobacteriales. The genomes had at least 93.7% of the BUSCO genes as complete genes
while not more than 6.2% of the genes were missing (Figure A1).

3.2. Pairwise Comparison of Protein Function Loss among Six Cryptic Clade II Strains

DBS corresponded to difference in bitscores of each pairwise comparison of orthologous proteins
between two cryptic clade II (CII) strains. Distribution of DBS values for each pair of strains was then
used to infer functional loss in orthologues, with 2.5% of DBS on the least dispersed end as cutoff as
described in Wheeler et al. (2016) [8]. Proteins with scores falling outside the cutoff are considered as
HACs, i.e., hypothetically attenuated coding sequences. A complete table of DBS values and HACs can
be found in Supplementary Excel File 1. We tested if each proteome pair has similar rate of function
loss (Wilcoxon signed rank test) and observed no statistically significant difference (p value > 0.05)
among the gastrointestinal strains (B1147, ROAR019, and EC5350) and among the external environment
strains (E4385, E4742, and E4930) (Table 1). However, pairing of strains from different sources generally
showed significant discrepancies in the rate of functional degradation (p < 0.05, except for comparison
between B1147 and E4385 where p = 0.05).

Table 1. p Values for the skewness of DBS values distribution from pairwise comparison between strains.

ROAR019 EC5350 E4742 E4385 E4930

B1147 0.681 0.258 0.002 0.05 0.014
ROAR019 0.989 0.001 0.042 0.014

EC5350 0.004 0 0.012
E4742 0.25 0.644
E4385 0.256

Bold font indicated statistically significant (p < 0.05) skewness of DBS values distribution.

3.3. General Trend of Gene Degradation in Gastrointestinal Cryptic Clade II Strains

As pairwise comparisons of DBS indicated a possible trend of divergence among the gastrointestinal
and environmental strains, we further determined which group had higher degree of function loss
(i.e., higher percentage of orthologs being classified as HACs). Bitscores of 2844 orthologous genes from
each strain were extracted and the median score of all strains was used as benchmark to compare the
bitscore of each gene to obtain DBS and subsequently determine HACs (Supplementary Excel File 2).
The result showed that gastrointestinal strains not only generally had lower bitscores than the
environmental strains. Moreover, the gastrointestinal strains also had significantly larger number
of HACs than environmental strains. One-way ANOVA test display the significant difference of

http://kobas.cbi.pku.edu.cn/anno_iden.php
https://gist.github.com/szypanther/0cd83513e07aa9e1f9929f5df9214864
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HACs number between the two groups (p = 0.008) via ggpubr package in R for data visualization
(Figure 1A,B).Microorganisms 2020, 8, 1713 6 of 16 
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isolated from coastal marine sediment (external environmental), and the latter three (B1147, EC5350
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difference in number of HACs between the two groups of strains.

3.4. Classification of Gastrointestinal and External Environment Strains Based on Informative Genes

We build a random forest classifier to differentiate strains according to their isolation source
(external environment or gastrointestinal origin), returning a set of interpretable predictor genes that
were indicative of adaption to each habitat. Bitscore values of orthologous genes were used as input
for training the random forest model, with the performance of model assessed by OOB accuracy.
Model performance was improved by iterative feature selection, where predictor genes with VI = 0
pruned after initial model training, followed by repeated rounds of model retraining using top 50%
of predictor genes until perfect OOB accuracy (100% accuracy) was achieved (Figure 2A). In the first
round of model building, the whole set of 6709 orthologous genes that fulfilled selection criteria
were utilized for training, returning 200 genes with VI that were noticeably higher than remaining
genes (Figure 2B). On the contrary, 3873 orthologous groups had zero VI (variable importance = 0,
i.e., they did not improve the accuracy of model or were left out by the model) and were not used in the
first bout of feature selection (i.e., model 2). The sixth model achieved a perfect classification accuracy
for source prediction. Model 6 is thus chosen, with 164 top predictor genes that were most informative
for distinguishing the two groups of strains (Supplementary Excel File 3). Heatmap showing the
clusters of the 164 genes based on their bitscore matrix value. (Figure 2C).

We failed to reject the null hypothesis that the association between the predictor genes and the
predicted outcomes (association with external environment or gastrointestinal tracts) are random
using permutation test (p = 0.401). Nonetheless, we noticed that for models built with permutated
dataset that achieved the same OOB accuracy as the model built with original dataset (sixth model
iteration, 100% OOB accuracy), proportions of majority votes were lower than that of the original
model (see Table 2 for example).

To further confirm the accuracy of the classifier model, we applied the model on a collection of
seven reference cryptic clade strains (with known isolation sources) that were unseen by the model
before (Figure 3). In agreement with other studies, the classifier correctly predicted the sources of
these strains [3,21,22,31–33,36]. The CIII (E.TW14182 and E.TW11588,) and CIV (E.TW09276 and
E.TW09231) strains have been identified as external environmental strains. The CI strains (E.TW15838
and E.TW10509) had also been identified as enteric strains. CV (E1118 and E.TW09308) strains were
more difficult to classify, with smaller margin of majority votes especially for E.TW09308, where the
vote decision for environmental source is 46.46% and 53.54% for gastrointestinal. This observation is in
line with the characteristics of CV strains that have been reported to lead a dual lifestyle, retaining the
ability to survive in the external environments without a loss in the ability to colonize gastrointestinal
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tracts [34]. All the corresponding accession number and background information of these Escherichia sp.
strain used in this study can be found in Table A1.
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Figure 2. A subset of Escherichia spp. genes strongly indicates the existence of two adaptation
phenotypes. (A) Casting of out-of-bag votes for isolation source of each strain by each model. The dashed
grey line represents the voting threshold to classify a strain as of gastrointestinal origin. Model 1
utilized all predictor genes, and subsequent model iterations were built using sparsity pruning from
predictor genes of preceding iteration. The sixth iteration achieved 100% accuracy for distinguishing
the two groups, with majority votes of at least 70%. (B) Variable importance for the top 1000 genes that
were used in initial training (model 1). Around 200 genes display high importance in distinguishing
gastrointestinal vs environmental strains. (C) Heatmap of the top 164 predictor genes based on their
bitscore value. Rows are centered and unit variance scaling is applied to rows with standard deviation
as scaling factor. Imputation is used for missing value estimation. Rows and columns are clustered
using correlation distance and average linkage (https://biit.cs.ut.ee/clustvis/). The color scale reflects
the bitscore of respective strain for each orthologous gene. The more the negative value, the greater the
deviation from reference protein in eggNOG database.

Table 2. Accuracy of permuted model.

True Isolation Source Assigned Isolation Source

Strain Name Source Vote Proportion
as G Random1 Vote Proportion

as G Random2 Vote Proportion
of G

E.TW14182 E 0.2025 E 0.3985 G 0.7962
E4385 E 0.1715 E 0.5211 G 0.3274
E4742 E 0.1932 G 0.7264 E 0.2668
E4930 E 0.1469 G 0.6551 E 0.2828

EC5350 G 0.9333 E 0.7422 G 0.3272
ROAR019 G 0.7089 G 0.6535 E 0.2702

Sd197 G 0.8590 G 0.6406 G 0.8781
B1147 G 0.9045 G 0.3365 G 0.6106

ECOR66 G 0.7608 E 0.3968 G 0.7832

E: external environment G: gastrointestinal; bold represented vote decision conflicting with the assigned isolation source.

https://biit.cs.ut.ee/clustvis/
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Figure 3. Isolation source prediction by the random forest model. The phenotype “External Environment”
and “Gastrointestinal” represented strains from each source that were used in model training.
The “Unknown” phenotype represents strains that were not included in the training dataset. The vertical
line represents the voting threshold to separate the strains into of external environment or gastrointestinal
origin. Data points to the left of the threshold were predicted to be from external environment, while those
to the right were predicted to be of gastrointestinal origin.

3.5. Function Analysis of Top Predictor Genes

The 164 top predictor genes were assigned to 18 COG categories based on functional annotation.
Apart from those with function unknown (S), a large proportion of them was involved in five COG
categories, namely inorganic ion transport and metabolism (P), energy production and conversion (C),
amino acid transport and metabolism (E), carbohydrate transport and metabolism (G), and transcription
(K) (Figure 4).
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Figure 4. COG function classification of the top predictor genes. A total of 164 predictor genes showed
homology to the COG database with the COG classification among 18 categories.

KEGG pathway analysis showed that the predictor genes mainly involved in five pathways:
metabolic pathways, biosynthesis of secondary metabolites, two-component system, microbial
metabolism in diverse environments and ABC transporters (Table 3).
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Table 3. Main KEGG functional categories associated with top predictor genes. PERMANOVA test
statistic (gastrointestinal vs. external environment strains) are shown for each category.

Number of
Gene Term Degrees of

Freedom
Sum of
Squares R2 F Pr(>F)

30 Metablic pathways 1 0.0001 0.5950 10.2829 0.025
Residual 7 0.0001 0.4050

Total 8 0.0002 1

11 Biosynthsis of secondary metabolities 1 0.0129 0.2449 2.2712 0.098
Residual 7 0.0399 0.7550

Total 8 0.0529 1

10 Two-component system 1 0.0507 0.3641 4.0082 0.038
Residual 7 0.0885 0.6358

Total 8 0.1392 1

10 Microbial metabolism in diverse
environments 1 0.0504 0.4299 5.2794 0.026

Residual 7 0.0668 0.5701
Total 8 0.1172 1

8 ABC transporters 1 0.0089 0.2794 2.7154 0.005
Residual 7 0.0229 0.7205

Total 8 0.0317 1

7 Biosynthesis of amino acids 1 0.0079 0.1743 1.4778 0.4
Residual 7 0.0375 0.8257

Total 8 0.0454 1

7 Biosynthesis of antibiotics 1 0.0329 0.3225 3.3329 0.045
Residual 7 0.0691 0.6774

Total 8 0.1021 1

Significant p-values (at a level of alpha = 0.05) are highlighted in bold.

Functions of 110 predictor genes from the top predictors were more conserved in the strains
from external environment compared to only 45 genes that were more conserved in gastrointestinal
strains (Mood’s median test, Benjamini–Hochberg critical value for false discovery rate = 0.25). Notably,
around 50% of these 155 genes were present in all strains from both groups. One example of such
predictor genes that showed subtle divergence between the two groups (i.e., with small bitscore
difference) is the dcm gene that encodes the enzyme DNA-cytosine methyltransferase, which catalyze
the highly conserved pathway of cytosine DNA methylation [38]. Genes that were enriched in the
environmental strains included yihM (encodes a putative TIM barrel domain-containing protein YihM),
yhiF (encodes a putative LuxR family regulatory protein), and genes encoding 1,2-propanediol utilization
proteins, i.e., phosphotransacylase PduL and CoA-acylating propionaldehyde dehydrogenase PduP.
Contrarily, genes that were enriched in the gastrointestinal strains included the ycjW and yidL genes
(encoding putative DNA-binding transcriptional regulators), yidJ (putative sulfatase/phosphatase
YidJ), and ynfG (anaerobic dimethyl sulfoxide (DMSO) reductase chain YnfG).

4. Discussion

In this study, we analyzed the genome contents of representative cryptic clade II strains of
Escherichia to look for evidences of ecological differentiation within their population. Little is known of
the evolution, habitat and lifestyle of theses bacteria, which were first recovered at very low frequency
from non-human hosts and then later repeatedly recovered from external environment [18,20,23,39].
Dissecting the population level diversity of clade II in the context of ecology is not straightforward,
as it involved a complex interplay between genetic variation (generated through mutations and
gene flow), natural selection and genetic drifts, not to mention the confounding effects of factors such
as geographical limitations [40]. The clade II strains formed a monophyletic cluster with high bootstrap
support [18], we observed that the clade II strains of host gastrointestinal origins were also more distantly
related to those isolated from external environment (Figure A2). Intuitively, the observed sequence
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disparity likely stemmed from their habitat difference (gastrointestinal vs. external environment).
However, the observed distinction could also be attributed to biogeographic effects [1,10]. Apart from
being isolated from two distinct categories of environments, the available genomes for this group
of cryptic Escherichia also represented strains from different geographical regions. The strains from
inter-tidal sediment were from Hong Kong, whereas the host-associated strains were from Australia,
the United States, and Gabon [18,20,23,39]. Moreover, as only very few strains were isolated from
hosts, these might represent spillover events instead of being sources of clade II strains (low frequency
of recovery could also be due to less sampling efforts/difficulties in obtaining samples from wild
animals). It is also possible that the discovery of these strains from both environments reflected
a lifestyle that is similar to cryptic clade V of Escherichia, which were able to colonize gastrointestinal
tracts while retaining traits favoring their survival in external environments [34,36].

Thus, to better understand the genetic diversity of these cryptic clade II strains in relation to
their ecology, we analyzed the genomes of selected strains for interpretable difference that would
indicate if these strains were indeed ecologically different, in terms of their association with two very
distinct habitats i.e., host gastrointestinal and external environment. Leveraging on the ability of
the combination of DBS metrics and random forest classifier to detect functional convergence in
bacterial lineages with independent parallel adaptation to similar habitats or ecological niches [8,13],
we adopted a similar approach to confirm if the strains indeed showed genomic signatures of adaptation
to distinct habitats that correspond to isolation source. The approach could detect a spectrum of
genetic changes that imply functional divergence, ranging from subtle functional change to gene
deletion [8,13]. Inclusion of subtle changes (reflected by small bitscore differences), which may be
reflective of diversifying selection, especially enhanced the sensitivity of the method [8,13]. Around half
of the genes that were informative of habitat association in this study were such genes that are present
in all genomes but displayed small bitscore differences between the gastrointestinal and external
environment groups. The first manifestation of divergence between gastrointestinal and environmental
clade II strains came from DBS metrics, where the gastrointestinal strains exhibited a general pattern of
greater gene degradation, a common phenomenon in bacterial lineages that were more host-adapted
and led a less generalist lifestyles [41]. Building on this observation, we trained a random forest
classifier to classify the clade II strains according to their expected habitats (of gastrointestinal origins
or from external environment). As the ecological distinctness of the clade II strains were preliminary at
this stage, we guided the model with inclusion of other Escherichia genomes that has exhibited traits
of adaptation to one of the habitats. Such genomes included S. dysenteriae from the Shigella genus,
which is essentially a lineage of E. coli that had evolved from multiple E. coli lineages to become highly
specialized human pathogens through convergent evolution involving independent horizontal gene
transfers and gene losses [35].

Inclusion of these genomes that are distantly related to clade II in the training of random forest
classifier increased the likelihood of scoring predictor genes that are relevant to parallel adaptations to
these habitats, while minimizing the odds of classification by predictors that were more informative of
phylogeny [13]. The benefit of such approach become apparent when contrasted with model built solely
on the clade II strains. Using a set of 4922 orthologous genes, we performed the same model building
process as described earlier for the six clade II genomes, resulting in a model that distinguished the
two groups based on 762 predictor genes (Figures A3 and A4, Supplementary Excel File 4), which was
a much larger set and more difficult to interpret compared to the 164 genes identified by the original
trained model (Model 6 in result section). Accuracy of the trained model was confirmed by its correct
prediction of the habitats of an independent set of strains with known habitat association. It was also
through comparison with this additional data set that the possibility of clade II being similar to clade V
(i.e., capable of dual lifestyle) were largely dismissed (Figure 3).

The trained model returned a set of predictor genes, many of which were indicative of the ecological
divergence of these strains. Here, a few distinct examples were discussed. Consistent with previous
findings, genes involved in 1,2-propanediol utilization were more enriched in the environmental
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Escherichia genomes. The pduL gene (phosphotransacylase PduL) was also previously showed to
be enriched in environmental genomes (Escherichia cryptic clades III, IV, and V) [3]. Nonetheless,
we found that the pduP gene (CoA-acylating propionaldehyde dehydrogenase PduP) was present in
all tested cryptic clade II strains and only absent in S. dysenteriae Sd197 and E. coli ECOR66 but were
differentiated by lower bitscore among the gastrointestinal strains. Notably, the dcm gene that encodes
the enzyme DNA-cytosine methyltransferase was present in all environmental and gastrointertinal
genomes but with sufficient bitscore difference between the two groups. These enzymes contained
a highly variable region, which functions to recognize diverse DNA sequences, distinguishing own
DNA from unwanted foreign DNAs or phage attack on basis of specific methylation patterns [42,43].
The bitscore divergence between the two groups for this gene could be taken as an indication of their
association with two very different habitats, with different risks to tackle. Genes that were enriched in
the gastrointestinal strains included ynfG (anaerobic DMSO reductase chain YnfG) and yidJ (putative
sulfatase/phosphatase YidJ) that were previously shown to be essential or beneficial for survival in host
gastrointestinal environments. The ability to use DMSO as electron receptor in anaerobic respiration
may provide additional advantages for survival and persistence in host intestines [44]. On the other
hand, sulfatase genes have been vital for the survival, competitive fitness, and host colonization of
commensal such as Bacteroidetes and pathogenic bacteria such as Salmonella [45,46]. Sulfatase genes
greatly enhanced the degradation of highly sulfated colonic mucins by catalyzing desulfation, enabling
foraging of colonic mucins for carbohydrates [45]. Further verification of the accuracy and usefulness
of these and other predictor genes in defining adaptation to host and external environment would be
needed. Nonetheless, our results provided a starting point to identify candidate functions or pathways
that are likely to display differential patterns in functional analysis experiments to confirm distinctness
of these ecologically differentiated groups.

Furthermore, our work demonstrated the applicability of the DBS and machine learning approach
beyond its original application on the niche adaptation of Salmonella enterica and expected application
on any other pathogenic bacteria [13]. We anticipated the broader utilization of this approach on
ecological studies and broader fields beyond, for the universality of the fundamental principle of this
approach, i.e., genetic variations that are indicative of functional changes, which apply to all organisms.

5. Conclusions

Altogether, our study manifested that the cryptic clade II of Escherichia constituted strains that
diverged to occupy host and external environments. Despite limited genome availability, the analyzed
genomes displayed signatures of functional divergence that are consistent with adaptation to these
two distinct environments. We outlined a subset of genes that were indicative of the habitat they
were likely adapted to, which could guide selection of pathways or functions for further ecological
studies to confirm such ecological distinctness. A clearer and comprehensive picture of the diversity
and population structure of the clade II Escherichia would emerge in the future when more strains are
recovered from different habitats, especially from animal hosts. With a larger collection of strains from
diverse sources, further refinement of the gene subset (and their functions) that define adaptation to
diverse habitats could be done using approaches similar to the current study. Furthermore, the genetic
background that underlies their ecological differentiation could be dissected at higher resolution,
probing the subtle yet crucial functional divergences that are fundamental to adaptation to a variety of
hosts and external environments.
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Appendix A

Table A1. Summary of the strains used in this study.

Strain Name Lineage/Species Source Origin Accession Number

E4385 Clade II Marine sediment Hong Kong PDIK00000000
E4742 Clade II Marine sediment Hong Kong PDHY00000000
E4930 Clade II Marine sediment Hong Kong PDHZ00000000

ROAR019 Clade II Mammals feces Unknown SAMEA1888909
MOD1-EC5350 Clade II Avian feces Columbia NZ_PTRM00000000.1

B1147 Clade II Avian feces Australia NZ_LFHY00000000.1
Sd197 Shigella dysenteriae Human feces China NC_007606.1
E1118 Clade V Freshwater Australia NZ_ADKG00000000

TW09308 Clade V Freshwater Michigan NZ_AEME00000000.1
TW11588 Clade IV Soil Michigan NZ_AEMF00000000.1
TW14182 Clade IV Freshwater Michigan NZ_AEJZ00000000.1
TW09231 Clade III Freshwater beach Michigan NZ_AEJW00000000.1
TW09276 Clade III Freshwater beach Michigan NZ_AEJV00000000.1
TW10509 Clade I Human feces Michigan AEKA00000000
TW15838 Clade I Freshwater sediment Michigan NZ_AEJX00000000.1
ECOR66 E. coli Human feces USA QOYY00000000

Table A2. Summary of the raw data from PacBio sequencing.

Strain ID Number of
Subreads

Number of
Subreads
Bases(bp)

Mean
Read

Length
Read N50

Average
Expected
Accuracy

Number of
Subreads

Bases (Mb)
Coverage

E4385 217,642 893,536,242 4106 5735 0.8 893.54 179X
E4742 175,199 859,147,365 4904 6324 0.8 859.15 172X
E4930 165,539 754,570,862 4558 6090 0.8 754.57 151X

Numbers are calculated based on bq ≥ 45; Assumed genome of 5 Mb.

Table A3. Summary of the genome assembly results.

Strain ID Assembly
Size (bp)

No. of
Contigs N50 (bp) G+C Content (%) No. of

CDS
No. of tRNA

Coding Genes
No. of rRNA

Coding Genes

E4385 5,069,026 3 3,809,788 50.5 4684 88 22
E4742 5,120,753 1 5,120,753 50.7 4730 95 22
E4930 4,935,533 10 4,530,339 50.7 4647 73 11
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Figure A3. Out-of-bag votes for the phenotype of each cryptic clade II strain by each model. Model 1 is
using all predictor variables and then the follow successive model was built using sparsity pruning
from the former model’s predictor variables. Model 4 is the chosen model with 100% accuracy and
enough distance for distinguishing the two groups and 762 top predicted genes had been identified
successfully in this step. The dashed grey line represents the voting threshold to classify an isolate as
gastrointestinal source strains.
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