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Abstract: Cupuaçu [Theobroma grandiflorum (Wild ex Spreng.) K. Schum] seeds have been employed
for a long time in the Amazon region for food purposes. Similar to cocoa, processed cupuaçu pulp
and seeds can be used to produce juices, ice creams, confectionary products and cupulate®, which is
a similar product to chocolate. However, its market penetration requires the mastery of all processing
stages to improve the food quality and safety and to make possible an efficient technology transfer to
the local small farmers and communities. Based on the above, the current research work aimed at
monitoring and optimizing the consecutive fermentation and drying processes of cupuaçu seeds over
7 days each, as well as storage for 90 days. A greenhouse structure incorporating the fermenter and
solar drying terrace was designed to be inexpensive, versatile, easily scalable, and easy to maintain
and operate by the local small farmers after a short period of training. This research effort also aimed
at giving a vision for the future creation of an integrative and sustainable cupuaçu system covering the
economic, social, cultural and environmental vectors. The experimental design comprised 5 batches
of 100 kg of seeds each. Several microbiological and physicochemical parameters were performed
and correlated with processing variables. Microbiological parameters encompassed viable counts
of mesophilic microorganisms, coliforms, yeasts, and molds, whereas physicochemical measures
included fermentation and drying temperature, pH, acidity, dry matter, ashes, water activity, color,
total proteins, lipids and carbohydrates, and energy. The average seed fermentation temperature
varied from ca. 28 to 44 ◦C, reaching the maximum on day 3 and a final value of ca. 31 ◦C. Regarding
solar drying, the average seed temperatures ranged from ca. 24 ◦C (at the end) to 39 ◦C on day 3,
and an initial value of ca. 29 ◦C. The average final seed pH value of drying was 5.34 and was kept
during storage. During storage, results demonstrated the existence of significant correlations among
several experimental parameters under scrutiny. Finally, bean viable counts obtained during storage
unfolded acceptable values of total mesophilic bacteria well below the maximum limit. Viable counts
of yeast and molds were generally found between 3 and 4 log(CFU/gsample), and total coliforms were
also detected, although both were at acceptable levels and well beneath the established maximum
limits for food safety.
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1. Introduction

Cupuaçu [Theobroma grandiflorum (Wild ex Spreng) K. Schum] (reads “cupuassu”) is an Amazonian
plant that has shown a significant expansion in the tropical fruit pulp market in Brazil and somehow
worldwide (Figure 1).
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comprise the highest percentages of production in the entire country, representing 84.3% of the 
national production [1]. 
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9.2 M€ in average exchange rate of 2020), of which R$ 41.4 million was produced in the north region 
and R$ 11.2 million was the estimated production value for the northeast region, leaving only over 
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economic value of this endogenous fruit is based on the industrialization and commercialization of 
the pulp, which is much appreciated in juices, creams, ice creams, paste sweets, pastry recipes (e.g., 
cakes and biscuits), among many other forms of consumption and industrial applications [2]. 
However, due to the actual high demand for tropical fruits and fruit-based products, the agro-food 
industry has been looking for solutions to the use and valorization of cupuaçu seeds, which are highly 
rich in fats, proteins, minerals, bioactive compounds, and many other nutrients but which often are 
discarded and ending up as waste despite these nutritional and health attributes and the high agro-
industrial potential. The fruit has high yields of processing, and all parts of the cupuaçu pods can 
have a useful application. The pulp can be used for the preparation of various food products, the 
placenta (the seed receptacle) can be used in the preparation of fertilizers, the pod husk/shell can be 

Figure 1. Picture of Cupuaçu (Theobroma grandiflorum) (a) pods and (b) fresh pulp. Courtesy of authors
S.K. (Project RECA) and J.M.L.S. (Embrapa), Rio Branco, Acre, Brazil.

The largest distribution of the cupuaçu market is located in the Brazilian North region with a
presence of 76.7% of the total agricultural establishments that grow this fruit in the country, followed
by the northeast region (present in 22.3% of the regional commercial establishments), and only a
value as low as 0.8% of cupuaçu farms are located at the Brazilian central west region. Regarding
the profile of the producers, they are essentially small farmers, comprising on average as much as
84% of all the cupuaçu establishments visited in 2017. Such figures are important because they set
guidelines for the development of environmentally sustainable cupuaçu-based businesses. Among
the Brazilian federal states with records of occurrence, Amazonas (34.8%), Pará (27.7%) and Bahia
(21.8%) comprise the highest percentages of production in the entire country, representing 84.3% of the
national production [1].

The value of cupuaçu production in Brazil in 2017 was R$ 54.8 million (Brazilian Real, BRL)
(ca. 9.2 M€ in average exchange rate of 2020), of which R$ 41.4 million was produced in the north
region and R$ 11.2 million was the estimated production value for the northeast region, leaving only
over 2.1 million to be distributed between the Midwest and Southeast regions [1]. The inestimable
economic value of this endogenous fruit is based on the industrialization and commercialization of the
pulp, which is much appreciated in juices, creams, ice creams, paste sweets, pastry recipes (e.g., cakes
and biscuits), among many other forms of consumption and industrial applications [2]. However,
due to the actual high demand for tropical fruits and fruit-based products, the agro-food industry has
been looking for solutions to the use and valorization of cupuaçu seeds, which are highly rich in fats,
proteins, minerals, bioactive compounds, and many other nutrients but which often are discarded
and ending up as waste despite these nutritional and health attributes and the high agro-industrial
potential. The fruit has high yields of processing, and all parts of the cupuaçu pods can have a useful
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application. The pulp can be used for the preparation of various food products, the placenta (the
seed receptacle) can be used in the preparation of fertilizers, the pod husk/shell can be converted
into handmade packaging, whereas the seeds are employed for the production of the aforementioned
cupulate®, which is a product technologically similar to chocolate [3–5].

Previous successful research studies addressing the seed fermentation and drying processes
allowed the public research company EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária
(Brazilian Agricultural Research Corporation)—to obtain cupuaçu liqueur and cake with characteristics
similar to cocoa liqueur and cake, respectively, thus enabling its use in the food industry for the
formulation of new products similar to cocoa chocolate and others [6–8]. The cupulate® (agglutination
of cupuaçu and chocolate) is a good example of a product manufactured from cupuaçu seeds
similar to chocolate but with a unique taste, aroma, and texture that is very appreciated in Brazil.
Indeed, these autochthonous seeds have high potential to replace/substitute cocoa in food recipes
and, consequently, its use is attracting great commercial interest. Nevertheless, its implementation in
the market will certainly require more knowledge to better control the processing and achieve high
standards of food quality and safety, so that it can be further approved by the standardization bodies
and regulatory authorities.

Other research studies on the fermentation and drying processes of cupuaçu seeds for the
production of liquor or fat have dedicated their attention to the physicochemical characterization [9–11].
However, these do not study the microbiota and related microbiological safety and quality.
The identification of the microbiota prevailing in different stages of fermentation and after drying and
storage will permit a better control of the processing stages and eventually enable the selection of yeast
and bacterial strains of interest to further design microbial starter cultures. These findings will ultimately
contribute to a better and constant quality of cupuaçu beans, as well as help understand the whole
process and facilitate the technology transfer. Particularly, the identification and quantification of molds
(i.e., filamentous fungi) and mycotoxins is of primary importance to prevent cupuaçu seeds and products
therefrom against fungal spoilage during their processing (pulping and further fermentation, drying,
and storage of cupuaçu seeds) and, concomitantly, to guarantee the desired food safety. It is well known
that some opportunistic fungal species produce dangerous mycotoxins to humans and other animals
and potentially cause serious illnesses, in addition to the technological effects such as the formation of
off-flavors, discoloration, and rotting that results in economic losses. In fact, fermentation has been
used ever since in multiple food matrixes (e.g., wine, beer, bread, cheese, sausages, sauerkraut, etc.) to
prevent the growth of pathogenic and spoilage microorganisms and to improve other technological
aspects such as digestibility, texture, taste, aroma, shelf life, and the production of bioactive compounds.
Food fermentation is an effective process toward food quality and safety through the inhibition of
deleterious pathogenic and spoilage filamentous fungi and bacteria—e.g., the Enterobacteriaceae,
Pseudomonaceae and other Gram-negative bacteria, and the endospore forming Gram-positive bacteria
such as Bacillus spp. and Clostridium spp. Simultaneously, food fermentation enables the growth and
exponential multiplication of the competitive and desirable regular non-spore-forming Gram-positive
rods and the catalase-negative Gram-positive cocci—for example, lactic acid bacteria (LAB)—such as
lactobacilli, pediococci, lactococci, leuconostoc, micrococci, streptococci and group D-enterococci—,
and the production by the latter of desirable bioactive, antimicrobial, and antioxidant metabolites, such
as small peptides, exopolysaccharides (EPS), organic acids, ethanol, CO2, bacteriocins, etc. [12–20].
These desirable microorganisms and resulting compounds from their metabolic activity are generally
non-toxic and food-grade microorganisms, being classified as Generally Regarded as Safe (GRAS) and
Qualified Presumption of Safety (QPS) [15].

The chemical and structural characteristics of cupuaçu are similar to those of cocoa
(Theobroma cacao L.), in addition to the similarity in the processing stages to obtain the seeds and beans.
The process starts when the fruits are opened [21]. It is acknowledged that the control of the natural
fermentation process of both cocoa and cupuaçu is complex, and it is indeed at this stage that desirable
flavors start to be formed. Even though there are similarities with cocoa, the content and characteristics
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of cupuaçu seeds are very distinct, both in quantity and quality in sensory perception, acidity, and
sugar content [4]. Cupuaçu seed fermentation is not possible without prior pulping. This initial
mechanical step can promote significant changes in the endogenous microbiota, which may interfere
further with the formation of flavor precursor compounds. The cocoa fermentation process has been
studied, and it was demonstrated that a consortium of compatible microorganisms—viz. Saccharomyces
cerevisiae var. chevalieri, LAB species (viz. Lactobacillus lactis and Lactobacillus plantarum) and acetic acid
bacterial (AAB) species (viz. Acetobacter aceti and Gluconobacter oxydans subsp. suboxydans)—acts in
synergy during fermentation and play key functions in the processing [21–23]. Despite the existence of
numerous research studies on cupuaçu seed fermentation, which address the processing per se, the
identification of microorganisms presents in the fermented seeds and the effect of seed decortication on
the final quality of fermented seeds requires further studies intended at allowing scale-up, evaluating
and attaining controlled fermentation methods, increasing cupuaçu bean storage time, and evaluating
the capacity of filamentous fungi to produce mycotoxins [8,24–28]. These activities are already foreseen
in future projects from the same research group.

Based on the above, the current research work aimed at optimizing and better monitoring and
controlling the fermentation, drying, and storage processes of cupuaçu seeds, using low-cost and
flexible small-scale processing plants targeted for the local family-based small farmers, having in
mind that the household production prevails in the market. These small farmers employ the best
agronomical practices and are seen as protective elements of the environment, natural resources, plant
genetic heritage, and territorial cohesion. This research effort also aims at valorizing the cupuaçu
production and processing within an integrative and broader vision of the economic, social, cultural,
and environmental sustainability standpoints. For this reason, theoretical considerations are given
in this manuscript to emphasize the importance of those aspects as a whole in future technological
transfers. The improvement and control of the processing of cupuaçu made in these research efforts
is expected to contribute to diversify the exploitation of autochthonous plants highly appreciated
by consumers, who are aware of the importance to strive for natural, nutritious, low-processed and
healthy food. This work and an upcoming one are also likely to contribute to the integration of the
small farmers into the agro-food chain, namely agriculture production, industrial, and trade chains.

2. Materials and Methods

2.1. Sampling and Cupuaçu Seed Fermentation and Drying

The flowchart to obtain fermented and dried cupuaçu seeds with coating (skin) is displayed in
Figure 2.

Cupuaçu seeds with coating obtained after fruit pulping (mechanical removal of the pulp
with a pulper) in the agro-food company of the RECA project (Economic, Intercropped and Dense
Reforestation), located at BR-364 road, kilometer (km) 1.071, district of Nova California/Porto Velho,
state of Rondônia (RO), Brazil, were transported to Embrapa Acre, in Rio Branco, state of Acre (AC).
The RECA Project also comprises an association of small farming families in the state of Rondônia who
provided all the cupuaçu samples.

Five (N = 5) batches (lots) of cupuaçu seeds with coating were submitted independently (and
not simultaneously) to the consecutive fermentation and drying processes in the facilities of Acre, in
a pilot plant designed and constructed by the research group specifically for these experiments and
thought to be flexible and of low cost, aiming at being easily transferred and adapted to the reality of
the local small farmers and communities. As a complement to Figure 2, photographs of the cupuaçu
processing are depicted in Figure 3. Both the fermenter and solar dryer terrace were part of the same
greenhouse structure.

The fermentation was carried out according to the methodology described by Nazaré et al.
(1990) [3] in a wooden (free from resins, smells, and off-flavors) fermenter (Figure 3a,b) with 5
compartments (boxes), adding a 30% (w/w) of aqueous sucrose syrup solution in a ratio of 1% (w/w)
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(i.e., 1 kg of syrup solution per 100 kg of seeds) at the beginning of the fermentation (Figure 3c). The
cupuaçu seeds in the compartment were blended twice a day (in the morning and afternoon at the
same hour, viz. 10:00 h and 16:00 h, respectively) by manual turns with a wooden shovel (Figure 3e).
The fermentation process was undertaken throughout 6–7 days. Temperature measurements were
taken twice a day (morning and afternoon) (Figure 3d). After 48 h, seeds were moved daily to the next
compartment until the 6th–7th day. The inner sides of the compartments were covered with raffia mats,
whereas the bottom had 1-cm φ holes to drain liquids (Figures 2 and 3c). The seeds in the fermenter
were also covered on the top with the same material.Microorganisms 2020, 8, x FOR PEER REVIEW 5 of 34 
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also easy to maintain and operationalize, which is, along with a good knowledge and control of the 

processing parameters, essential for a successful technological transfer to the local communities. 

Figure 3. Pictures of Cupuaçu (Theobroma grandiflorum) processing: (a) Wooden fermenter with
5 compartments (boxes) placed in a greenhouse structure; (b) Pulped cupuaçu seeds used for
fermentation; (c) Adding 30% (w/w) aqueous sucrose solution to the seeds in a proportion of 1% (w/w);
(d) Twice daily temperature measurements during the fermentation process; (e) Twice daily manual
turns of seeds during the fermentation process; (f) The same greenhouse structure used to dry the
seeds in the solar terrace; (g) Twice daily manual turns of beans during the drying process; (h) Twice
daily temperature measurements during the drying process; (i) Cupuaçu beans at the end of the drying
process; (j) Packing dry beans in 60 kg polypropylene (raffia) grain bags; and (k) Dried beans samples
packed in 600 g polypropylene (raffia) grain bags for storage studies at the Embrapa facilities. Courtesy
of authors J.M.L.S., C.B.C.C., M.A.M.V and S.K. Rio Branco, Acre, Brazil.

Following the seed fermentation, a solar drying process was carried out in the same greenhouse
structure. The greenhouse solar dryer was a terrace with a wooden floor (Figure 3f). A layer of
cupuaçu seeds up to 5–8 cm height was found to be optimal for the drying process. The cupuaçu seeds
in the greenhouse terrace were manually revolved with a wooden rake twice a day over 6–7 days
(Figure 3g), depending on the progress of the drying process. Similar to fermentation, temperature
measurements were also taken twice a day (morning and afternoon) (Figure 3h). The dried cupuaçu
beans with coating (skin) (Figure 3i) were packed in 60 kg polypropylene (raffia) grain bags (Figure 3j)
and transported to the laboratory, where were homogenized and transferred to a forced air circulation
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camera (Tecnal TE-394/4, Piracicaba, Brazil) and kept at 50 ◦C for 24 h or until the moisture content
reached up to 8% (w/w). Then, the dried beans were packed in 600 g polypropylene (raffia) grain bags
(Figure 3k) and kept in a storage room at a temperature of 26 ◦C and 81% relative humidity (RH) for
150 days. In this work, the storage was studied during the first 90 days. Samplings were performed
every 30 days during storage.

Cupuaçu fruit selection was based on visual analysis. Throughout fermentation, drying and
storage processing the cupuaçu seeds and beans (i.e., dried seeds) were visually monitored by
specialized technicians in terms of evolution of the color, smell, aroma, and detection of possible
microbial contaminations. The end of fermentation was defined by the seed color, stability of
temperature and pH, and the odor (acetic and lactic acids).

2.2. Project Design of the Fermenter, Solar Drier Terrace, and Greenhouse

The project design of the pilot fermenter and solar drier terrace placed in a common greenhouse
are shown in Figure 4, in complement to Figures 2 and 3. As already mentioned, due to the type of
affordable materials chosen and the flexible nature of the design, this pilot greenhouse is easily scaled
up and down to better fit with the specific requirements of the local small farmers. The structure is
also easy to maintain and operationalize, which is, along with a good knowledge and control of the
processing parameters, essential for a successful technological transfer to the local communities.

In this experiment, the fermenter (Figure 4) has five compartments, and the five batches occurred
in different time periods. Nevertheless, by increasing the number of compartments of the fermenter
and/or creating replicates of the fermenter in series, the throughput can be significantly increased to
better fit with specific requirements. Having in mind that the fermentation takes 7 days (day 0 to 7)
and the fermenter in this work has five compartments (boxes), in each batch, the seeds to be fermented
were kept 2 days (48 h) in the first compartment and then changed to the next one on a daily basis.
Hence, this fermenter could receive a new 100 kg batch every two days, and the throughputs would be
in this case: 7 days, 100 kg (1 batch); 9 days, 200 kg (2 batches); 11 days, 300 kg (3 batches); 13 days,
400 kg (4 batches); 15 days, 500 kg (5 batches), and so on. Regarding the solar drier terrace (Figure 4),
a flexible rectangular separator made up of four wooden sticks [(5 × 5) cm, depth × height] was created
to better delimit the required area for drying in a seed layer of up to 5 cm height. This area was enough
for independent batch experiments in this research work. Since the total area of the terrace is larger
than the delimited area, it can be easily increased (see Figure 3f,g and Figure 4). Conversely, the total
drying area can be easily scalable even by enlarging the same greenhouse without the need to build a
new greenhouse.

Some important factors to take into account to scale a greenhouse and choose eventually other
materials comprise, among others, the desired throughputs, the sun and wind exposition—which
influences the fermentation and to a greater extent the drying process, the intensity and average
frequency of rain with a direct impact on the maintenance of the structure and in the fermentation
and drying processes, the existence of trees and other vegetation with impact on the sun and wind
expositions, and the nature and slope of the ground. The greenhouse was made with wood, and
a plastic cover was adopted as protection (Figure 3f,g). Accordingly, the greenhouse has a limited
robustness, which depends on where is placed as previously referred. Small farmers will be advised to
choose alternative inexpensive materials to the malleable plastic to cover the greenhouse whenever
possible. The four side walls of the greenhouse are made of plastic.
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Figure 4. Project design of the (a) wood fermenter, (b) delimiter/separator of the solar drier terrace
made up of four wooden sticks, and (c) the suspended greenhouse structure made of wood, side walls
of plastic and roof with plastic and cement tiles. The dimensions L × l × h, where “L” is the length,
“l” is the width or depth, and “h” is the height were: (a) Wood fermenter (3.12 × 1.04 × 1.02) m, each of
the five fermenter compartments/boxes (0.62 × 1.04 × 1.02) m, and the bottom of the fermenter with
1-cm φ holes to drain liquids; (b) Delimiter of the solar drier terrace (2.30 × 4.50) m made up of wooden
sticks (l × h) (0.050 × 0.050) m; and (c) Greenhouse structure (L × h) (9.0 × 6.0), h and hma× from the
floor to roof of 3.10 and 3.75 mm, respectively, and a greenhouse suspended with four piles of 0.80 m
high (from the ground to the floor).

As can be seen in Figure 4, the pilot greenhouse structure is suspended to prevent atmospheric
humidity and rainwater drainage, to facilitate fermenter handling and transfer operations to the
drier terrace, as well as to prevent animals from entering. Finally, over the fermenter, the roof of
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the greenhouse is made of cement tiles to prevent fermentation from direct solar exposition and
high-temperature amplitudes, whereas the roof below the solar drier is made of the same material as
the side walls, i.e., plastic.

2.3. Sampling and Physicochemical Analysis during Storage

At the beginning of the storage (end of drying) and every 30 days, several physicochemical
parameters of cupuaçu beans with coating were analyzed. The moisture content was obtained in an
oven with forced air circulation (Tecnal TE-394/4, Piracicaba, Brazil) at 105 ◦C for 8 h and expressed as
mass percentage. Ash content was obtained by incineration in a muffle (Quimis Q-318M, São Paulo,
Brazil) at 600 ◦C and expressed as mass percentage [29]. Total proteins were determined by the
micro-Kjeldahl using the Association of Official Analytical Chemists (AOAC) standard methods [30],
and the measured total nitrogen converted to the amount in mass percentage (%, weightanalyte per
weigthsample) (%, w/w) of proteins using the conversion factor of 6.25 (16% N). Total titratable acidity
(TTA) determination followed the AOAC standard method [31] and was expressed as a percentage of
citric acid.

Several other physicochemical parameters were assessed. The pH was measured with a portable
pH meter (Mettler—EasyPlus Titration, Schwerzenbach, Switzerland) [32]. Water activity (aw) was
attained by direct reading on a portable water activity meter (Aqualab 4TE, Albufeira, Portugal).
The surface color of the seeds with coating was determined by the means of a colorimeter (Minolta CR-5,
Osaka, Japan). The CIE 1976 L*a*b* color scale was employed to obtain the parameters L* (lightness),
a*[chromaticity (red-green)], and b* [chromaticity (yellow-blue)], after calibration of the CIE lab system
against a standard white plate. The CIE 1976 L*a*b* color system was created in a way to match the
degree of measured color difference with the degree of the perceived color difference [33]. Resorting the
measured color values (L*, a*, b*, and L*standard, a*standard, b*standard), ∆E (total color difference)
could be calculated using the following expression (1):

∆E =

√
(∆L)2 + (∆a∗)2 + (∆b∗)2 (1)

where:
∆L = L*-L*standard, [L* varies from white (100) to black (0)] (2)

∆a* = a*-a*standard, [a* varies from green (negative values) to red (positive values)] (3)

∆b* = b*-b*standard, [b* varies from blue (negative values) to yellow (positive values)] (4)

and where: *Lstandard = 97.10, a*standard = 0.05 and b*standard = 1.76.

2.4. Sampling and Microbiological Analysis during Storage

Regarding the microbiological studies, total viable counts of mesophilic bacteria were carried out
according to the official American Public Health Association (APHA) methods [34] by the spread plate
inoculation technique in Plate Count Agar (PCA, Merck, Darmstadt, Germany) culture medium at
30 ◦C during 24–48 h and expressed as logarithm (log) of total colony-forming units (CFU) per gram of
sample. Total mold and yeast viable counts were determined using the methodology described by
ICMSF (1995) [35], by the spread plate inoculation method in Yeast Extract Dextrose Chloramphenicol
Agar (YEDCA, Merck) culture medium at 30 ◦C during 72–120 h and expressed as logarithm of
colony-forming units per gram of sample.

The analyses of thermotolerant coliforms were performed according to the recommendations of
the American Public Health Association (APHA) with slight modifications [36]. Samples were weighed,
and serial dilutions (10−1 to 10−6) were aseptically prepared. For the enumeration of thermotolerant
coliforms, the most probable number (MPN) technique was used. The presumptive analysis of
coliforms was performed in Sodium Lauryl Sulfate broth (LST, Merck) with incubation at 35 ◦C for
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48 h. The enumeration of thermotolerant coliforms was performed in Escherichia coli broth (EC, Merck),
with incubation at 45.5 ◦C for 24 h, and the results expressed in NMP.g−1.

All chemical, physicochemical, and microbiological experiments carried out right after the drying
period (start time at zero days of storage) were made up to 90 days of storage with sampling every
30 days.

2.5. Statistical Analysis

The experiments were conducted using a full randomized design, and all analyses were expressed
as the average ± standard deviation (Mean ± STDV). Statistical analyses were performed with the
software AGROESTAT (Jaboticabal, São Paulo, Brazil) [37].

Firstly, the raw data were transformed to guarantee the conditions of normality and
homoscedasticity. The Box–Cox transformation was estimated and applied as proposed by Hawkins
and Weisberg (2017) [38]. The estimated transformations for fermentation and drying temperature
throughout time, and for physicochemical parameters throughout storage were, respectively:

Y =

[
0.5

(
X +

√
X2 + 452

)]2.9999
− 1

2.9999
(5)

Y = log10

[
0.5

(
X +

√
X2 + 1.02

)]
(6)

Y =

[
0.5

(
X +

√
X2 + Z2

)]W
− 1

W
. (7)

In Equation (7), the basis Z and the exponent and denominator W were, respectively: 0.1 and
−0.6620 for pH; 2.6 and 0.5421 for TTA; 0.1 and −0.1514 for aW; 0.1 and 2.9999 for moisture, ashes, and
total lipids; 10.0 and 0.1556 for total fiber; 0.1 and −1.2074 for total carbohydrates; and 334 and 1.8232
for energy. For ∆E and total proteins, the transformation applied was Equation (6).

In the fermentation and drying temperature throughout time after transformation (5 and 6)
(see above), the normality of the residuals (PShapiro-Wilk) obtained [39] were, respectively, 0.2422 and
0.1026. The homoscedasticity (PLevene) obtained [40] were respectively, 0.8875 and 0.0665. Moreover, in
the physicochemical parameters after transformation (5) or (6) (see above), the PShapiro-Wilk and PLevene

values were, respectively: 0.3224 and 0.9370 for pH; 0.3376 and 0.9487 for TTA; 0.7616 and 0.5962 for
aW; 0.7852 and 0.6039 for ∆E; 0.1425 and 0.2472 for moisture; 0.9432 and 0.24273 for ashes; 0.3120 and
0.5661 for total proteins; 0.4704 and 0.8868 for total lipids; 0.0849 and 0.8555 for total fiber; 0.5364 and
0.8771 for total carbohydrates; and 0.7871 and 0.8654 for energy.

Based on the above information, there was no evidences to reject the normality of the residuals
and homoscedasticity at a p value of 0.05 (p ≤ 0.05) for the transformed values. Therefore, the
statistical analyses could proceed, and the principal and interaction effects were determined through
the variance analyses. When F-tests were significant, the averages of the factors were compared by
the Tukey post-hoc tests, at 5% probability (p ≤ 0.05), for multiple comparisons of mean differences.
Tukey post-hoc tests were performed with correction to control the Type-I error.

3. Results and Discussion

In this section, the results obtained during fermentation, drying, and storage are presented
and discussed.

3.1. Cupuaçu Seed Fermentation

The fermentation of cupuaçu seeds and corresponding statistical results are shown below in
Figure 5 and Table 1, respectively.
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Figure 5. Average values and standard deviations (mean ± STDV) from 3 analytical measures per
batches (lot) of 5 lots and 2 sampling periods per each day (morning and afternoon), for the temperature
parameters of the seeds throughout 6–7 days of controlled fermentation of cupuaçu seeds: (a) average
in morning; (b) average in afternoon; and (c) overall average (morning and afternoon). The initial, after
fermentation, and after drying weights were, respectively: 100.0, 77.65, and 37.65 kg in lot 1; 100.0, 83.0,
and 41.8 kg in lot 2; 100.0, 81.0, and 39.2 kg in lot 3; 100.0, 103.0, and 53.3 in lot 4; and 100.0, 82.0, and
39.5 in lot 5.
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Table 1. Average values and standard deviations (mean ± STDV) from 3 analytical measures per
batch (lot) of 5 lots and 2 sampling periods per each day (morning and afternoon) for the temperature
parameters of the seeds throughout 6–7 days of controlled fermentation of cupuaçu seeds: average
in morning; average in afternoon; and overall average (morning and afternoon). The initial, after
fermentation, and after drying weights were, respectively: 100.0, 77.65, and 37.65 kg in lot 1; 100.0,
83.0, and 41.8 kg in lot 2; 100.0, 81.0, and 39.2 kg in lot 3; 100.0, 103.0, and 53.3 in lot 4; and 100.0, 82.0,
and 39.5 in lot 5. Statistical analysis: F-tests Tukey post-hoc tests at 5% probability (p ≤ 0.05) for the
multiple comparison of mean differences. Numbers from the same column with the same superscript
letter are not significantly different, as obtained by the Tukey’s test (p ≤ 0.05). NS = Not significant;
* = Significant difference (p ≤ 0.05); ** = Significant difference (p ≤ 0.01); CV = Coefficient of variation.

Fermentation Time
(days)

Temperature of the Seeds during Fermentation
(◦C)

Day Period: Morning

0 27.47 ± 1.62
1 32.28 ± 2.37
2 39.66 ± 5.79
3 45.23 ± 2.02
4 42.79 ± 3.52
5 40.98 ± 4.58
6 34.74 ± 4.32
7 31.18 ± 4.13

Day Period: Afternoon

0 29.62 ± 1.28
1 33.54 ± 2.81
2 41.06 ± 4.71
3 43.35 ± 2.51
4 42.09 ± 4.34
5 39.09 ± 4.58
6 35.03 ± 3.11
7 —

Day Period: Morning + Afternoon

0 28.33 ± 1.81
1 32.98 ± 2.65
2 40.44 ± 5.16
3 44.29 ± 5.47
4 42.4 ± 3.94
5 39.93 ± 3.85
6 34.89 ± 3.69
7 31.18 ± 4.13

Statistical Analysis

Factor Variance analysis of principal and interaction effects
(F test)

Time of fermentation 0.0013 NS

Mean values ±STDV

Morning 36.79 ± 6.28 a

Afternoon 37.68 ± 5.07 a

Morning + Afternoon 36.80 ± 5.76 a

Overall average 37.9 ± 0.51
CV 27.45

The spontaneous fermentation process is characterized by a rise in the temperature of the cupuaçu
seed mass, the conversion of fermentable sugars into ethanol, the conversion of acetic acid from the
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ethanol, and, in parallel, the production of lactic and citric acids [41]. Monitoring the fermentation (and
drying) temperatures in these pilot plants is extremely useful, since it is easily determined and can
be used by the local farmers. Simple correlations between temperature and progress of fermentation
can also be easily modeled. Besides, resorting to the practical experience of the technicians and local
farmers is an efficient way to enable the monitoring and control of the fermentation (and drying and
storage) progress. As previously stated, the visual appearance (color and microbial contaminations),
smell, aroma, and texture are also important tools to follow up during fermentation.

The fermentation time of cupuaçu seeds was already evaluated by several authors, and it can
last from two and a half days (60 h) to 7 days [7,42–44]. In the current study, the total fermentation
time of the five batches of cupuaçu seeds was evaluated from six to seven days, and the maximum
temperatures were generally obtained in day 3, which is in line with the above-mentioned studies.
Our results followed similar fermentation time periods as those employed by Vasconcelos (1999) [42],
Mattietto (2001) [43], and Cohen and Jackix (2005) [6]. Nonetheless, when evaluating the effectiveness
of fermentation processes in pulped and partially pulped (with 7.5% and 15% adhered pulp) cupuaçu
seeds in combination with different forms of revolving, Ramos (2020) [45] reported a fermentation time
for pulped seeds (a similar condition to the seeds used in our present study) of only 60 h (2.5 half days)
against the 6–7 days of our fermentations. Furthermore, when analyzing the formation of volatile
compounds during the fermentation of fully pulped cupuaçu seeds, Ramos et al. (2016) [44] found
that very short fermentation periods of approximately 60 h were enough to contribute greatly to the
development of precursors of desirable flavor traits. Again, these findings are in agreement with the
fermentations performed in the current research work.

Throughout the fermentation process, a rise in the average mass temperature was observed,
evolving from 28.33 ◦C on day 0 to a maximum of 44.29 ◦C on day 3. These results are in agreement
with those found by Mattietto (2001) [43], Garcia (2006) [46], and Souza et al. (2016) [8] regarding the
required time to reach a maximum temperature during the fermentation of cupuaçu seeds. However,
the average maximum temperature observed in this study (44.29 ◦C) (Figure 5c) was lower than those
reported by Mattietto (2001) [43] and Garcia (2006) [46] of 47.0 and 46.7 ◦C, respectively, but it was
higher than that obtained by Souza et al. (2016) [8]. Many environmental conditions are responsible for
such a variation—for instance, the ambient temperature, relative humidity, weather conditions, season,
use or not of a greenhouse and its materials and designs, raw material, geographic region, number of
revolutions, and volume of fermentation seeds, among many other factors. This also means that the
optimal fermentation (and drying) conditions are producer-specific, emphasizing the importance to
master the variables of the cupuaçu fermentation, drying, and storage processes. Furthermore, Table 1
showed no significant differences in the seed temperatures in day periods of morning, afternoon, and
altogether during fermentation. In addition to the greenhouse structure, the use of raffia mats to cover
the top and inner sides of the compartments during fermentation is likely to help in maintaining the
temperature and favoring a good development of the process.

As explained by Vasconcelos (1999) [42] and Garcia (2006) [46], the increase in seed mass
temperature results from the exothermic reactions caused by the growth and multiplication of the
spontaneous strictly or facultative aerobic yeast and bacteria microbiota presented therein, namely lactic
and acetic acid bacteria among the last microorganisms. This happens due to the aeration promoted by
the use of pulped seeds (i.e., seeds separated from the mesocarp), by the daily revolving, by changing
from a fermenter compartment to another (which started on the second day of fermentation), and by
the liquefaction of pulp residues adhered to the seeds—which flow out through the existing holes at
the base of the designed fermenters. There is an expected prevalence of lactic and acetic acid bacteria
at the end of the spontaneous fermentation coupled with acid-tolerant yeast strains.

Simultaneously with the fermentation and concomitant temperature rising, there is also the
activation and increase of the activity of microbial and seed enzymes, with an emphasis on cellulases,
polygalacturonases, invertases, polyphenoloxidases, peroxidases, and lipases, which typically express
increased activity up to 72 h of fermentation. The enzymatic activity also plays key roles in the
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development of precursors for chocolate flavors and aromas [46], and the same is expected to occur
with the fermented and dried cupuaçu seeds used in a similar way for the production of cupulate®,
the “chocolate made of cupuaçu”. It is important to underline that as a result of the rise of temperature
during fermentation combined with the formation of organic acids and several other microbial bioactive
metabolites, the seed embryo dies, thus losing the ability to germinate [47]. The continuous rise of
fermentation temperature (and the resulting physicochemical changes) is also the reason for the loss of
microbial and enzymatic activities; thus, it was possible to observe the cascading drop of temperature
in the fermenter from the fourth day on, which stabilized on day 7 at 31.18 ◦C, indicating the end
of fermentation.

The spontaneous fermentation process is of the utmost importance toward the reduction of
bitterness and astringency of the cupuaçu seeds (for example, by the reduction of solubility of phenolic
compounds), the formation of precursors of flavors and aromas (organic and fatty acids, amino acids,
alcohols, aldehydes, etc.), as well as the seed preservation during storage and food safety. As already
mentioned, monitoring the fermentation and its end moment by farmers is based on the visualization
of the development of color, the stabilization of temperature (and sometimes the pH values), and the
formation of odors related with the final fermentation stage, such as the lactic and acetic acids.

3.2. Cupuaçu Seed Drying

The drying of cupuaçu seeds and corresponding statistical results are depicted below in Figure 6
and Table 2, respectively.

The drying process was carried out in the same greenhouse covered with plastic to reduce the
amplitudes of the tropical temperatures and RHs, among other technical reasons already described
in the section Materials and Methods. The average environmental temperature observed during the
months of these experiments (February, March, and April 2018) was 25.92 ◦C, and the average RH was
81% [48–50]. The drying process is dependent on natural environmental variables, and its objective
is to reduce the seeds moisture to values between 5% and 8% (w/w) in a cost-effective manner before
packaging and storing, thus preventing mold infestation and allowing the development of chemical
reactions that will contribute to the development of desired flavors and aromas. High temperatures
are not desirable at the beginning of drying, as the cupuaçu seeds tend to form a drier monolayer on
the surface of the skin, limiting the gradual dispersion of moisture into the kernel. On the other hand,
milder temperatures can prolong the drying time and favor the appearance of molds in cupuaçu seeds
that will promote the appearance of undesirable off-flavors and rotting. Figure 6 and Table 2 show
that the average values obtained for the temperature measurements in sampling periods of 2 (48 h),
3 (72 h), 4 (96 h), 5 (120 h), and 6 (144 h) days after the beginning of the drying process presented high
amplitudes confirmed by the standard deviations that were not observed in the other time periods.

This geographic region is known for the high temperature and RH amplitudes on the same day.
For instance, ambient temperature amplitudes of 23 ◦C on the same day can be observed. In this
context, Table 2 and Figure 6 show detected seed temperatures with an amplitude of 11.52 ◦C. Therefore,
it was inferred that the milder temperatures impaired the necessary drying time, even with the average
temperatures in the greenhouse presenting temperature values higher than the environment, which can
obviously be attributed to the greenhouse effect. Nevertheless, the experimental data are in agreement
with those reported in the work of Banboye et al. (2020) [51], who studied the drying of cocoa in an
open space, conventional greenhouse, and modified greenhouse. The drying process and its moisture
reduction is fundamental toward the preservation of fermented seeds during storage and to increasing
the shelf life and improving the food safety of cupuaçu seeds. The results also demonstrated that
the temperatures of the seeds during the day periods of morning and afternoon were significantly
different (p ≤ 0.05), which is very likely to have a direct impact on the overall drying process. The final
pH value of drying (corresponding to the initial pH value of storage) was 5.34.
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Figure 6. Average values and standard deviations (mean ± STDV) from 3 analytical measures per
batches (lot) of 5 lots (batches) and 2 sampling periods per each day (morning and afternoon) for
the temperature parameters of the seeds throughout 6–7 days (depending on the evolution of the
process) of controlled drying of cupuaçu seeds: (a) average in morning; (b) average in afternoon; and
(c) overall average (morning and afternoon). The initial, after fermentation, and after drying weights
were, respectively: 100.0, 77.65, and 37.65 kg in lot 1; 100.0, 83.0, and 41.8 kg in lot 2; 100.0, 81.0, and
39.2 kg in lot 3; 100.0, 103.0, and 53.3 in lot 4; and 100.0, 82.0, and 39.5 in lot 5.
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Table 2. Average values and standard deviations (mean ± STDV) from 3 analytical measures per
batch (lot) of 5 lots and 2 sampling periods per each day (morning and afternoon) for the temperature
parameters of the seeds throughout 6–7 days (depending on the evolution of the process) of controlled
drying of cupuaçu seeds: average in morning; average in afternoon; and overall average (morning
and afternoon). The initial, after fermentation, and after drying weights were, respectively: 100.0, 77.65,
and 37.65 kg in lot 1; 100.0, 83.0, and 41.8 kg in lot 2; 100.0, 81.0, and 39.2 kg in lot 3; 100.0, 103.0,
and 53.3 in lot 4; and 100.0, 82.0, and 39.5 in lot 5. Statistical analysis: F-tests Tukey post-hoc tests at
5% probability (p ≤ 0.05) for the multiple comparison of mean differences. Numbers from the same
column with the same superscript letter are not significantly different, as obtained by the Tukey’s test
(p ≤ 0.05). NS = Not significant; * = Significant difference (p ≤ 0.05); ** = Significant difference (p ≤ 0.01);
CV = Coefficient of variation.

Drying Time
(Days)

Temperature of the Seeds during Drying
(◦C)

Day Period: Morning

0 29.21 ± 1.92
1 30.26 ± 2.04
2 27.82 ± 1.48
3 30.47 ± 3.72
4 27.4 ± 0.35
5 33.32 ± 11.06
6 29.72 ± 3.51
7 24.0 ± 0.00

Day Period: Afternoon

0 32.00 ± 0.00
1 33.12 ± 5.45
2 42.54 ± 7.36
3 42.98 ± 8.67
4 38.92 ± 9.99
5 36.08 ± 11.06
6 37.6 ± 0.00
7 —

Day Period: Morning + Afternoon

0 29.21 ± 1.92
1 31.69 ± 4.16
2 36.88 ± 9.38
3 38.81 ± 10.56
4 35.08 ± 9.78
5 34.70 ± 12.02
6 34.37 ± 11.81
7 24.00 ± 0.00

STATISTICAL Analysis

Factor
Variance analysis of principal and interaction

effects (F test)

Time of drying 6.07 NS

Mean values ±STDV

Morning 29. 02 ± 2.72 b

Afternoon 40.46 ± 8.67 a

Morning + Afternoon 33.09 ± 4.70 a,b

Overall average 34.19 ± 5.80
CV 4.16
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3.3. Physicochemical Analysis during Storage

The physicochemical and corresponding statistical results during storage of cupuaçu beans are
given below in Figure 7 and Table 3, respectively.
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Figure 7. Average values and standard deviations (mean ± STDV) from 3 analytical repetitions
for different physicochemical parameters throughout 90 days of storage of cupuaçu beans: (a) pH,
Moisture (weight loss) (%, w/w), Total Titratable Acidity (TTA) (mL NaOH 0.1 N/10 gsample) and Water
activity (aw); and (b) Total color difference (∆E), Total lipids (ether extract) (%, w/w), Total fiber (%, w/w),
Total proteins (%, w/w), Energy value (%, w/w), Total proteins (%, w/w), and Total carbohydrates (%, w/w).
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Table 3. Average values and standard deviations (mean ± STDV) from 3 analytical repetitions for different physicochemical parameters throughout 90 days of storage
of cupuaçu beans: pH, Moisture (weight loss) (%, w/w), Total Titratable Acidity (TTA) (mL NaOH 0.1 N/10 gsample), Water activity (aw), the CIE 1976 L*a*b* color
scale {L* (lightness), a*[chromaticity (red-green)], and b* [chromaticity (yellow-blue)]}, Total color difference (∆E), Total lipids (ether extract) (%, w/w), Total fiber
(%, w/w), Total proteins (%, w/w), Energy value (%, w/w), Total proteins (%, w/w), and Total carbohydrates (%, w/w). Statistical analysis: F-tests Tukey post-hoc tests at 5%
probability (p ≤ 0.05) for the multiple comparison of mean differences. Numbers from the same column with the same superscript letter are not significantly different,
as obtained by the Tukey’s test (p ≤ 0.05). NS = Not significant; * = Significant difference (p ≤ 0.05); ** = Significant difference (p ≤ 0.01); CV = Coefficient of variation.

Treatment
Time
(days)

Treatment
(ti)

pH

TTA
(Total Titratable

Acidity)
(% Citric Acid)

Water
Activity

(aw)

L
(Lightness)

a *
[Chromaticity
(Red-Green)]

b *
[Chromaticity
(Yellow-Blue)]

∆E
(Total Color
Difference)

Moisture
(Weight Loss)

(%, w/w)

Ashes
(%, w/w)

Total
Proteins
(%, w/w)

Total Lipids
(Ether Extract)

(%, w/w)

Total Fiber
(%, w/w)

Total
Carbohydrates

(%, w/w)

Energy Value
(kCal)

0 (t1) 5.34 ± 0.12 1.56 ± 0.27 b 0.53 ± 0.01 b 36.68 ± 4.03 b 15.06 ± 2.17 a 20.72 ± 2.40 a 65.18 ± 2.58 a 7.49 ± 1.45 a,b 3.25 ± 0.55 a 10.26 ± 0.17 a 31.52 ± 2.29 c 44.61 ± 1.96 b 2.87 ± 0.79 a 157.75 ± 21.17 c

30 (t2) 5.31 ± 0.04 3.49 ± 0.18 a 0.70 ± 0.02 a 37.42 ± 4.66 b 14.34 ± 1.09 a 20.14 ± 2.29 a 64.15 ± 3.39 a 6.72 ± 0.55 b 3.28 ± 0.32 a 10.27 ± 0.19 a 28.64 ± 1.75 c 50.00 ± 0.90 a 1.09 ± 0.05 b 103.17 ± 18.25 d

60 (t3) 5.40 ± 0.07 3.15 ± 0.2 a 0.72 ± 0.03 a 34.63 ± 2.61 b 13.32 ± 0.65 a 18.51 ± 1.26 a 66.05 ± 2.02 a 8.59 ± 0.2 a 3.88 ± 0.14 a 10.05 ± 0.33 a 45.34 ± 0.44 a 27.00 ± 1.06 d 5.13 ± 1.34 a 360.80 ± 11.40 a

90 (t4) 5.51 ± 0.06 3.81 ± 0.37 a 0.73 ± 0.01 a 51.11 ± 0.51 a 7.37 ± 0.59 b 4.61 ± 0.15 b 46.65 ± 0.58 b 8.74 ± 0.13 a 3.39 ± 0.11 a 10.62 ± 0.80 a 42.79 ± 0.57 b 31.37 ± 0.43 c 3.09 ± 0.44 a 314.44 ± 5.50 b

Statistical Analysis

Factor Variance analysis of the principal and interaction effects (F test)

Time of
storage 5.31 NS 45.25 ** 79.40 ** 26.74 ** 38.86 ** 204.98 ** 60.53 ** 5.48 * 3.26 NS 0.75 NS 177.47 ** 248.78 ** 94.45 ** 262.88 **

Overall
average 5.39 ± 0.09 3.00 ± 1.00 0.67 ± 0.09 39.96 ± 7.53 12.52 ± 3.51 15.99 ± 7.65 60.51 ± 9.27 7.88 ±0.95 3.45 ± 0.29 10.30 ± 0.23 37.07 ± 8.23 38.25 ±1 0.84 3.05 ± 1.65 234.04 ± 123.13

CV 0.34 7.28 7.45 20.39 3.70 3.33 0.91 24.15 25,19 1.86 7.86 1.10 9.71 5.45
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Oilseed raw materials such as grains, nuts, and almonds have as their major technological barrier
the post-harvest processing operations of drying and storage [52]. There is no reliable information
on the minimum operational parameters for the drying and storage of fermented cupuaçu seeds and
beans, respectively, since the knowledge in this field is still incipient despite its industrial potential and
the existing expansion of the culture of cupuaçu plants in several Brazilian states, viz. Amazon and
Northeast region, in small- and medium-size agricultural holdings.

In this work, the physicochemical parameters that can be influenced by the storage conditions of
fermented and dried cupuaçu beans were evaluated during 90 days with monthly samplings (Figure 7
and Table 3). For the pH value, no statistically significant differences were perceived between sampling
over the time. At the beginning of the storage, t1 (0 d), the average value was 5.34, and the great
average was 5.39. These values show the maintenance of the pH values during storage as a result of
the inactivation of the microbiota and enzymes, and they are in agreement with the ones reported by
Pereira et al. (2018a) [49] and Santos et al. (2019a, 2019b) [53,54].

Concerning the acidity of fermented and dried cupuaçu seeds during 90 days of storage, there
was a clear trend to increase the values from the initial time (t0) in relation to the remaining studied
times. However, between times t2, t3, and t4, i.e., from 30 days on, no significant differences were
observed. The acidity is closely related to the quality and composition of the raw material. Several
post-harvest processing operations such as cupuaçu seed fermentation, drying, and/or storage are likely
to trigger or inactivate mechanisms of enzymatic hydrolysis and/or oxidation, which almost always
changes the concentration of hydrogen ions and the equilibrium balance between proton donators
and accepters [55,56]. The behavior of the acidity values over time revealed that the maintenance of
lipids present in fermented and dried cupuaçu seeds is closely related to the nature and quality of
the raw material, among other factors such as the processing conditions and, most importantly, the
conservation/storage conditions. Storage conditions matter because the decomposition of glycerides is
accelerated by heating, humidity, and light exposition, while rancidity by hydrolytic, oxidative and
microbial mechanisms is almost always accompanied by the formation of volatile free short-chain fatty
acids (e.g., butyric acid), aldehydes, and ketones [56]. The use of temperatures throughout artificial
seed drying above 80 ◦C may have severe negative effects on the quality of cupuaçu butter.

The water activity (aw) also tended to increase during storage with the mean values at t1 (0 d) being
the lowest (0.52) and significantly different from the others, which from time t2 (30 d) up to t4 (90 d)
ranged from 0.69 to 0.72, respectively, and did not show any statistically significant difference. This aw

profile is paradigmatic in displaying the importance of the drying process to obtain well-developed
cupuaçu beans. The aw increase may be the result of the high RH values and the type of packing used.
However, considering the stability, products with aw below 0.5 are considered to be very stable.

The typical color of cupuaçu seeds before fermentation is cream-yellow (Figure 8a). In the initial
stages of fermentation, slight changes were observed on the edge of the seeds (Figure 8b) toward the
core. From the third day of fermentation, the reddish-brown color fills the entire space with a matte
aspect (Figure 8c). The study of color parameters was carried out in the dried beans (Figure 8d).Microorganisms 2020, 8, x FOR PEER REVIEW 24 of 34 

 

    

(a) (b) (c) (d) 

Figure 8. Pictures displaying the color evolution of (a) freshly pulped seeds, (b) on the third day of 
fermentation, (c) from the third day of fermentation on, and (d) fermented and dried beans. Courtesy 
of the authors J.M.L.S., C.B.C.C., S.K. and M.A.M.V. Rio Branco, Acre, Brazil. 

Pertaining to the color of the fermented and dried cupuaçu seeds stored for 90 d and packed in 
raffia bags at an average room temperature of 26 °C and 81% relative humidity [53,54], the 
luminosity/lightness (L) and the coordinates a* (chromaticity, red-green) and b* (chromaticity, 
yellow-blue) displayed significant differences only in relation to t4 (90 d). The higher L values were 
found as the storage time increased, thus indicating that the seed coloration was becoming lighter, 
and it was naturally affected by the type of packaging material used, which allowed the cupuaçu 
beans to come in contact with ambient air and light. The coordinates a* and b* are correlated with the 
sample color. The coordinate a*, which indicates a trend toward the darker red color observed in the 
cupuaçu seeds, disclosed higher values at the beginning of storage, demonstrating that the seed peel 
or coating is technologically positive by providing an effective protection against oxidation and other 
mechanisms. In the yellow intensity (b* coordinate), the cupuaçu seeds exhibited the highest values 
as well at the beginning of storage, where an approximate reddish-brown color indicates a 
satisfactory fermented cupuaçu seeds. Some factors can affect the color of the seeds, such as the 
fermentation, drying, and roasting processes [25]. Color is a fundamental attribute for the acceptance 
of the product by the industry and consumers, providing along with the aroma a pleasant or 
unpleasant sensation in relation to the food product. The values for L, a*, and b* were close to those 
reported by Pereira et al. (2018a, 2018b) [49,50] and Souza et al. (2019a, 2019b) [26,27], who were 
responsible for the initial studies of this research. The values found here were considered acceptable 
for fermented and dried cupuaçu seeds. 

The results of the centesimal composition of fermented and dried cupuaçu beans stored 
throughout 90 d are shown in Figure 7 and Table 3. Accordingly, statistical significant differences 
were established between storage times for moisture, (ether extract) lipids, total fibers, carbohydrates, 
and energy value. Regarding the moisture, it was observed in the early stages of storage (t0 and t1) 
average values (p ≤ 0.05) below the maximum limit of 8.0% (w/w) established by the Concex 
Resolution n° 160 [57] for cocoa. There is still no specific legislation for fermented and dried cupuaçu 
seeds. Vasconcelos (1999) [42] mentioned that above 7% (w/w), cupuaçu beans are vulnerable to mold 
contamination, with a higher humidity than that found for almonds with film (skin). In agreement 
with previous data and according to Santos et al. (2019a, 2019b) [53,54], who also carried out some of 
the initial research activities, the aforementioned recorded environment temperature and RH (26 °C 
and 81%, respectively) suggest the reason why a moderate increase in the average values of bean 
moisture were observed in the final time period, viz. t3 (60 d) and t4 (90 d). These findings were 
considered close to those reported by Efraim et al. (2010) [58] when studying unroasted nibs from 
mixtures of cocoa seeds damaged by a disease of cocoa trees caused by the basidiomycete fungus 
Moniliophtora perniciosa, whose moisture ranged between 6.87% and 7.29% (w/w). 

According to the same Figure 7 and Table 3, there were no significant differences in the levels of 
cupuaçu bean ashes and total proteins during storage. Santos et al. (2019a, 2019b) [53,54] found that 

Figure 8. Pictures displaying the color evolution of (a) freshly pulped seeds, (b) on the third day of
fermentation, (c) from the third day of fermentation on, and (d) fermented and dried beans. Courtesy
of the authors J.M.L.S., C.B.C.C., S.K. and M.A.M.V. Rio Branco, Acre, Brazil.
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Pertaining to the color of the fermented and dried cupuaçu seeds stored for 90 d and packed in raffia
bags at an average room temperature of 26 ◦C and 81% relative humidity [53,54], the luminosity/lightness
(L) and the coordinates a* (chromaticity, red-green) and b* (chromaticity, yellow-blue) displayed
significant differences only in relation to t4 (90 d). The higher L values were found as the storage time
increased, thus indicating that the seed coloration was becoming lighter, and it was naturally affected
by the type of packaging material used, which allowed the cupuaçu beans to come in contact with
ambient air and light. The coordinates a* and b* are correlated with the sample color. The coordinate
a*, which indicates a trend toward the darker red color observed in the cupuaçu seeds, disclosed
higher values at the beginning of storage, demonstrating that the seed peel or coating is technologically
positive by providing an effective protection against oxidation and other mechanisms. In the yellow
intensity (b* coordinate), the cupuaçu seeds exhibited the highest values as well at the beginning
of storage, where an approximate reddish-brown color indicates a satisfactory fermented cupuaçu
seeds. Some factors can affect the color of the seeds, such as the fermentation, drying, and roasting
processes [25]. Color is a fundamental attribute for the acceptance of the product by the industry and
consumers, providing along with the aroma a pleasant or unpleasant sensation in relation to the food
product. The values for L, a*, and b* were close to those reported by Pereira et al. (2018a, 2018b) [49,50]
and Souza et al. (2019a, 2019b) [26,27], who were responsible for the initial studies of this research.
The values found here were considered acceptable for fermented and dried cupuaçu seeds.

The results of the centesimal composition of fermented and dried cupuaçu beans stored throughout
90 d are shown in Figure 7 and Table 3. Accordingly, statistical significant differences were established
between storage times for moisture, (ether extract) lipids, total fibers, carbohydrates, and energy
value. Regarding the moisture, it was observed in the early stages of storage (t0 and t1) average values
(p ≤ 0.05) below the maximum limit of 8.0% (w/w) established by the Concex Resolution n◦ 160 [57]
for cocoa. There is still no specific legislation for fermented and dried cupuaçu seeds. Vasconcelos
(1999) [42] mentioned that above 7% (w/w), cupuaçu beans are vulnerable to mold contamination,
with a higher humidity than that found for almonds with film (skin). In agreement with previous
data and according to Santos et al. (2019a, 2019b) [53,54], who also carried out some of the initial
research activities, the aforementioned recorded environment temperature and RH (26 ◦C and 81%,
respectively) suggest the reason why a moderate increase in the average values of bean moisture were
observed in the final time period, viz. t3 (60 d) and t4 (90 d). These findings were considered close
to those reported by Efraim et al. (2010) [58] when studying unroasted nibs from mixtures of cocoa
seeds damaged by a disease of cocoa trees caused by the basidiomycete fungus Moniliophtora perniciosa,
whose moisture ranged between 6.87% and 7.29% (w/w).

According to the same Figure 7 and Table 3, there were no significant differences in the levels of
cupuaçu bean ashes and total proteins during storage. Santos et al. (2019a, 2019b) [53,54] found that
the values for ashes and protein content were very similar to the same type of beans produced in the
2018–2019 harvest.

Storage conditions can interfere with the quality of oleaginous raw materials such as fermented
cupuaçu seeds and cupuaçu dried beans. Factors such as temperature, relative humidity, storage
atmosphere, percentage of broken or malformed seeds, impurities, and the presence of microorganisms,
insects, and mites [59] can affect substantially the physicochemical quality such as the total lipid and
fiber contents and, consequently, total fiber content and energy value. The storage temperature of
cupuaçu beans is one of the most important factors that interferes with the quality, as it can accelerate
biochemical and metabolic reactions, by which storage reserves in the supporting tissue are unfolded,
transported, and resynthesized in the embryonic axis.

We expected the positive correlations encountered between TTA and ashes as well as the absence of
correlation between TTA and pH values, since the latest depends largely on the buffering capacity [17],
among other factors. The results also unfolded positive correlations between total lipids, total
carbohydrates, and total energy, as well as negative correlations between total lipids and fibers and
positive correlations between TTA and total fibers. Unlike what happened during storage, negative
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correlations between total fibers and carbohydrates might be observed as a result of the microbial,
chemical, and enzymatic hydrolyses.

3.4. Microbiological Analysis during Storage

The microbiological results of cupuaçu beans during storage are displayed below in Table 4.

Table 4. Observation values for 3 replicates (R) of the water activity (aw), decimal logarithm of total
viable mesophilic and yeast and mold counts (colony-forming units) per gram of sample (CFU/g), and
most probable number (MPN) of total thermophilic counts per gram (MPN/g) of sample throughout
150 days of storage of cupuaçu beans with seed coating.

Treatment (ti)–
Replicate (Ri)

Time
(Days) Replicate Water Activity

(aw)
Total Mesophilic Viable Counts

(log CFU/g)
Total Yeasts and Molds

(log CFU/g)
Total Thermophilic Coliforms

(MPN/g)

t1-R1 0 1 0.6437 Countless 3.75 >1100
t1-R2 0 2 0.6382 Countless 3.80 295.80
t1-R3 0 3 0.6398 Countless 3.82 357.00
t2-R1 30 1 0.6745 Countless 3.49 295.80
t2-R2 30 2 0.6582 Countless 3.73 244.80
t2-R3 30 3 0.6573 Countless 3.15 153.00
t3-R1 60 1 0.7207 4.34 5.05 >100
t3-R2 60 2 0.6435 4.64 4.67 153.00
t3-R3 60 3 0.6893 4.08 4.28 >1100
t4-R1 90 1 0.6271 4.66 3.85 >1100
t4-R2 90 2 0.6297 4.41 3.00 153.00
t4-R3 90 3 0.6269 4.56 3.90 >1100
t5-R1 120 1 0.6154 4.04 0.00 >1100
t5-R2 120 2 0.6241 4.76 3.00 460.00
t5-R3 120 3 0.6351 4.64 3.90 >1100
t6-R1 150 1 0.6386 Countless 3.70 120.00
t6-R2 150 2 0.7029 Countless 3.70 112.20
t6-R3 150 3 0.6896 Countless 4.58 112.20

The Brazilian National Commission for Food Standards and Standards recommends in the
Resolution N◦ 12/78 a standard maximum of total viable counts on plate agar of 5 × 105 CFU/gsample

[or 5.70 log (CFU/gsample)] [60]. According to Table 4 (and apart from the presence of countless
mesophilic bacteria in the initial and final storage period), one detected an acceptable number of
viable counts, since they remained below the established maximum limit. Such an effect results
from the physicochemical and microbial changes produced by fermentation and drying processes (as
well as during storage), leading to decline of the microbial activity and cell death. It is noteworthy
that the aforementioned legislation is not specific for fermented cupuaçu seeds. In this sense, these
experimental results are thought to become useful for the standardization bodies to define microbial
quality parameters for fermented and dried cupuaçu seeds and further help establish public policies
by the policymakers. In fact, such concerted actions are already being taken based on this work.

The presence of yeasts and molds (i.e., non-filamentous and filamentous fungi, respectively) and
bacteria in food is natural and may be related to inappropriate handling, contact with equipment,
surfaces and utensils not being properly sanitized or, simply, to the contact with the environmental
atmosphere, and the same happens with the fermented and dried cupuaçu seeds. The fermentation
and drying change the physicochemical and microbiological characteristics of the seeds, preventing
microbial contaminations, whereas the non-fermented seeds are more vulnerable to the development
of microbial contaminations. However, environmental microbial contaminations may happen at
any post-harvest stage. In the case of molds, their deleterious effect is particularly related with the
production of mycotoxins during drying and storage stages, which are often harmful for human beings.
The number of yeasts and molds depicted in Table 4 unfolded their general presence in values generally
between 3 and 4 log (CFU/gsample) along the storage period. Although present in relative small and
safe viable counts, such results underline the importance to complement these viable counts with the
identification of molds and determination of mycotoxins in the future work.

Table 4 also shows the ubiquitous presence of a thermotolerant coliforms group throughout the
storage period; however, these are at acceptable levels according to the legislation for the group of
foods that encompasses cupuaçu seeds [61], since there is not yet specific legislation for the latter.
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It was observed that the water activity remained slightly above 0.5 during the entire storage period.
The tropical conditions are ideal for the development of unwanted microorganisms, such as the
coliforms, which are indicative microorganisms of inadequate hygienic–sanitary conditions that may
happen not only during storage but in the entire chain (cultivation, processing, packaging, and
transportation of raw materials and products) [62,63]. This group of microorganisms is considered
biological hazards, and their occurrence is an indicator of fecal contamination on cupuaçu seeds [64].
Their vanishing during the first days of fermentation is likely due to the abrupt drop of the pH,
the formation of organic acids, and other metabolites released by the dominant lactic and acetic
acid bacteria and acid-tolerant yeasts, rather than attributable to the storage. In addition to the
storage, inadequate hygienic conditions during drying also represent a critical point in the microbial
contamination by coliforms. These results during storage emphasize the importance to improve and
optimize the processing of cupuaçu seeds and beans to achieve high standards of food safety.

4. Conclusions

This research effort aimed at monitoring several microbiological and physicochemical parameters
during the fermentation, drying, and storage of cupuaçu seeds as well as the use of flexible and cheap
processing plants targeted for the prevalent household production. The experimental results showed
an increasing of the fermentation temperatures from 28.33 ◦C on day 0 to a maximum of 44.29 ◦C on
day 3. This temperature rise is of utmost importance toward the growth of desirable microbiota and
activation of endogenous microbial and seed enzymes. Such mechanisms play important roles to
develop desirable physicochemical, textural, and sensory traits as well as to achieve the appropriate
microbial safety of the seeds and inactivation of seed embryos. The continuous rise of seed temperature
results further in the inactivation of such processes. Regarding the drying process, it could be
concluded that milder seed temperatures impaired the drying time. Unlike the fermentation, during
the drying process, we found significant differences in the seeds between the day periods of morning
and afternoon, which unsurprisingly affected the drying process. Furthermore, the monitoring of
the physicochemical and microbiological parameters during the 90 d of storage revealed the impacts
of the storage process, which was theoretically explained. These results also permitted foreseeing
future studies—for example the use of different packaging materials for cupuaçu beans. In order to
improve the quality of fermented cupuaçu seeds, it is necessary to carry out further investigations on
the microbial and physicochemical dynamics during the fermentation, drying, and storage stages, so as
to better control these processes and explore cupuaçu with countless possibilities and potentialities in
the agro-food industry. These studies will take place in the scope of complementary research projects
in the future.

This work also allowed the design and development of a flexible wood fermenter and solar dryer
terrace, which were integrated in the same greenhouse. This system is easily adaptable, scalable, and
replicated to the conditions encountered in different local small farms. Thanks to the theoretic and
practical/technical experience of the research team from the company Embrapa (Brazilian Agricultural
Research Corporation, Brazil), it was possible to gain greater technical and scientific knowledge of the
fermentation, drying, and storage processes. As future work, we foresee the determination of other
physicochemical, textural, and particularly, microbiological parameters. Another important aspect to
be considered in the future is the development of co-cultured microbial starter cultures of yeasts, as
well as lactic and acetic acid bacteria (and eventually others, for example propionic bacteria), to better
control and standardize the fermentation process, so that high standards of food quality and safety are
achieved. Microbial inoculation can also be compared with chemical acidification and spontaneous
fermentations. Finally, it will also be essential to develop cost-effectiveness biotechnologies to process
and valorize by-products of cupuaçu, which are currently sent for composting. Instead of following
composting, these by-products—rich in lignocellulose, polysaccharides and other carbohydrates
compounds, among others—may be used to yield high-added value products such as bioethanol,
biobutanol, biogas, biopolymers, and biofertilizers, among other possibilities. The microbial processing
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[anaerobic or solid-state fermentations (STF)] or pyrolysis to release fermentable sugars are promising
solutions to further produce single cell proteins (SCP) and oils (SCO) [13,15,20,33,65–76]. Cupuaçu
endocarp (placenta) could be used to produce vinegar (acetic acid) or as an ingredient in sweets. Such
derivate compounds can be re-introduced in almost all type of industrial chains.

Cupuaçu is deemed a natural, healthy, and environmentally friendly tropical fruit with different
potential applications in the agro-food industry. The fruit and seeds can be used for juices, ice creams,
cupulate® (a “chocolate” made of processed cupuaçu seeds), baking and confectionary, and many
other purposes, whereas cupuaçu by-products can be processed and return to new value chains
following a regenerative economy approach based on minimum residues generation or zero waste,
and 3 or 5 R’s and circular economy policies. As in other food goods, numerous possibilities can
be conceived for the best use and valorization of cupuaçu by-products [65,68,74,76,77], which is of
primary importance from an economic point of view for the local small farmers, their families, and
local communities. Cupuaçu is primarily produced by smallholders who depend considerably on
this source of revenue for subsistence. The sustainable production of cupuaçu and the openness
to explore their by-products also will help fixating people in such huge rural regions all over the
Brazilian cupuaçu producers (e.g., Amazonas, Acre, Pará, Rondônia, Roraima, Amapá, Tocatins, Goiás,
Bahia, and other northeast federal regions, etc.)—thus contributing to the economy of the country and
preventing the desertification of rural areas.

Cupuaçu and similar autochthonous agro-products are well adapted to the local climate and soil
conditions, are typically resilient against climate changes, and have outstanding nutritional and healthy
attributes, while promoting a sustainable agriculture and preserving natural resources, plant genetic
diversity, and heritage. Indeed, the local small farmers who use the best agronomical practices are
seen as fundamental protectors of the environment and biodiversity [13,20,73,78,79], and they are vital
to creating discontinuity agricultural stains to prevent forest fires. Such features meet the international
and EU policies [80–83] and particularly, the 2030 United Nations (UN) agenda [84] for taking global
actions toward the global sustainability development with the rational use of natural resources.

Enormous challenges are foreseen for the future for improving even more the cost-effectiveness
and social and environmental sustainability of cupuaçu production. Exploring plant genetic diversity
and breeding lines can improve the productivity and resilience of cupuaçu against the exacerbation of
the climate changes and global warming. These measures may help attain sufficient, safe, affordable,
nutritious, healthy, and balanced diets—thus responding appropriately to the world population
growth—and promote healthy lifestyles. Monitoring cupuaçu production and perhaps implementing
precision farming procedures could be considered in the future. The continuous management and
technical training of the local farmers and their integration into the agro-food value chain are primordial
measures. There are plans to follow the previous and actual research efforts through research projects
with national and international intuitions and consortia toward improving the cupuaçu production
and processing and transfer the knowledge in loco to the small farmers. Another important challenge
is improving and achieving better standard food quality requirements by implementing quality
management and food safety systems and product certifications and, simultaneously, being aware of
not hampering the expansion of food products manufactured at the farm level to external markets, or
even in local markets and food chains. Another important measure is developing new technological
cupuaçu-based food products to improve the nutritional quality and the socioeconomic condition of
rural population, as well as diversify healthy diets and lifestyles. Furthermore, beyond clean-labeled
agro-food commodities, other applications of cupuaçu can be explored, such as natural ingredients (and
products therefrom with market high value), cosmetics, and nutraceuticals. However, the economic
feasibility still depends on increasing competitiveness through the development of new products and
optimizing more efficient processing procedures.

Overall, by providing these measures, it will be possible to attain diversified and healthy
diets and lifestyles, territorial cohesion, the socioeconomic development of rural populations,
biodiversity and environmental sustainability, and cultural and food heritage preservation. Fresh and
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low-processed cupuaçu-based foods with implemented quality management and food safety systems
meet undoubtedly the requirements of natural, healthy, safety, tasty, sustainable, and authentic food.
In addition to the technical support and training qualification of local farmers, the new products and
processes are key factors in the direction of integration of local farmers into the whole agro-food supply
chain (from production to trading).

Unlike the industrial farming that is turning the forests (including the rainforests) into massive
farms and threatening the future of our planet, cupuaçu production is mainly based on small household
farming and not on massive monoculture plantations. Cupuaçu local small farmers in Brazil are
exemplar concerning their agronomical practices and integration in the surrounding tropical landscapes.
Often, they practice tropical intercropping systems, e.g., cacao, coffee, banana, avocado, and Brazil nuts
among many other agroforestry examples such as the RECA project that uses integrated agroforestry
systems of cupuaçu with peach palm, açaí palm, and others [85]. The use of other plantations is
essential to provide the desired light exposition for the proper development of cupuaçu beans. Cupuaçu
exploitation should not replicate many of the mistakes seen in the exploitation of cocoa and palm oil,
and that is why it is important to look at cupuaçu from a sustainable point of view.

Only through addressing those challenges will it be possible to improve the quality of cupuaçu
and similar local products and trigger the integration of local small farmers into agro-food chains
from production to the industrial and trade chains. To attain successfully such a goal is fundamental
to connecting and facilitating collaboration among all the stakeholders, viz. farmers, companies,
researchers, governmental and regulatory authorities, policymakers, standardization bodies, consumers,
and consumer associations. To integrate the local communities in the whole value chain so as to
ensure desirable and fair profits and the required individual livelihoods, industries, trade entities, and
consumers must all be called to account. It is fundamental for companies and consumers to practice
social and ethical responsibility by fair markets and trade, as well as guarantee direct negotiation
and honest payment to the local producers in a win–win philosophy. On this subject, many negative
examples can be found all over the world—for example, in the production of palm and coconut oils.
A comprehensive traceability of the production and trade of cupuaçu (and any other similar product
and system) must be put into practice from “farm to selling”. The fair trade of the companies and their
social and ethic responsibilities require this traceability and oversight by the policy and regulatory
arena, consumers, and general people. Only in this way will it be possible to practice responsible
food production consumption, boosting food quality and safety and endorsing an environmental and
economic sustainable and resilient domestic-based agriculture with reduced environmental footprints
and even with neutral or positive environmental impacts to attain a society with “zero waste–zero hunger”.
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