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Abstract: Several studies have described the long-term kinetics of anti-SARS-CoV-2 antibodies but
long-term follow-up data, i.e., >6 months, are still sparse. Additionally, the literature is inconsistent
regarding the waning effect of the serological response. The aim of this study was to explore the
temporal dynamic changes of the immune response after SARS-CoV-2 infection in hospitalized and
non-hospitalized symptomatic patients over a period of 10 months. Six different analytical kits
for SARS-CoV-2 antibody detection were used. Positivity rates, inter-assay agreement and kinetic
models were determined. A high inter-individual and an inter-methodology variability was observed.
Assays targeting total antibodies presented higher positivity rates and reached the highest positivity
rates sooner compared with assays directed against IgG. The inter-assay agreement was also higher
between these assays. The stratification by disease severity showed a much-elevated serological
response in hospitalized versus non-hospitalized patients in all assays. In this 10-month follow-up
study, serological assays showed a clinically significant difference to detect past SARS-CoV-2 infection
with total antibody assays presenting the highest positivity rates. The waning effect reported in
several studies should be interpreted with caution because it could depend on the assay considered.

Keywords: COVID-19; SARS-CoV-2; antibody; kinetics; long-term; waning effect

1. Introduction

Currently, the revelation of SARS-CoV-2 RNA through a real-time reverse transcription
polymerase chain reaction (RT-PCR) from nasopharyngeal swab samples is considered
to be the gold standard method for the diagnosis of acute SARS-CoV-2 infection. Less
invasive salivary samples have also been reported as an alternative to nasopharyngeal
swab samples [1]. The targeted genes for RT-PCR detection may include a combination of
N, E, RdRp, orf1a and orf1b genes.

The detection of anti-SARS-CoV-2 antibodies serves as an adjunct to molecular testing
for the diagnosis of COVID-19 especially in patients who present late with a low viral
load. Serological testing has been successfully used to evaluate seroprevalence, to identify
convalescent plasma donors, to monitor herd immunity and for risk predictions [2–4]
Antibody assessment and monitoring are also likely to play a key role in the context of the
global vaccination strategy [5].

Compared with commercial immunoassays, only neutralization activity assays reli-
ably measure the actual protective immunity of antibodies [6]. However, neutralization
activity assays are only reserved for specialized laboratories and require a high workload,
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skillful operators, expensive installations, crucial biosafety measures and have, to date, a
low throughput. Therefore, the use of fully automated immunoassays that have a well-
demonstrated correlation with neutralization activity should be considered in the routine
clinical setting [5].

Current serological assays use different SARS-CoV-2 antigen targets (i.e., nucleocapsid
protein (NCP), spike proteins (S) and the receptor-binding domain (RBD)) and formats (i.e.,
immunoglobulin G (IgG), IgA, IgM or total antibodies). Most assays possess a unique target
but multiplex assays have also been developed and validated [7,8]. The NCP participates
in RNA packages and the release of virus particles while the transmembrane spike glyco-
protein comprises two functional subunits responsible for binding to the host cell receptor
(N-terminal S1 subunit) and for the fusion of the viral and cellular membranes (C-terminal
S2 subunit) [9]. The RBD is located at the C-terminal region of the S1 subunit [10]. The
RBD interacts with human cells that express angiotensin-converting enzyme 2 (ACE2) and
induces the entry of the virus.

The antibody response to SARS-CoV-2 infection has been shown to be directed against
multiple antigens of the virus including different epitopes of the spike protein. Antibodies
targeting the RBD in the C-terminal region of the S1 subunit have been considered to be
neutralizing [11]. Other antibodies target the NCP or non-structural proteins and their
detection can be used as markers of recent infection [7,8].

Reports evaluating antibody persistence inconsistently mention a waning effect of the
serological response [12–14]. Based on these observations, a few authors have claimed that
cross-sectional seroprevalence studies to evaluate population immunity may underestimate
rates of prior infections [12]. A recent report also suggests that changing the vaccine
policy to give to previously infected individuals only one dose of the vaccine would not
negatively impact their antibody response and may consequently free up many vaccine
doses [15]. Therefore, the divergent opinions regarding antibody persistence warrant
further investigations to ensure an accurate and reliable evaluation of the serological status
of each individual because, depending on the vaccinal strategy that will be applied in
the coming weeks, this could represent the saving of up to 100 million vaccine doses
worldwide [16].

The aim of this study was therefore to explore the temporal dynamic changes of
immune response after SARS-CoV-2 infection in hospitalized and non-hospitalized symp-
tomatic patients for a period of up to 10 months using different analytical kits for SARS-
CoV-2 antibody detection. This will permit the investigation of, and provide more insight
into, the understanding of this possible waning effect.

2. Materials and Methods

The study protocol was in accordance with the Declaration of Helsinki and was
approved by the Medical Ethical Committee of Saint-Luc (Bouge, Belgium; approval
number B0392020000005).

2.1. Patients and Samples Collection

This study was conducted at the clinical biology laboratory of the Clinique Saint-
Luc (Bouge, Namur, Belgium). A total of 201 samples from 84 patients with a confirmed
SARS-CoV-2 RT-PCR were retrospectively included from 26 March 2020 to 6 January 2021.
Information on the days since the onset of symptoms was collected from medical records.
When data about symptoms were not available (n = 15), the day of diagnosis (i.e., RT-PCR
result) was used instead. Different time intervals were also created to calculate the rate of
positive samples (i.e., 0–15, 15–40, 41–100, 101–150, 151–200, 201–235 and 236–300 days).
Blood samples were collected into serum-gel tubes (BD SST II Advance®, Becton Dick-
inson, NJ, USA) according to the standardized operating procedure and manufacturer
recommendations. Samples were centrifuged for 10 min at 1740× g on a Sigma 3-16KL
centrifuge. Sera were stored in the laboratory serum biobank at −20 ◦C from the collection
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date. Frozen samples were thawed for 1 h at room temperature on the day of the analysis.
Re-thawed samples were vortexed before the analysis.

2.2. Analytical Procedures

Six commercial immunoassays were used to evaluate the long-term kinetics of anti-
bodies. The characteristics of these assays are presented in Table 1. Each patient’s sample
was analyzed on the six different assays. The results rendered below the limit of quantifi-
cation (LOQ) of the assay were rounded to the LOQ of each assay to allow quantitative
calculations and data processing.

Table 1. Characteristics of the six assays used in this study.
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The RT-PCR for SARS-CoV-2 determination in respiratory samples (nasopharyngeal
swab samples) was performed on the LightCycler® 480 Instrument II (Roche Diagnostics®)
using the LightMix® Modular SARS-CoV E-gene set.

2.3. Statistical Analyses

Descriptive statistics were used to analyze the data. A Mann–Whitney test was used
to compare the different groups. The positivity rates were calculated as the proportion of
SARS-CoV-2 positive samples by serological tests initially categorized as positive by the
RT-PCR. A non-linear regression model with log-transformed data was used to compute
the antibody kinetics since symptom onset (or diagnosis) using the following equation:[

AUC ∗ disappearance rate ∗ appearance rate
appearance rate − disappearance rate

]
∗ [Exp (− disappearance rate ∗ days since symptom onset) − Exp (− appearance rate

∗ days since symptom onset)]

A survival analysis was also performed to estimate the cumulative probability of
positive samples since symptom onset (or diagnosis) using a log-rank Mantel–Cox test
comparison. Mantel-Haenszel hazard ratios were computed for between test comparison.
Inter-rate agreements, i.e., agreement and Cohen’s kappa, and correlation studies were also
determined. A p value < 0.05 was used as a significance level. Data analysis was performed
using GraphPad Prism® (version 9.0.1, California, CA, USA), MedCalc® (version 14.8.1,
Ostend, Belgium) and JMP® software (version 15.2.1, Cary, NC, USA).

3. Results
3.1. Population Characteristics

Among the 84 individuals, 44 were females (median age = 46 years; min–max:
24–95 years) and 40 were males (median age = 61 years; min–max: 24–88 years). Mul-
tiple sequential sera were available for 55 patients and 17 required hospitalization (i.e.,
categorized as severe patients). Hospitalized patients were elder (median age = 74 years)
compared with non-hospitalized patients (median age = 46 years; p value = 0.0007). The
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median time between the symptom onset and the RT-PCR was three days (interquartile
range (IQR): 1–8 days).

3.2. Kinetics of Positivity Rates

In samples collected early since symptom onset (i.e., <15 days), positivity rates were
low. The Roche NCP total antibody assay had the highest positivity rate in this time period
(i.e., 69.2%) while the DiaSorin S1 + S2 IgG and the Phadia S1 IgG assays showed the
lowest positivity rates (i.e., 38.5%). At the second time point, the highest positivity rates
were observed for the Roche NCP and the Ortho S1 total assays (i.e., 96.3% and 100%,
respectively). A gradual increase in positivity rates toward a plateau was observed for both
the Roche RBD and the Ortho S1 total assays with the latter reaching the plateau earlier
than the Roche RBD total antibody assay. The highest positivity rates for the other assays
were observed at the fourth time point (i.e., for the Phadia S1 IgG and the Ortho S1 IgG
assays) and at the fifth time point (i.e., for the Roche NCP total antibody and the DiaSorin
S1 + S2 IgG assays) (Table 2). Overall, the total assays presented higher positivity rates and
reached their highest positivity rates sooner compared with IgG assays.

Table 2. Positivity rates according to different time points using six different assays. * represents maximal positivity rates
observed. DSO = days since symptom onset.
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3.3. Kinetic Models of Serological Response

Figure 1 represents the level of antibody response by days after symptom onset
according to severity. Depending on the assay and/or the population considered, a rapid
increase in antibody titers was observed followed by a plateau phase or a decrease phase.
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After 300 days, hospitalized patients had overall a higher maximal response peak and a
more persistent antibody response (e.g., the Roche NCP total antibody and the DiaSorin S1
+ S2 IgG assays).
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Figure 1. Level of antibody response by days after symptom onset according to severity. Depending on the assay and/or
the population considered, a rapid increase in antibody titers was observed followed by a plateau phase or a decrease phase.
Blue curves (and 95% CI) and points represent non-hospitalized patients. Red curves (and 95% CI) and points represent
hospitalized patients. The dotted grey line corresponds to the manufacturer’s cut-off for positivity.

The Cmax was consistently higher in hospitalized than in non-hospitalized patients
(Table 3).
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Table 3. Tmax, Cmax and time to plateau of the six assays subdivided into hospitalized and non-
hospitalized patients. * corresponds to the last time point assessed.
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A comparison of the Mantel–Haenszel hazard ratios between the different tests is
reported in Table 4. Between the different assays, the Roche RBD total antibody and the Or-
tho S1 total antibody showed the highest agreement, Cohen’s kappa index and correlation
coefficient (Table 4). An agreement of at least 95% was only reached for total assays.

Table 4. Agreement (Agr.), Cohen’s kappa index (k), correlation (r) and Mantel–Haenszel hazard ratios (M–H HR) between
the different assays. Results in blue are statistically significant.
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In this study, 201 sera samples from 84 RT-PCR confirmed COVID-19 patients with
a 10-month follow-up period since symptom onset were included. Each patient’s sample
was analyzed on six commercial assays. As previously reported, the serological kinetics
showed a high degree of heterogenicity that was patient-dependent but we also reported
that these differences were also assay-dependent (Figure 1) [17,18]. The performance of
these assays up to 15 days since symptom onset was particularly low because of the natural
dynamics of the production of immunoglobulins [2,7,8]. Assays targeting total antibodies
presented higher positivity rates and reached their highest positivity rates sooner than
IgG assays. The inter-assay agreement was also higher between these total assays. The
stratification by disease severity, expressed in this study by the patient’s hospitalization
status, showed a higher serological response in severe cases, which is consistent with
previous observations [7,8,17,19–21]. The Phadia S1 IgG assay had a low performance to
detect past SARS-CoV-2 infection compared with other assays. The manufacturer could
probably consider redefining the cut-off, as has already been done for other assays, in
order to improve the sensitivity [22–25]. However, in this study, only the cut-offs of the
manufacturers were used so that there was no advantage for one method over another.
Interestingly, the evaluation of the kinetic models demonstrated that assays targeting total
antibodies consistently showed an increase of the antibody titer, at least in hospitalized
patients (Figure 1, left panel). The same tendency was also observed in non-hospitalized
patients except for the test that targeted antibodies directed against the NCP. On the other
hand, assays targeting antibodies directed against the S1 subunit showed a slight decrease
in antibody titers except for the DiaSorin S1 + S2 IgG in hospitalized patients (Figure 1,
right panel). The drop in cumulative probability of positive samples was consistently
highest for the Phadia S1 IgG compared with all other tests (Table 4). The Ortho S1 total
antibody assay performed better than the Roche NCP total antibody assay but was not
statistically different from the Roche RBD total antibody assay. The Roche RBD and NCP
total antibody assays also performed better than all IgG assays. No statistically significant
differences were observed between the DiaSorin S1 + S2 IgG and the Ortho S1 IgG (Table 4).
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Multiple studies have evaluated the long-term kinetics of anti-SARS CoV-2 antibodies
using various assays. A sustained antibody response against the NCP antigen using the
Roche NCP total antibody assay was found in several studies, i.e., between three and seven
and a half months [20,26,27]. A maintained antibody response against the RBD antigen, as
assessed by the Wantai and the Siemens total antibody assays, was also observed up to
four months [20,27]. A decrease in anti-RDB IgG and anti-spike IgG levels was similarly
observed over a period of up to five months in recent reports [28–30] and a significant
decrease in sensitivity was also found in studies with up to five months of follow-up with
the Abbott assay, which was directed against NCP IgG [20,27,31]. The YHLO assay, which
detects both anti-NCP and anti-S IgG, showed high sensitivities from five weeks to three
months after symptom onset [32]. Wajnberg et al. found stable antibody titers over a period
of at least three months and only modest declines at the five-month time point [33].

In our study, the sustained antibody response as observed with total antibody assays
(NCP and RBD) compared with IgG assays may be due to the additional response of non-
IgG antibody isotypes. However, the reasons for the differences in assay performance over
time for assays targeting the same antigen remain unclear [27]. The nature and structure of
the target itself (for example, purified vs. recombinant, full-length vs. truncated, eukaryotic
vs. prokaryotic expression system) as well as the protocol definition for determining the
cut-off may, at least in part, affect the variability of inter-assays [7].

Whether the antibodies measured with commercial assays have a neutralizing capacity
is paramount for indicating the potential level of protective immunity against SARS-CoV-
2 infection. Recently, Padoan et al. found that the Ortho S1 IgG (R2adj = 0.544) and
DiaSorin S1 + S2 IgG (R2adj = 0.402) assays were more correlated to neutralization activity
compared with the Ortho S1 total antibody (R2adj = 0.117) and Roche NCP total antibody
(R2adj = 0.046) assays [6]. The fact that anti-NCP assays showed a low correlation with
the neutralizing capacity was expected as neutralizing antibodies are directed against
the spike protein that is responsible for enabling the entry of the virus into the cells that
express ACE-2 [22]. A strong correlation between the levels of anti-RBD or anti-spike
antibodies and the neutralizing capacity has been found in several reports [11,19,28,33,34].
The neutralizing capacity was found to be maintained from one to five months [19,30,35].
However, although modest declines have been observed at three to five months [29,33],
a few studies have pointed out a significant decrease of two to four-fold in neutralizing
activity up to three months [21,27,36–38].

Data with a longer follow-up, i.e., >6 months, are however still sparse in the literature.
Recently, Dan et al. found a slightly decreasing but stable antibody response (anti-S IgG,
anti-RBD and anti-NCP using ELISAs) in a population of 188 COVID-19 patients, represent-
ing a total of 254 samples, with a maximal follow-up of eight months post-symptom onset.
Forty-three samples were collected at > 6 months after the initial infection [18]. Positivity
rates at six to eight months were 90% (36/40 samples) for anti-S IgG, 88% (35/40 samples)
for anti-RBD IgG and 80% (32/40 samples) for anti-NCP IgG. The positivity rate of patients
with positive neutralizing antibodies was 90% (36/40) [18]. In a population of 293 patients,
Lau et al. also observed a trend towards lower antibody titers and neutralizing activity
after seven months since illness onset but with a positivity rate of almost 100% after 30
days using an anti-RBD IgG ELISA assay [17]. A correlation of 0.53 was found between the
ELISA assay and the neutralizing activity. They also found a stronger antibody response in
severe patients compared with mildly-infected patients [23]. Ripperger et al. found that
anti-RBD, anti-S2 and neutralizing antibodies remained detectable through five to seven
months after illness [39].

In a population of 25 COVID-19 patients with a maximal follow-up of eight months,
Hartley et al. observed that anti-NCP and anti-RBD IgG were found in each of the 24/25 and
25/25 patients while neutralizing antibodies was detected in 22/25 patients. They noted a
decline in neutralization titers and antibody levels with time [14]. Nevertheless, they noted
the persistence of SARS-CoV-2-specific B-memory cells, which could represent a more
robust surrogate of long-lived humoral immune responses compared with antibodies [15].
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It is important to remember that a few patients may develop specific antibodies but
may not have detectable neutralizing antibodies. These are only correlation studies that
are not related to direct measures of neutralizing activity [27]. The fact that neutralizing
antibodies constitute a major protective mechanism against SARS-CoV-2 infection deserves
further investigation [17,27,33]. A few differences between various neutralization assays,
e.g., pseudo-particle neutralization, microneutralization, fluorescent focus reduction as-
says, microneutralization assays, plaque reduction neutralization tests, also exist with
microneutralization tests found to be less sensitive than plaque reduction neutralization
assays [17,40].

The cellular measurements of the immune response have been proposed to be reliable
markers for the maintenance of immunity following natural infection or vaccination [14,41,42].
Such approaches should be explored more. Even if previous exposure to SARS-CoV-2,
either by true infection or by exposure to a vaccine, significantly decreases the risk of further
positive RT-PCR tests [43–47], total immunity might not be guaranteed in all individuals
because reinfection with SARS-CoV-2 exists [44–49].

Our study has a few limitations. We were not able to perform a neutralization assay at
the time. The specificity of each assay was also not determined in this study including the
cross-reactivity to common coronaviruses.

5. Conclusions

This study shows that assays are not equal for detecting past SARS-CoV-2 infection or
investigating seroprevalence in samples for up to 10 months since symptom onset. Assays
targeting the total antibody response have the highest positivity rates and perform better
than tests targeting only IgG. The waning effect reported in several studies should be
interpreted with caution because it may mostly depend on the assay considered. Even if
previous exposure to SARS-CoV-2 decreases the risk of subsequent SARS-CoV-2 positivity,
total immunity might not be guaranteed in all individuals. Further studies are required
to correlate the seropositivity after such a long period post-infection with appropriate
serological neutralization assays.
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