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Abstract: (1) Background: Constipation is a common condition that affects the health and the
quality of life of patients. Recent studies have suggested that the gut microbiome is associated
with constipation, but these studies were mainly focused on a single research cohort. Thus, we
aimed to construct a classification model based on fecal bacterial and identify the potential gut
microbes’ biomarkers. (2) Methods: We collected 3056 fecal amplicon sequence data from five
research cohorts. The data were subjected to a series of analyses, including alpha- and beta-diversity
analyses, phylogenetic profiling analyses, and systematic machine learning to obtain a comprehensive
understanding of the association between constipation and the gut microbiome. (3) Results: The
alpha diversity of the bacterial community composition was higher in patients with constipation.
Beta diversity analysis evidenced significant partitions between the two groups on the base of gut
microbiota composition. Further, machine learning based on feature selection was performed to
evaluate the utility of the gut microbiome as the potential biomarker for constipation. The Gradient
Boosted Regression Trees after chi2 feature selection was the best model, exhibiting a validation
performance of 70.7%. (4) Conclusions: We constructed an accurate constipation discriminant
model and identified 15 key genera, including Serratia, Dorea, and Aeromonas, as possible biomarkers
for constipation.

Keywords: gut microbiome; constipation; machine learning; feature selection; classification model

1. Introduction

Constipation is a common chronic condition worldwide with a complicated etiology;
a previous meta-analysis of constipation revealed that the global average prevalence is
about 14% [1]. It severely affects the physical and mental health and the quality of life
of patients [2]. The clinical diagnosis of constipation is usually made by evaluating the
stool form and the associated persistent bowel symptoms, such as the Bristol Stool Form
Scale and the Rome IV criteria [3]. The gut microbiome is considered the most important
symbiotic microecosystem within a host’s body and there is mounting evidence that the gut

Microorganisms 2021, 9, 2149. https://doi.org/10.3390/microorganisms9102149 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-2296-3380
https://orcid.org/0000-0002-3884-4706
https://orcid.org/0000-0002-9192-4684
https://orcid.org/0000-0001-7148-7555
https://doi.org/10.3390/microorganisms9102149
https://doi.org/10.3390/microorganisms9102149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9102149
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9102149?type=check_update&version=3


Microorganisms 2021, 9, 2149 2 of 15

microbiome plays a central role in human health and disease [4]. It has also been identified
as a crucial determinant of intestinal inflammation and a key player in constipation [5].
The gut microbiome of individuals with constipation tends to differ from that of healthy
individuals in terms of taxonomic composition and biological functions. On the other
hand, due to the unclear pathogenesis of constipation, it is hard to carry out targeted
treatment. The commonly used treatment methods now are usually including changing
dietary habits such as increasing dietary fiber intake and using laxatives to promote bowel
movements [2]. However, high intake fiber supplements may cause abdominal discomfort
such as bloating and fullness, and the impact and safety of long-term use of laxatives
are not yet clear, they may cause adverse intestinal symptoms and then cause secondary
injuries to patients [6,7]. Because the gut microbiome has a close association to health or
constipation, compared with traditional diagnostic standards, the gut microbiome can
provide new insights into constipation interventions while realizing discrimination, such
as dietary-based microbiome intervention and probiotic therapy [8]. Non-drug treatment
options may help to reduce or avoid patient health damage caused by long-term drug use
and maintain intestinal homeostasis. Thus, it is valuable to analyze the influence of gut
microbiome signatures on constipation and then clarify constipation etiology, and design
and evaluate gut microbiota-based interventions to alleviate constipation.

Next-generation sequencing technologies have enabled the study of the gut microbiota
in a culture-independent manner, which has yielded glimpses into the complex and incom-
pletely understood interactions between the gut microbiome and its host. To investigate the
associations of the gut microbiome with host health and disease, metagenome-wide associ-
ation studies have begun to explore gut microbiome alterations in constipation, adiposity,
diabetes, inflammatory bowel disease, colorectal cancer, and many other conditions [4].
One study found that the α-diversity of the gut microbiome of patients with constipation
was higher than that of normal individuals, which suggests that such patients have a com-
plex gut microbiome [9]. Similarly, the β-diversity of the gut microbiome has been observed
to differ significantly between patients with constipation and normal individuals [10]. Fur-
ther, the abundances of different taxa were also associated with constipation. For example,
the Firmicutes to Bacteroidetes ratio was considered to characterize intestinal dysbiosis;
Bacteroidetes has a higher abundance in the constipated patient and Firmicutes correlated
with intestinal transit [10,11]. The relative abundances of Ruminococcaceae and Akkerman-
sia were also found to be higher in the patients than in normal individuals [12]. However,
most prior studies have focused on a single disease population and a matching control, and
very few have integrated data from multiple populations or incorporated data from other
studies. These limitations hinder our ability to clarify the robustness of microbiome–disease
associations and obscure our understanding of the potential mechanisms by which the
microbiome contributes to constipation.

The robustness of microbiome–disease associations can be assessed by a meta-analysis
of data integrated from all relevant investigations [13]. A meta-analysis based on large-scale
datasets would be an effective approach to identify associations that are consistent across
studies and are thus less likely to be due to biological or technical confounders. Next-
generation DNA sequencing technologies have been used extensively, which may enable a
meta-analysis to reveal association patterns common to independent studies. For example,
a meta-analysis of 16S rRNA gene amplicon data has revealed that the originally reported
associations between the taxonomic composition of the gut microbiome and obesity were
inconsistent across studies and showed only weak statistical significance [4]. A meta-
analysis of microbiome data can also improve the prediction capabilities of taxonomic
profiles for several diseases. These studies highlight the importance of data integration in
contributing to our understanding of the role of the gut microbiome in health and disease.

A deluge of metagenomic data about the human microbiome has been generated, such
as those from the Human Microbiome Project and the American Gut Project (AGP), but ob-
taining biologically and clinically meaningful mechanistic insights from these data remains
a major challenge. Machine learning offers next-level analyses that allow the development
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of new perspectives and novel hypotheses about the human gut microbiome [14]. One
study established a machine-learning model using the random forest method to classify
constipation status, which yielded an area under the curve (AUC) value of 82% [15] and
provided ways to obtain information regarding the physiological and metabolic characteri-
zation of the human microbiome. Although the power of machine-learning algorithms is
attracting increasing attention, some limitations remain in previous studies. As most of the
previous studies have focused on a single cohort study or a relatively small dataset, the pre-
dictive models have been typically designed and validated on the same cohort. Moreover,
initial attempts were limited to a handful of predefined features, as opposed to extracting
high-dimensional and mineable features via high-throughput data-mining algorithms [13].
Hence, the cohort heterogeneity among different studies may limit the reliability and
generalizability of these predictive models. Because modern machine-learning technology
has yet to be well utilized, few data are available on human microbiome features, limiting
their use in identifying constipation status.

In this study, we collected a large panel of constipation data samples from the AGP and
the Sequence Read Archive (SRA) database. The data were subjected to a series of analyses,
including alpha diversity, beta diversity, and phylogenetic profile analyses, to obtain a
deeper and more comprehensive understanding of the association between constipation
and the gut microbiome. Machine learning based on feature selection and classification
evaluation was performed in training and validation cohorts, and independent cohorts
were used to evaluate the potential of the gut microbiome as a noninvasive biomarker for
constipation.

2. Materials and Methods
2.1. Data Inclusion Criteria and Data Collection

Most of our raw data came from the AGP [16] and were downloaded from its website.
Samples with fewer than 1250 sequences were excluded. The samples with a BMI be-
tween 18.5 and 25, no history of antibiotic medication usage, inflammatory bowel disease,
and diabetes within one year were defined as healthy samples, and the index named
“bowel_movement_quality” in the metadata table of the AGP was used to determine con-
stipation samples. A total of 777 constipation samples and 2138 healthy samples from
the AGP were included in this study. In addition to the AGP data, data from some other
studies that met the following inclusion criteria were included to expand the scale of the
data: (1) the study focused on constipation and the gut microbiome, and (2) the study
evaluated 16S rRNA sequence data, and the raw data could be downloaded from a public
database. Based on Pubmed and the search formula (((“constipation”[All Fields]) OR (“as-
triction”)[All Fields] AND (“microbiome”[MeSH Terms] OR “microbiome”[All Fields])),
the sequence data of four extra studies were included in this study with the SRA numbers
ERP012611, SRP109879, SRP116968, and SRP169528 [17–20].

To estimate the reliability and generalizability of the predictive models, we also
collected 150 fecal samples from our previous study cohort, including 73 healthy samples
and 77 constipation patients with less than three bowel movements per week [21]. All
samples included in this study had not been diagnosed with diabetes, inflammatory bowel
disease, or irritable bowel syndrome.

2.2. Bioinformatic Processing

The SRA format files were converted to fastq format files using the SRA Toolkit. The
paired-end read files were combined using FLASH v1.2.7 [22]. To normalize the sequence
data collected from different resources while avoiding excessive losses due to differences in
data quality, all sequences were filtered to ensure that 80% of the sequences met the quality
score (Q) threshold of >20. Because different regions of these sequences were amplified, the
operational taxonomic units (OTUs) were generated using the usearch_global method in
Vsearch v2.8.0 [23]. The AGP used the Greengenes 13_8 database as the reference genome.
However, the database was too old to produce a precise result. Therefore, we used the latest
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Silva 16s rRNA v138 database as the new reference genome, to produce a more precise
result. The alpha-diversity indices (Chao1, observed OTUs, Shannon, and PD whole tree)
and beta-diversity matrix were calculated using the QIIME 1.9.1 pipeline [24].

2.3. Gut Microbiome Diversity Analysis

To explore the differences in α-diversity between healthy and constipation samples,
the Wilcoxon rank-sum test was performed using the “wilcox.test()” function in the basic
package of R-3.4.4, with the p-value adjusted based on the FDR using the “p.adjust()”
function in the basic package of R. For β-diversity, permutational multivariate analysis
of variance (Permanova) and a PCA based on weighted Unifrac, unweighted Unifrac,
and Bray–Curtis distance matrices were performed using the “adonis()” and “prcomp()”
function of the vegan and psych package, respectively [25,26]. The result was plotted
using the ggbiplot package in R-3.4.4. The unweighted and weighted Unifrac distance
matrices were calculated using the QIIME pipeline, and the Bray–Curtis distance matrix
was calculated based on the genus-level OTU table using the “vegdist()” function of the
vegan package in R [25].

2.4. Taxonomic Analyses

To compare phyla between the two groups, the Firmicutes/Bacteroidetes ratio was
calculated and compared using the Wilcoxon rank-sum analysis. To identify the significant
differences in genera between the two groups, the balances algorithm provided by the
selbal package of R was used to analyze whether balances of particular gut microbial
genera could discern constipation phenotype [27].

2.5. Microbial Co-Abundance Network Construction

To have a better understanding of the association between the gut microbiome and
constipation, the Weighted Gene Correlation Network Analysis (WGCNA) package of
R [28] was used to construct a co-abundance network based on the normalized OTU
relative abundance data. In total, 192 (6.3%) samples were removed as outliers according
to the sample similarity clustering result. After calculating the beta value which satisfies
the scale-free topology criteria, a recommended soft threshold was selected (beta = 6)
and constructed an unsigned network. The Kendall coefficient was used to calculate the
correlation between eigenOTU and binary constipation phenotypes. The significance of
the correlation was obtained through the Student asymptotic p-value.

Visualization of the co-abundance network modules was performed using the Gephi
(0.9.2). Among the modules, a grey module was discarded, OTUs marked with ‘grey’
represented not belonging to any modules and were not associated with the phenotype.
In addition, inter-modular connectivity weights greater than the threshold (weight > 0.02)
were shown.

2.6. Data Normalization

Before constructing the machine-learning model, data normalization was performed
to ensure that all features belonged to the standard normally distributed data, because the
performance of the model would be affected by variations in the range of features. The
following formula was used to normalize the features:

v′ =
V − µ

s
(1)

V was the original value, µ was the mean value of relative abundance in the corre-
sponding genera, and s was the standard deviation of the corresponding genera’s abun-
dance.
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2.7. Feature Selection

Many features were included in this study, which would generally cause a negative
effect in the model. Although several previous studies have attempted to perform such
feature selection, they used only a few feature-selection methods. In our study, we used as
many feature-selection methods as possible to obtain a more comprehensive understanding
of feature selection in metagenomics studies. In total, we used nine feature-selection
methods, namely a t-test, the Wilcoxon rank-sum test, the Mann-Whitney test, a Chi-
squared test (chi2), the F-test, the mutual information test, a logistic regression, a Lasso
regression, and a random forest. For the statistical significance tests, the features with
p-values greater than 0.05 were excluded. For the chi2 analysis and F-test, only the top
10% of features were kept after the analysis. For logistic regression and random forest,
the features whose importance was more than the mean of importance were kept, and the
threshold for Lasso regression was 1 × 10−5.

2.8. Model Construction and Grid Search

Before the model construction, it was essential to ensure that the sample size was
adequate to produce a reliable result. Therefore, a learning curve was generated to explore
the relationship between the sample size and model performance.

To further our understanding, nine machine-learning models, namely k-nearest neigh-
bors (kNN), Support vector machine (SVM), Decision tree (DT), Random forest (RF),
Adaptive boosting (ADA), Naive Bayes (NB), Gradient boosted regression trees (GBRT),
Logistic regression (Log), and Least absolute shrinkage and selection operator (Lasso),
were constructed based on the feature selection mentioned before. For each model, fivefold
cross-validation was used for performance evaluation and the AUC value was used as the
performance indicator. The mean and standard error of AUC values were reported. To
estimate the performance of the feature-selection method, the machine-learning models
that lacked a feature-selection method were evaluated as the baseline models.

A grid search of the different parameters of each model was performed to determine
the best parameters of the selected model and thus improve its performance. For the
Lasso model, the inverse of regularization strength and the maximum number of iterations
were adjusted; for the SVM model, the gamma and C were adjusted; for the RF model,
the number of weak learners and the split criterion function were adjusted; for the GBRT
model, the number of weak learners and the learning rate were adjusted. Each model was
also subjected to fivefold verification to avoid random errors.

All machine-learning models were established on the Scikit-Learn pipeline [29] in
Python using the neighbors.KneighborsClassifier(), svm.SVC(), tree.DecisionTreeClassifier(),
ensemble.RandomForestClassifier(), ensemble.AdaBoostClassifier(), naive_bayes.GaussianNB(),
ensemble.GradientBoostingClassifier(), linear_model.LogisticRegression() for the corre-
sponding models.

To identify the potential microbial markers of constipation, we used the recursive
feature elimination (RFE) algorithm combined with fivefold cross-validation to determine
the relationship between the number of features and the performance of the model. This
algorithm was based on the feature-importance scores of the model. It pruned the least-
important feature and repeated the process of discarding features until the target number
of features was reached. The feature_selection.RFECV() from the Scikit-Learn pipeline was
used to implement the algorithm.

3. Results
3.1. Characteristics of Study Population

Data collection from different resources resulted in the inclusion of a total of 918 pa-
tients with constipation and 2138 healthy controls from five studies in this meta-analysis.
Most of the gut microbiome data were from the AGP, i.e., 777 and 2138 of the total patients
with constipation and total healthy controls were from the AGP, respectively. Further, data
of 141 patients with constipation were collected from the SRA database, with these deriving
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from studies with the SRA numbers ERP012611, SRP109879, SRP116968, and SRP169528
(Figure 1). In the model-establishment phase, the gut microbiome data samples from the
public database were used to train the machine-learning models. These samples were
divided into two parts: 70% of the samples were used as the training datasets to train the
models, and 30% of the samples were used to evaluate the performance of the models.
In the validation phase, data from 77 patients with constipation and 73 healthy controls
were collected by our laboratory to validate the classification efficacy of machine-learning
models. As the gut microbiome data included in this study were from different studies, we
were able to provide an explanation for the shift in the gut microbiome of patients with
constipation from that of the healthy controls.

Figure 1. Search and selection of studies.

3.2. Gut Microbial Diversity in Patients with Constipation

To explore the alteration of gut microbial diversity in patients with constipation,
four α-diversity indices, namely the Chao1 index, the phylogenetic diversity (PD) whole
tree, observed OTUs, and the Shannon index, were estimated using the Quantitative
Insights Into Microbial Ecology (QIIME) pipeline. The Wilcoxon rank-sum analysis was
performed to evaluate the differences in α-diversity between patients with constipation
and healthy controls. The fecal microbial diversity, as estimated by the Chao1 index, the
PD whole tree, and the Shannon index, was significantly higher in the patients than in
the controls (Figure 2). To estimate the β-diversity, permutational multivariate analysis
of variance (Permanova) and principal component analysis (PCA) based on unweighted
Unifrac, weighted Unifrac, and Bray-Curtis distance matrices were performed to explore
the microbiome space between the patients and controls. In addition, the results indicated
that constipation could cause significant differences in gut microbiome (Figure 3).

Figure 2. All gut microbiome diversity indices, except the observed operational taxonomic units,
increased in patients with constipation (A–D). Statistical significance between groups is indicated by
NS, *, **, ***, corresponding to p > 0.05, <0.05, <0.01 and <0.001 respectively.
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Figure 3. Principal component analysis based on Bray-Curtis, unweighted Unifrac, and weighted
Unifrac distance matrices showed significant difference in the β-diversity of the gut microbiome
between patients with constipation and healthy controls.

3.3. Phylogenetic Profiles of the Gut Microbiome of Patients with Constipation

The bacterial phyla Bacteroidetes, Firmicutes and Proteobacteria, together accounting
for up to 90% of sequences on average, were the three dominant populations in the two
groups. The average compositions of the bacterial community at the phylum and genus
levels are shown in Figure 4A,B, respectively. The ratios of Firmicutes to Bacteroidetes
in the two groups were calculated and compared using the Wilcoxon rank-sum analysis.
As shown in Figure 4C, the ratios did not differ between two groups. To identify key
OTUs, the relative abundances were compared using the balances algorithm. The cross-
validation in balances selection demonstrated that a total of 19 genera were identified as
key lineages associated with constipation, including Lachnospiraceae, Agathobacter, Dorea,
and Ruminococcaceae (Figure 4D).

3.4. Microbial Co-Abundance Network Modules and Constipation Associations

In order to future detect the interaction between different gut microbial OTUs and
their potential association with constipation, WGCNA was applied to construct OTU co-
abundance network and identify key microbial network modules which were correlated
with constipation. Among all genera, 210 OTUs were identified as critical nodes in the
co-abundance network.

After module clustering, four network modules that were significantly associated
with constipation had been identified (p < 0.05) and the number of genera included in each
module ranges from 34 to 71 (Figure 5A). Although these modules contained different
taxa, phylogenetically relevant OTUs tended to cluster in the same module. Actinobacteria,
Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in the network
(Figure 5B–E).

The results showed that the yellow module demonstrated a significant negative corre-
lation with constipation (Kendell correlation coefficient = −0.25, p < 0.001) (Figure 5C); in
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this module, almost all of its nodes were composed of Proteobacteria, Rhodospirillaceae,
and Burkholderiaceae family were the dominant taxa. Particularly, Rhodocyclaceae Candida-
tus Accumulibacter potentially was the regulator within this module (TaxaSignificance = 0.16,
Module Membership = 0.93) and played a key role in constipation.

3.5. Detection of Constipation Based on the Gut Microbiome

To explore whether the scale of datasets would affect the performance of classifier
models, all of the machine-learning models were trained on 50 subsets by stratified random
sampling, with the size of each subset increasing at the same ratio. The performance of each
model was evaluated by the receiver operating characteristic curve, which was relatively
low and unstable when the sample size was less than 1000 (Figure 6). The performance
and sample-size curve tended to plateau with an increase in sample size, which suggested
that the data scale used in this study was sufficient to produce a reliable result.

Figure 4. Differences in the gut microbiome composition at the phylum level (A) and genus level (B)
between patients with constipation and healthy controls. The Firmicutes:Bacteroidetes ratio of the
gut microbiome did not differ significantly between the two groups (C). The balance selected genera
that significantly differed between the two groups (D).
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Figure 5. The number of genera and Kendall correlation of clustered modules (A). The network
modules significantly related to constipation and highly interaction genera were indicated. The
cluster of Blue (B), Yellow (C), Brown (D) and Turquoise (E).

Figure 6. Association between the sample sizes and the area-under-the-curve values of the classifier
models (A). The receiver operating characteristic curve of all of the models constructed based on the
original datasets (B).

To illustrate the discriminating value of the fecal microbiome for constipation, a series
of machine-learning algorithms, including the AdA, DT, GBRT, kNN, Lasso, Log, NB,
RF, and SVM, were constructed from the original OTU table, and their performance was
estimated based on their AUC value and predictive accuracy (Figure 7A,B). In the training
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cohort, the models except Log, kNN, DT, and NB showed a favorable performance with an
average AUC value of more than 80%. In particular, the AUC value of the GBRT model
was 89.0%, which was the highest among all of the models based on the original datasets
(Figure 7A). In addition, it showed the same trend on the test set, in which the GBRT model
had the highest predictive performance (Figure 7B).

Figure 7. Cross-validated area-under-the-curve values (A) and predictive performance of 90 models
on test (B) datasets. Abbreviations: kNN, k-Nearest Neighbors; SVM, Support vector machine; DT,
Decision tree; RF, Random forest; AdA, AdaBoost; NB, Naïve Bayes; GBRT, Gradient tree boosting
tree; Log, Logistic.

To improve the predictive performance and provide cost-effective predictions, nine
feature selection methods, namely the t-test, Wilcoxon test, Mann-Whitney test, chi2 test,
F-test, mutual information test, Log test, Lasso test, and RF were performed to select
important OTUs from high-dimensional feature space to classify. The subsets of features
obtained by different methods exhibit certain similar distribution patterns, which contain
overlapping common colony structures (Supplemental Figure S1, Table S1). Subsequently,
different feature selection methods and machine learning algorithms combinations were
examined for their AUC value and predictive accuracy (Figure 7A,B). Most feature selection
methods can be implemented to varying degrees while reducing feature dimensions with-
out affecting performance, especially for tree-based models. Among all of the classifiers,
the RF-GBRT model had the highest AUC value (90.0%; Figure 7A).

3.6. Validation and Tuning the Parameters of Classifier Models for Constipation

In the validation phase, data from 73 healthy controls and 77 patients with constipation
collected by our laboratory were used to estimate the reliability and generalizability of the
predictive models and the F-Lasso, T-SVM, RF-RF, RF-GBRT, Chi2-GBRT, and Log-GBRT
models were selected. Grid search was performed to determine the best parameters of each
model and thus improve their performance.

The verified AUC of most models except RF-RF improved after the grid search
(Table 1), which proved that the fine-tuning of a model’s parameters affects its perfor-
mance. After the optimization of GBRT-based models, their validation performances were
all significantly improved (from 49.9%, 62.7%, and 65.1% to 55.5%, 70.7%, and 70.8%, respec-
tively. p < 0.05). In sum, after the feature selection and model hyperparameter adjustment,
the subset of features obtained using chi2 combined with the GBRT model (chi2-GBRT)
showed the best performance in this study, which indicated their greater reliability and
generalizability, in addition to their high classification efficacy for constipation.
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Table 1. The performance of models before and after adjusting the parameters.

before after

Train AUC Test AUC Validation
AUC Train AUC Test AUC Validation

AUC

F-Lasso 86.8% 84.5% 49.9% 86.9% 84.8% 50.6%
T-SVM 88.1% 83.5% 52.1% 88.4% 84.5% 54.3%
RF-RF 89.4% 89.7% 52.6% 90.3% 90.6% 49.4%

RF-GBRT 89.5% 89.9% 49.9% 90.8% 91.1% 55.5%
Chi2-
GBRT 86.5% 86.8% 62.7% 87.3% 87.5% 70.7%

Log-GBRT 85.2% 85.4% 65.1% 85.9% 86.2% 70.8%

3.7. Identification of Microbial Markers for Constipation

To detect unique microbial markers for constipation, we conducted a five-fold cross-
validation on chi2-GBRT by plotting the relationship between the number of features and
the performance of the model. The results from the RFE algorithm indicated that the
performance of the model exceeded 80% when the number of features was 15. Thus, the 15
genera determined based on the feature importance of the chi2-GBRT model, including
Serratia, Dorea, Agathobacter, Aeromonas, and Hungatella, were selected as the optimal marker
set (Figure 8A) and are listed in Figure 8B. These genera may provide more information
to enable the detection of constipation based on the gut microbiome, and could thus be
considered as the potential biomarkers of constipation (Figure 8B).

Figure 8. Relationship between the numbers of features and cross-validation scores (A). The top 15
genera were selected as the potential biomarkers of constipation (B).

4. Discussion

In this study, by integrating a large panel of gut microbiome features and machine-
learning techniques, we established an accurate and reproducible classifier model to
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detect patients with constipation. The robustness and generalizability of microbiome–
disease associations are affected by a wide range of confounders, including population and
investigation factors [30]. These study effects may confound the discovery of microbiome
signatures that robustly indicate disease status, especially when the data are collected from
only a single population or investigation. The integration of metagenomic data in this
work enabled comparison of the differences in gut microbiome composition in constipation.
Crucially, this efficient classifier was developed using cross-validation and then tested on a
new validation cohort, which bolstered its reliability and generalizability.

Like data from any high-throughput data-mining field, metagenomic data are high-
dimensional, sparse, skewed with a nonnormal or unknown distributions and have interde-
pendencies. These key characteristics present a challenge for computational and statistical
analyses. Thus, there is a need for better algorithmic tools for efficient computation of
biological phenotypes. We proposed a series of methods for selecting important OTUs
from high-dimensional microbiome data. These feature-selection methods not only im-
proved the predictive performance of the machine-learning models, but also provided
faster, cost-effective predictions [31]. In our study, we systematically evaluated multiple
feature-selection classification methods, and based on a combination of optimized feature
selection method and machine learning algorithm, our machine-learning classifier with the
highest predictive performance was formed.

Logistic regression has been widely used for biomarker selection in high-dimensional
data, as it requires fewer restrictive assumptions [32]. In this case, the features need not be
normally distributed and linearly related to the class or equal in terms of the variance and
covariance across groups. Therefore, logistic regression may be preferable for use when the
data distribution is nonnormal, or the group sizes are unequal. Chi-square is a simple and
general algorithm that can automatically select a proper chi2 value, determine the intervals
of a numeric attribute, and select features according to the characteristics of the data [33]. It
guarantees that the fidelity of the training data remains after chi2 is applied. The empirical
results from both the test and validation datasets showed that logistic regression and chi2
are useful and reliable tools for data discretization and feature selection. Their application
affords dimension reduction (feature screening) and prevents over-fitting in the process of
training the model. GBRT has become a sought-after model for data scientists in recent
years, due to its efficiency and effectiveness in solving practical prediction and classification
problems [34]. The combination of these valuable properties meant that logistic or chi2
regression and the GBRT classifier performed excellently in our microbiome analysis.

An important consideration is which taxa contribute to the constipation-prediction
model. In this study, we identified a set of top-ranking microbial markers with high feature-
importance scores, such as the genera Serratia, Dorea, Aeromonas, and Hungatella. A study
reported that the fecal abundance of Serratia marcescens, a bacterial species that works with
other microbial species to form robust biofilms capable of exacerbating intestinal inflamma-
tion, was much higher in patients with Crohn’s disease than in healthy controls [35]. The
alteration of Aeromonas abundance may be important in the pathophysiology of inflamma-
tory bowel disease and its treatment [36]. After fecal microbiota transplantation therapy
for chronic intractable constipation, analysis of the recipient’s fecal microbiome revealed a
significant abundance of the genera Hungatella [37]. A probiotic product could alleviate
constipation in mice, mainly by increasing the relative abundance of Ruminococcaceae [38].
Another study found that polysaccharides, oligosaccharides, and a traditional Chinese
medicinal formula (Zengye decoction) could alleviate constipation in mice, mainly by de-
creasing the abundance of Dorea at the genus level, which is the predominant gas-producing
bacterial genus in the human gut [39]. Moreover, Dorea also decreased in pregnant women
with digestive diseases and increased in diarrhea-predominant IBS patients [40,41]. All
these associations will be subject to further experiment in the subsequent studies. Although
the biological behaviors of these microbiome features remain unclear, we posit that these
features may still capture the fine characteristics of the gut microbiome and if aimed at



Microorganisms 2021, 9, 2149 13 of 15

establishing and maintaining a healthy balance of microbial community could be a new
prevention or therapeutic approach for constipation.

In conclusion, our results demonstrate that the OTU-based taxonomy of gut micro-
biome combined with machine-learning techniques can identify accurate and generalizable
indicators of constipation and that prediction of constipation is most accurate using the
chi2-GBRT model. Building on these results, our future work will involve the develop-
ment of noninvasive microbiome-based tests to determine signs of constipation, and the
design and evaluation of microbial interventions to alleviate constipation. In addition, new
methods of analysis using amplicons will also be considered in subsequent studies, such as
Amplicon Sequence Variants (ASV), which may help improve the accuracy of sequence
identity and contain more information.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9102149/s1, Table S1: Biomarkers of gut microbiota associated with constipa-
tion obtained by different feature selection methods. Figure S1: Variation in biomarkers obtained by
different feature selection methods.

Author Contributions: All authors contributed to the conception and planning of the study. Con-
ceptualization, Y.C., T.W., W.L., J.Z. (Jinlin Zhu) and H.W.; data curation, T.W., W.L., W.Y. and M.P.;
formal analysis, Y.C., T.W., J.Z. (Jinlin Zhu) and H.W.; methodology, Y.C. and T.W.; supervision,
Y.-K.L., J.Z. (Jianxin Zhao), H.Z., W.C., J.Z. (Jinlin Zhu) and H.W.; writing—original draft, Y.C. and
T.W.; writing—review and editing, W.C., J.Z. (Jinlin Zhu) and H.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2019YFF0217601; the National Natural Science Foundation of China grant
number No. 32021005, 31820103010, and 31400038; the national first-class discipline program of
Food Science and Technology, grant number JUFSTR20180102, the Fundamental Research Funds for
the Central Universities, grant number JUSRP52003B, 111project, grant number BP0719028, and the
collaborative innovation center of food safety and quality control in Jiangsu Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in GitHub at
https://github.com/hcwang-jn/gut-constipation (accessed on 18 September on 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Suares, N.C.; Ford, A.C. Prevalence of, and risk factors for, chronic idiopathic constipation in the community: Systematic review

and meta-analysis. Am. J. Gastroenterol. 2011, 106, 1582–1591. [CrossRef]
2. Rao, S.S.C.; Rattanakovit, K.; Patcharatrakul, T. Diagnosis and management of chronic constipation in adults. Nat. Rev.

Gastroenterol. Hepatol. 2016, 13, 295–305. [CrossRef]
3. Camilleri, M.; Ford, A.C.; Mawe, G.M.; Dinning, P.G.; Rao, S.S.; Chey, W.D.; Simrén, M.; Lembo, A.; Young-Fadok, T.M.; Chang, L.

Chronic constipation. Nat. Rev. Dis. Primers 2017, 3, 1–19. [CrossRef] [PubMed]
4. Armour, C.R.; Nayfach, S.; Pollard, K.S.; Sharpton, T.J. A Metagenomic Meta-analysis Reveals Functional Signatures of Health

and Disease in the Human Gut Microbiome. mSystems 2019, 4, e00332. [CrossRef] [PubMed]
5. Liu, Y.; Tran, D.Q.; Rhoads, J.M. Probiotics in Disease Prevention and Treatment. J. Clin. Pharm. 2018, 58 (Suppl. 10), S164–S179.

[CrossRef] [PubMed]
6. Bharucha, A.E.; Pemberton, J.H.; Locke, G.R. American Gastroenterological Association technical review on constipation.

Gastroenterology 2013, 144, 218–238. [CrossRef]
7. Noergaard, M.; Traerup Andersen, J.; Jimenez-Solem, E.; Bring Christensen, M. Long term treatment with stimulant laxatives–

clinical evidence for effectiveness and safety? Scand. J. Gastroenterol. 2019, 54, 27–34. [CrossRef]
8. Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut microbiota and chronic constipation: A review and update. Front. Med. 2019,

6, 19. [CrossRef]
9. Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.D.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structural changes in the gut microbiome of

constipated patients. Physiol. Genomics 2014, 46, 679–686. [CrossRef]

https://www.mdpi.com/article/10.3390/microorganisms9102149/s1
https://www.mdpi.com/article/10.3390/microorganisms9102149/s1
https://github.com/hcwang-jn/gut-constipation
https://github.com/hcwang-jn/gut-constipation
http://doi.org/10.1038/ajg.2011.164
http://doi.org/10.1038/nrgastro.2016.53
http://doi.org/10.1038/nrdp.2017.95
http://www.ncbi.nlm.nih.gov/pubmed/29239347
http://doi.org/10.1128/mSystems.00332-18
http://www.ncbi.nlm.nih.gov/pubmed/31098399
http://doi.org/10.1002/jcph.1121
http://www.ncbi.nlm.nih.gov/pubmed/30248200
http://doi.org/10.1053/j.gastro.2012.10.028
http://doi.org/10.1080/00365521.2018.1563806
http://doi.org/10.3389/fmed.2019.00019
http://doi.org/10.1152/physiolgenomics.00082.2014


Microorganisms 2021, 9, 2149 14 of 15

10. Parthasarathy, G.; Chen, J.; Chen, X.; Chia, N.; Oconnor, H.M.; Wolf, P.G.; Gaskins, H.R.; Bharucha, A.E. Relationship Between
Microbiota of the Colonic Mucosa vs Feces and Symptoms, Colonic Transit, and Methane Production in Female Patients With
Chronic Constipation. Gastroenterology 2016, 150, 367–379. [CrossRef]

11. Collins, S.M. A role for the gut microbiota in IBS. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 497–505. [CrossRef]
12. Blatchford, P.; Stoklosinski, H.; Eady, S.L.; Wallace, A.J.; Butts, C.A.; Gearry, R.B.; Gibson, G.R.; Ansell, J. Consumption of kiwifruit

capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals: A randomised controlled
human trial. J. Nutr. Sci. 2017, 6, e52. [CrossRef]

13. Pasolli, E.; Truong, D.T.; Malik, F.; Waldron, L.; Segata, N. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools
and Biological Insights. PLoS Comput. Biol. 2016, 12, e1004977. [CrossRef]

14. Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological
Networks. Cell 2018, 173, 1581–1592. [CrossRef] [PubMed]

15. De Meij, T.G.J.; De Groot, E.F.; Eck, A.; Budding, A.E.; Kneepkens, C.M.F.; Benninga, M.A.; Van Bodegraven, A.A.; Savelkoul,
P.H.M. Characterization of Microbiota in Children with Chronic Functional Constipation. PLoS ONE 2016, 11, e0164731. [CrossRef]
[PubMed]

16. McDonald, D.; Hyde, E.; Debelius, J.W.; Morton, J.T.; Gonzalez, A.; Ackermann, G.; Aksenov, A.A.; Behsaz, B.; Brennan, C.; Chen,
Y.; et al. American Gut: An Open Platform for Citizen Science Microbiome Research. mSystems 2018, 3, e00031-18. [CrossRef]
[PubMed]

17. Zeber-Lubecka, N.; Kulecka, M.; Ambrozkiewicz, F.; Paziewska, A.; Goryca, K.; Karczmarski, J.; Rubel, T.; Wojtowicz, W.; Mlynarz,
P.; Marczak, L. Limited prolonged effects of rifaximin treatment on irritable bowel syndrome-related differences in the fecal
microbiome and metabolome. Gut Microbes 2016, 7, 397–413. [CrossRef]

18. Ou, Y.; Chen, S.; Ren, F.; Zhang, M.; Ge, S.; Guo, H.; Zhang, H.; Zhao, L. Lactobacillus casei strain Shirota alleviates constipation
in adults by increasing the pipecolinic acid level in the gut. Front. Microbiol. 2019, 10, 324. [CrossRef]

19. Chen, S.; Ou, Y.; Zhao, L.; Li, Y.; Qiao, Z.; Hao, Y.; Ren, F. Differential effects of Lactobacillus casei strain Shirota on patients with
constipation regarding stool consistency in China. J. Neurogastroenterol. Motil. 2019, 25, 148. [CrossRef]

20. Huang, L.; Zhu, Q.; Qu, X.; Qin, H. Microbial treatment in chronic constipation. Sci. China Life Sci. 2018, 61, 744–752. [CrossRef]
21. Lu, J.; Zhang, L.; Zhai, Q.; Zhao, J.; Zhang, H.; Lee, Y.-K.; Lu, W.; Li, M.; Chen, W. Chinese gut microbiota and its associations

with staple food type, ethnicity, and urbanization. Npj Biofilms Microbiomes 2021, 7, 71. [CrossRef]
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