Taxonomic and functional characteristics of the gill and gastrointestinal microbiota and its correlation with intestinal metabolites in NEW GIFT strain of farmed adult Nile tilapia (*Oreochromis niloticus*)

Zhenbing Wu^{1,2}, Qianqian Zhang^{1,3}, Yaoyao Lin^{1,2}, Jingwen Hao^{1,2}, Shuyi Wang^{1,2}, Jingyong Zhang^{1,3}, Aihua Li^{1,3}*

¹ State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; wuzhenbing@ihb.ac.cn (Z.W.); zqq@ihb.ac.cn (Q.Z.); linyaoyao@ihb.ac.cn (Y.L.); haojingwen@ihb.ac.cn (J.H.); wangsy@ihb.ac.cn (S.W.); zhangjy@ihb.ac.cn (J.Z.)

² University of Chinese Academy of Sciences, Beijing 100049, China

³ Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, P. R. China

* Correspondence: liaihua@ihb.ac.cn; Tel.: 86-27-68780053

Figure S1. Rarefaction analysis of OTUs clustered at 97% sequence identity of all twenty samples. (A) Rarefaction curves on OTU level of all samples; (B) Shannon curves on OTU level of all samples. G: gill mucosae (G1-G4), C: intestinal contents (C1-C4), M: intestinal mucosae (M1-M4), S: stomach contents (S1-S4), W: stomach mucosae (W1-W4).

Figure S2. The co-occurrence network at the OTU level (average relative abundance > 0.5%) among five different sites. In the network, sites were colored by large nodes (Gill mucosae = red; intestinal contents = blue; intestinal mucosae = green; stomach contents = yellow; stomach mucosae = purple). Small purple nodes represent the OTUs. Lines connecting a site to an OTU indicate that the OTU is observed in that site.

Figure S3. LEfSe showing differences in the bacterial communities at the OTU level among five different sites. The highlighted taxa are enriched in the group that corresponds to each color. LDA scores can be interpreted as the degree of difference in the relative abundance of OTUs. G: gill mucosae (G1-G4), C: intestinal contents (C1-C4), M: intestinal mucosae (M1-M4), S: stomach contents (S1-S4), W: stomach mucosae (W1-W4).

Figure S4. Heatmap profiles showing the 95 different intestinal metabolites detected in the intestinal contents using GC/MS analysis. Rows represent the intestinal metabolites, columns represent the intestinal content samples, and the color intensity in the heatmap represents the abundance of intestinal metabolites. C: intestinal contents (C1-C4).

Figure S5. Principal Component Analysis (PCA) visualizing the integral structure dissimilarities of microbial function among five different sites. G: gill mucosae (G1-G4), C: intestinal contents (C1-C4), M: intestinal mucosae (M1-M4), S: stomach contents (S1-S4), W: stomach mucosae (W1-W4).

Table S1. Summar	y of alpha div	versity indices	and the number	of taxa calcul	ated based on	a cutoff of 97%
------------------	----------------	-----------------	----------------	----------------	---------------	-----------------

Indicos			Group		
mulces	G	С	М	S	W
OTUs	38.25 ± 5.91	106.00 ± 26.42	58.25 ± 20.89	290.00 ± 6.68	33.00 ± 2.94
Chao 1	49.09 ± 11.61	124.13 ± 29.21	76.91 ± 33.08	332.48 ± 14.20	50.08 ± 10.95
Shannon	1.83 ± 0.07	2.88 ± 0.31	1.65 ± 0.41	4.55 ± 0.28	1.71 ± 0.13
Simpson	0.25 ± 0.02	0.12 ± 0.04	0.31 ± 0.11	0.03 ± 0.01	0.28 ± 0.04
Number of phyla	10	15	13	24	9
Number of classes	14	33	23	55	13
Number of orders	29	76	53	103	29
Number of families	40	90	67	146	38
Number of genera	48	111	88	201	46
Number of OTUs	67	187	132	373	61
Coverage	99.74 ± 0.07%	99.41 ± 0.11%	$99.52\pm0.27\%$	98.74 ± 0.13%	$99.75\pm0.05\%$

similarity of 16S rRNA sequences in different sites.

Table S2. Analysis of similarity (ANOSIM) of the structure and function of the bacterial communities at different sites based on the Bray-Curtis metric. Permutation N = 999; R is assessed by permuting the grouping vector to obtain the empirical distribution of R under the null model; a *p*-value less than 0.05 means significant.

Community	structure	Community function	
R	р	R	р
0.8375	0.001	0.7267	0.001
1	0.034	0.8125	0.031
1	0.034	0.7708	0.029
1	0.034	1	0.033
-0.0417	0.497	-0.0938	0.614
0.8333	0.034	0.5729	0.016
0.9531	0.034	0.6667	0.026
1	0.034	0.8125	0.037
1	0.034	1	0.039
1	0.034	0.7917	0.029
1	0.034	1	0.026
	Community s R 0.8375 1 1 1 -0.0417 0.8333 0.9531 1 1 1 1 1 1 1 1 1 1 1 1 1	R p 0.8375 0.001 1 0.034 1 0.034 1 0.034 1 0.034 -0.0417 0.497 0.8333 0.034 0.9531 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034 1 0.034	Community structure Community R p R 0.8375 0.001 0.7267 1 0.034 0.8125 1 0.034 0.7708 1 0.034 1 -0.0417 0.497 -0.0938 0.8333 0.034 0.5729 0.9531 0.034 0.8125 1 0.034 1 1 0.034 0.7917 1 0.034 1

Table S3. Comparison of dominant phyla (> 1%, average relative abundance in all samples) in the bacterial communities of different sites. The same letter indicates no significant differences (p > 0.05) between the two groups, while the different letter indicates significant differences (p < 0.05 or p < 0.01)

between the two groups.

Dhulo			Group		
Fliyla	G	С	М	S	W
Proteobacteria	95.25 ± 1.08% a	$59.69 \pm 13.36\%$ b	$80.16 \pm 11.98\%$ ab	$33.00 \pm 3.42\%$ c	$95.35 \pm 0.56\%$ a
Actinobacteriota	$2.81\pm0.40\%$ a	$24.21 \pm 12.67\%$ b	$0.56\pm0.44\%$ c	$0.40\pm0.16\%$ c	$2.70\pm0.40\%$ a
Bacteroidota	$0.02\pm0.04\%$ a	$0.09\pm0.09\%$ a	$0.05\pm0.10\%$ a	$27.88\pm3.29\%~b$	$0.05\pm0.04\%$ a
Firmicutes	$0.91 \pm 0.59\%$ a	$7.63 \pm 7.00\%$ a	$11.80 \pm 7.67\%$ a	$1.51 \pm 0.41\%$ a	$1.35\pm0.40\%$ a
Cyanobacteria	$0.04\pm0.05\%$ ab	$0.93\pm0.63\%~c$	$0.21\pm0.14\%$ ac	$12.36 \pm 7.37\% d$	$0.01\pm0.02\%~b$
Fusobacteriota	$0.02\pm0.02\%$ a	$3.50\pm4.95\%~b$	$3.52\pm6.38\%~b$	$2.72\pm1.04\%~b$	$0.01 \pm 0.01\%$ a
Verrucomicrobiota	$0.06 \pm 0.07\%$ a	$0.18\pm0.17\%$ a	$0.02\pm0.02\%$ a	$7.67\pm6.10\%~b$	$0.01 \pm 0.01\%$ a
Chloroflexi	0 a	$1.13\pm0.66\%~b$	$0.07\pm0.12\%$ a	$4.98 \pm 2.16\%$ c	0 a

G	С	М	S	W
Sphingomonas aquatilis	Undibacterium	Escherichia-Shigella	Chitinophagaceae	Sphingomonas aquatilis
OTU498	OTU135	OTU206	sp. OTU342	OTU498
$(42.95 \pm 6.35\%)$	$(11.95 \pm 16.02\%)$	(21.12 ± 3.59%)	(9.84 ± 2.41%)	$(44.19 \pm 8.87\%)$
Comamonadaceae sp.	Propionibacteriaceae	Undibacterium	Verrucomicrobiae	Ralstonia pickettii
OTU486	sp. OTU18	OTU210	sp. OTU360	OTU490
$(16.29 \pm 5.02\%)$	(11.85 ± 15.23%)	$(19.25 \pm 24.65\%)$	$(5.95 \pm 5.97\%)$	$(12.08 \pm 12.16\%)$
Ralstonia pickettii	Propionibacteriaceae	Undibacterium	Chloroplast sp.	Ralstonia pickettii
OTU490	sp. OTU88	OTU173	OTU481	OTU502
$(15.64 \pm 6.55\%)$	$(10.13 \pm 12.85\%)$	(14.65 ± 29.15%)	$(3.73 \pm 6.81\%)$	$(9.82 \pm 9.66\%)$
Sphingomonas aquatilis	Methyloparacoccus	Undibacterium	Comamonadaceae	Comamonadaceae sp.
OTU488	OTU14	OTU230	sp. OTU235	OTU486
$(5.50 \pm 1.20\%)$	(5.77 ± 7.35%)	(13.67 ± 26.17%)	$(3.00 \pm 3.39\%)$	$(9.74 \pm 8.52\%)$
Ralstonia pickettii	Paeniclostridium	Undibacterium	Novosphingobium	Pelomonas
OTU502	OTU107	OTU135	OTU331	OTU496
$(4.44 \pm 4.07\%)$	$(4.87 \pm 5.25\%)$	$(4.93 \pm 8.31\%)$	$(2.44 \pm 0.84\%)$	$(7.74 \pm 8.36\%)$
Methylobacterium-	Candidatus Competibacter	Paeniclostridium	Cetobacterium	Sphingomonas aquatilis
Methylorubrum OTU491	OTU81	OTU107	OTU126	OTU488
$(3.32 \pm 1.26\%)$	$(4.61 \pm 3.82\%)$	$(4.63 \pm 6.05\%)$	$(2.23 \pm 0.83\%)$	$(5.44 \pm 4.63\%)$
Pelomonas	HOC36 sp.	Anoxybacillus	Comamonadaceae	Methylobacterium-
OTU496	OTU15	OTU202	sp. OTU471	Methylorubrum OTU491
$(3.20 \pm 3.59\%)$	$(4.50 \pm 4.45\%)$	$(3.39 \pm 5.96\%)$	$(2.01 \pm 0.78\%)$	$(2.68 \pm 1.05\%)$
Amnibacterium	HOC36 sp.	Thermus	HOC36 sp.	Roseomonas gilardii
OTU161	OTU65	OTU194	OTU478	OTU497
$(2.20 \pm 0.63\%)$	$(3.72 \pm 3.93\%)$	$(3.23 \pm 5.05\%)$	$(1.99 \pm 1.55\%)$	$(1.87 \pm 0.90\%)$
2013Ark19i	Escherichia-Shigella	Cetobacterium	Comamonadaceae	Amnibacterium
OTU156	OTU206	OTU223	sp. OTU367	OTU161
$(1.29 \pm 1.04\%)$	$(3.57 \pm 4.13\%)$	$(3.21 \pm 6.32\%)$	$(1.90 \pm 2.74\%)$	$(1.54 \pm 1.12\%)$
Roseomonas gilardii	Cetobacterium	Romboutsia	Chloroplast sp.	Staphylococcus
OTU497	OTU126	OTU228	OTU458	OTU499
$(0.99 \pm 0.47\%)$	$(3.46 \pm 4.91\%)$	$(3.11 \pm 5.98\%)$	$(1.89 \pm 2.83\%)$	$(1.19 \pm 0.25\%)$

Table S4. The ten highest average abundant OTUs in the bacterial community of five different sites

Table S5. The Nearest Sequenced Taxon Index (NSTI) values of KEGG function prediction based onPICRUSt2 at five different sites. The accuracy of the functional predictions is decreased with increasingNSTI value. The same letter indicates no significant differences (p > 0.05) between the two groups, whilethe different letter indicates significant differences (p < 0.05 or p < 0.01) between the two groups.

Group	Mean NSTI value
G	0.0083 ± 0.0020 a
С	$0.1869 \pm 0.0615 \text{ b}$
М	0.0525 ± 0.0361 a
S	$0.2432 \pm 0.0193 \text{ b}$
W	0.0064 ± 0.0003 a