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Abstract: This study explicated the functional activities of microorganisms and their interrelation-
ships under four previously reported iron reducing conditions to identify critical factors that governed
the performance of these novel iron-dosed anaerobic biological wastewater treatment processes.
Various iron-reducing bacteria (FeRB) and sulfate reducing bacteria (SRB) were identified as the
predominant species that concurrently facilitated organics oxidation and the main contributors to
removal of organics. The high organic contents of wastewater provided sufficient electron donors for
active growth of both FeRB and SRB. In addition to the organic content, Fe (III) and sulfate concen-
trations (expressed by Fe/S ratio) were found to play a significant role in regulating the microbial
abundance and functional activities. Various fermentative bacteria contributed to this FeRB-SRB
synergy by fermenting larger organic compounds to smaller compounds, which were subsequently
used by FeRB and SRB. Feammox (ferric reduction coupled to ammonium oxidation) bacterium was
identified in the bioreactor fed with wastewater containing ammonium. Organic substrate level
was a critical factor that regulated the competitive relationship between heterotrophic FeRB and
Feammox bacteria. There were evidences that suggested a synergistic relationship between FeRB
and nitrogen-fixing bacteria (NFB), where ferric iron and organics concentrations both promoted
microbial activities of FeRB and NFB. A concept model was developed to illustrate the identified
functional interrelationships and their governing factors for further development of the iron-based
wastewater treatment systems.

Keywords: iron-based wastewater treatment; anaerobic treatment; functional interrelationship;
Feammox; iron reducing bacteria; sulfate reducing bacteria; nitrogen fixing bacteria

1. Introduction

Anaerobic biological treatment of wastewater has been gaining increasing attention
due to its simplicity, energy efficiency, and lower sludge production, greenhouse gases
emission, and capital and operational costs compared to aerobic treatment processes [1–4].
Using an anaerobic process instead of an aerobic process can reduce operating costs by
approximately $160 per metric ton, and as high as $250 for some instances [5]. Carbon
dioxide (CO2), sulfate (SO4

2−), and nitrate (NO3
−) are commonly used electron acceptors in

anaerobic biological processes of wastewater treatment [6–8]. Motivated by the benefits of
comanaging acid mine drainage (AMD) and municipal wastewater (MWW), cotreatment of
both wastes in natural and engineering systems has previously been evaluated and showed
impressive results of removing heavy metals and organic matter [9–11]. These studies
have led to further development of innovative iron-dosed treatment processes [12–14].
Iron-based anaerobic treatment has multiple energy and environmental benefits including
no aeration requirement, potential use of iron containing wastes, design and operation
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simplicity, low sludge production and CO2 emission, and potential resource recovery from
the sludge materials [15].

As a key microbial reaction in the iron-based anaerobic biological treatment, ferric
reduction is coupled to organics oxidation, in which Fe (III) is reduced to Fe (II) by receiving
an electron from the organics (i.e., electron donor). As Fe(III)/Fe(II) reduction potential is
comparatively higher (+0.77 V at pH 2 and +0.2 V at pH 7) than other electron acceptors
(e.g., sulfate, CO2), iron-reducing bacteria (FeRB) can use this energy to respire a wide
range of organic compounds [16]. Geobacter and Shewanella are known FeRB which
were observed in most of the research on microbial iron reduction [17–21]. These two
iron reducers have diverse ways of interacting with the ferric mineral surfaces for ferric
reduction. Geobacter sp. is a strict anaerobe and mostly rely on pili (protein nanowires) as
it does not secrete enough electron shuttling or chelating compounds [17,21]. Shewanella
sp. has both direct and indirect electron transfer mechanisms including electron shuttles,
ligands and pilin filaments. Organic composition also governs the type of FeRB present in
a particular environment. For example, Geobacter sp. generally uses acetate and completely
oxidizes it to CO2 while Shewanella sp. uses lactate as a carbon source and oxidize it to
acetate [17,18].

Under substrate limiting conditions such as those found in natural environments (e.g.,
soil, sediments, groundwater), FeRB can outcompete sulfate reducing bacteria (SRB) for
organics by diverting electron flows away from SRB [22–24]. In wastewater treatment
applications where organic matter is abundant, both FeRB and SRB can perform carbon
oxidation and concurrently contribute to the removal of organics. SRB such as Desulfovibrio
sp. and Desulfobulbus sp. have been reported to facilitate incomplete oxidation of larger
organic substrates (e.g., lactate) to smaller organic substrates (e.g., acetate) which could
subsequently be used by FeRB [25,26]. Such symbiotic and/or competitive dynamics
between FeRB and SRB are regulated by the availability of organic substrate and electron
acceptors (e.g., ferric, sulfate), and associated environmental conditions such as pH and
bioavailability of the electron acceptors [13].

Ferric reduction coupled to ammonium oxidation (Feammox) is another microbial
metabolic function that could be used for wastewater treatment. Most Feammox studies have
been conducted in natural environments such as groundwater, soils and sediments [27–31]
and studies related to wastewater environment are extremely limited [32,33]. In strict anoxic
conditions, ferric reduction has been found coupled to ammonium (NH4

+) oxidation to
produce either nitrogen (N2) (Equation (1)), nitrite (NO2

−) (Equation (2)), or nitrate (NO3
−)

(Equation (3)) [27,29,34–36]. Feammox to N2 is energetically more favorable than Feammox
to NO2

− and NO3
− under a wide range of conditions [29]. Huang and Jaffé [35,36] studied

Feammox reaction in riparian wetland soils and identified Acidimicrobiaceae bacterium A6 as
the predominant bacterial species responsible for Feammox reaction.

3Fe(OH)3 + 5H+ + NH+
4 → 3Fe(II) + 9H2O + 0.5 N2 (1)

6Fe(OH)3+10H++NH+
4 → 6Fe(II)+16H2O + NO−2 (2)

8Fe(OH)3+14H+ + NH+
4 → 8Fe(II)+21H2O + NO−3 (3)

Similar to the relationships with SRB, FeRB can potentially have symbiotic or competi-
tive relationships with Feammox bacteria. According to redox potentials, organic carbon
is a preferred electron donor compared to NH4

+ and, as a result, heterotrophic FeRB can
outcompete autotrophic Feammox bacteria for Fe (III) compounds. A previous study
showed that only 2% of Fe(III) reduction was observed to be associated with Feammox
reaction in a paddy soil when sufficient organic substrates were present [30]. Some studies
reported that FeRB such as Geobacter can play an essential role in Feammox activities [27,37].
An indirect relationship was established between FeRB abundance and Feammox rate in
these studies, as with increasing FeRB abundance Feammox reaction rate also increased.
The diverse physiological characteristics of FeRB were hypothesized as the probable reason
behind their contribution to Feammox activity. In treatment of organics-rich wastewater,
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the functional relationships between FeRB and Feammox bacteria are expected to be signif-
icantly different and the conditions in which ammonium oxidation occurs are currently not
known. Moreover, in such anaerobic/anoxic environments, fermentative bacteria, nitrogen
fixing bacteria (NFB), and Anammox bacteria may also be present and their functional
interrelationships are largely unknown.

The objectives of this study were (i) to explicate the functional activities of various
microorganisms and their interrelationships under previously reported iron dosing condi-
tions used for wastewater treatment, (ii) to characterize the microbial diversity, abundance,
and functions and to conduct comparative analyses among the different conditions, and (iii)
to develop a conceptual model to illustrate the functional interrelationships of identified
bacterial species and the factors that governed the microbial functions. Implications of the
learned microbial diversity, abundance, metabolic functions and their interrelationships on
engineering applications of the iron-dosed wastewater treatment method were discussed.

2. Materials and Methods

Four bioreactors and their treatment conditions reported in previous iron-dosed
wastewater treatment studies were examined. The four treatment conditions included:

1. Cotreatment of acid mine drainage and municipal wastewater (R1)
2. Fe(II)-dosed anaerobic wastewater treatment system with sludge recycling (R2)
3. Fe(III)-dosed anaerobic wastewater treatment system for organic removal (R3)
4. Fe(III)-dosed anaerobic wastewater treatment system for both organic and nutrient

removal (R4)

2.1. Cotreatment of Acid Mine Drainage and Wastewater (R1)

Batch experiments of a two-stage process were conducted for co-treatment of field-
collected AMD and municipal wastewater (MWW). In the first stage, aerobic mixing of
AMD and MWW was performed to remove multivalent metals and phosphate from the
AMD and MWW. In the second stage, an anaerobic attached-growth sulfidogenic bioreactor
(1 L) was used to remove organics via microbial sulfate reduction. The bioreactor was
operated at different COD/sulfate ratios under ambient room temperature (22 ± 1 ◦C),
where AMD/MWW mixture pH ranging from 6.2 to 7.9, ORP values from −71 to −545 mV,
and COD from 42 to 2150 mg/L. Details of this treatment design and sample analyses were
presented by Deng et al. [38]. The first stage of aerobic mixing achieved significant metal
removal including >97% of iron (Fe), ≈100% of aluminum (Al), and ≈75–100% manganese
(Mn) removal. More than 70% chemical oxygen demand (COD) was removed in the second
stage biological treatment at different COD/sulfate ratios ranging from 0.9 to 3.1. Biomass
samples from the sulfidogenic bioreactor were collected for DNA extraction and other
downstream analyses. The microbial DNA was amplified by polymerase chain reaction
(PCR) (Eppendorf AG Mastercycler epgradient, Hamburg, Germany), and PCR amplicons
of the 16S rRNA gene were cloned using TOPO TA cloning kit (Invitrogen Corporation,
Carlsbad, CA, USA). The sequences were classified into taxonomic group by database
project classifier, and evolutionary analyses were performed using MEGA 6 [39]. Shannon’s
diversity index was calculated by using the equation H = −∑s

i = 1 PilnPi, where P is the
proportion of individuals of one particular species in total number of individuals found,
and s is the number of species.

2.2. Fe(II)-Dosed Anaerobic Wastewater Treatment System with Sludge Recycling (R2)

Two identical sulfidogenic attached-growth bioreactors (2.5 L each), made with acrylic
cylinder and fed with continuous ferrous chloride were used to treat synthetic wastew-
ater at different COD/sulfate and Fe/S ratios [40]. Synthetic wastewater consisted of
1.6 mM sodium acetate (C2H3O2Na.3H2O), 2.26 mM ethanol (C2H6O), 0.45 mM lactose
(C12H22O11.H2O), 1.68 mM sodium bicarbonate (NaHCO3), and trace elements (5 mL/L
influent). Ferrous iron (FeCl2.4H2O, 0.56–17.76 mM) was dosed to precipitate out sulfide to
reduce the sulfide concentration in the effluent. The resultant ferrous sulfide sludge was
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oxidized and recycled to the bioreactors (3.5 L/d) to enhance the treatment performance. In
a 510-day study period, the bioreactors were operated under room temperature (21 ± 1 ◦C)
with incoming COD 400 mg/L, and pH ranging from 6.2 to 7.0. COD/sulfate mass ratio of
2 and Fe/S molar ratio of 1 (COD, SO4

2−, and Fe (II) loading rates of 1384 mg/d, 692 mg/d
and 404 mg/d) were selected for evaluating the technical feasibility of iron sulfide sludge
recycling. Sludge recycling improved the COD removal to approximately 90% from the
baseline performance (75%) without sludge recycling. Ferrous sulfide oxidation and recy-
cling introduced ferric iron into the bioreactors and iron reducing condition was generated.
The sludge samples and biofilms from the bioreactors and the oxidation basin were used to
characterize the microbial composition. Details of the nucleic acid extraction, purification
and 16S rRNA gene amplification were discussed previously [40]. Similar cloning and
sequencing techniques described in the previous section for R1 were used.

2.3. Fe(III)-Dosed Anaerobic Wastewater Treatment System for Organic Removal (R3)

An Fe(III)-dosed anaerobic wastewater treatment system was used for COD removal
from synthetic wastewater (3 mM sodium acetate anhydrous (C2H3NaO2), 1.54 mM ethanol
(C2H6O), 0.32 mM lactose monohydrate (C12H22O11.H2O), 1.57 mM sodium bicarbon-
ate (NaHCO3), and trace elements (4.75 mL/L influent)) with continuous ferric iron
(FeCl3.6H2O, 1.32 mM, 2.50 mM, and 4.50 mM) dosing [12]. Specifically, an attached-
growth bioreactor (1.4 L) made with acrylic cylinder was used to evaluate organics removal
at three different Fe/S ratios (0.5, 1 and 2). The bioreactor was packed with five hun-
dred plastic media (Evolution Aqua Ltd., UK, Kaldness K1 Biomedia, specific surface
area = 500 m2/m3), resulting a working volume of 0.9 L. A consistent organic loading
(COD 281 mg/d) with varied Fe(III) loadings (40, 81, and 134 mg/d), and SO4

2− loadings
(197, 185, and 171 mg/d) was used to operate the bioreactor at different Fe/S molar ratios
of 0.5, 1 and 2 respectively. The bioreactor was operated under ambient room temperature
the pH of the bioreactor ranging from 6.5 to 7.5 and ORP from −125 mV to −250 mV.
Consistent COD removal of 84–89% was observed at different Fe/S ratios. More than 90%
sulfate reduction and approximately 100% iron retention were observed under all the Fe/S
ratios, and both ferric and sulfate reduction played a significant role in COD oxidation.
Iron retention was estimated as the total iron retained in the bioreactor and the sludge.
Sludge samples from the bioreactor were collected for DNA extraction using DNeasy
Powersoil DNA extraction kit (Qiagen, Germantown, MD, USA), and the 16S rRNA genes
were sequenced with Illumina sequencing using bacterial/archaeal primer set 515 F/806R.
Resulting reads were clustered into exact sequence variant (ESV) classifications at 100%
similarity using the DADA2 platform in the QIIME2 pipeline (Qiime2-2018.4) and SILVA
16S rRNA gene database.

2.4. Fe(III)-Dosed Anaerobic Wastewater Treatment System for Both Organic and Nutrient
Removal (R4)

Another Fe (III)-dosed attached-growth bioreactor (1.4 L) was used to evaluate the
performance for concurrent organics and nutrient (N and P) removal from wastewater. The
operating conditions of this bioreactor were similar to the conditions of R3 bioreactor, where
the COD, N (as ammonium), P (as phosphate) and SO4

2− loading rates were 259 mg/d,
32 mg/d, 14 mg/d, and 35 mg/d respectively. Water quality analyses on the influent
and effluent samples showed consistent removal of organics, ammonium, phosphate and
SO4

2− from the wastewater. With a wastewater composition of COD 400 mg/L, phosphate
20 mg/L, sulfate 50 mg/L, and ammonium 50 mg/L, average removal efficiencies of COD,
PO4

3−-P, SO4
2− and NH4

+-N was 90%, 99%, 89% and 18%, respectively. The high removal
efficiency of COD was attributed to organics oxidation coupled to ferric and sulfate reduc-
tion. Biological sludge samples were collected and analyzed to investigate the presence
of Feammox and other denitrifying bacteria in the bioreactor. DNA was extracted from
sludge samples using the FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH, USA).
Quantitative PCR (qPCR) analyses were conducted via a QuantStudio 3 (Applied Biosys-
tems, Thermo Fisher, Waltham, MA, USA) using previously published primers. Primer set
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acm342f-439r was used to target the 16S rRNA gene of Acidimicrobiaceae bacteria [36] and
primer set NirS3F/NirS5R, NirK1F/NirK5R [41], and Amx368f/Amx820r [42] were used
for denitrifying functional genes (nirS and nirK), and Anammox bacteria respectively. For
target gene quantification, each qPCR mixture (10 µL) was composed of 5 µL of PowerUP
SYBR Green Master Mix (Life Technologies, Waltham, MA, USA), 0.8 µL at 5 µM of each
primer and 1 µL DNA template. Thermal cycling conditions for quantifying target genes
were: 50 ◦C for 2 min, 95 ◦C for 10 min, and 45 cycles of 94 ◦C for 5 s, 30 s at each gene’s
respective annealing temperature, and 72 ◦C for 30 s. The following annealing tempera-
tures were used: 58 ◦C for Acidimicrobiaceae, 57 ◦C for nirS, 55 ◦C for nirK, and 56 ◦C
for Anammox bacteria. All target genes were quantified in triplicate reactions and run
on a 96-well plate with a triplicate negative control and a standard curve consisting of
seven serially diluted triplicate target DNA standards, synthesized by Integrated DNA
Technologies (Newark, NJ, USA).

3. Results and Discussion
3.1. Microbial Diversity

Various phyla were identified in bioreactors R1, R2, and R3, which depict the diverse
microbial compositions in all the settings (Figure 1). Deltaproteobacteria, Alphaproteobac-
teria, Acidobacteria, Chloroflexi, Firmicutes, Bacteroidetes, and Actinobacteria are the
common phyla that were observed in all the bioreactors. The bioreactor with Fe (III) iron
dosing (R3) had higher microbial diversity (ten phyla) than R1 (eight phyla) and R2 (seven
phyla). This was reflected in estimated diversity index Shannon’s H which ranged from
3.26 to 3.34 for the Fe (III)-dosed bioreactor (R3) and from 1.24 to 1.68 in the cotreatment
bioreactor (R1). The higher diversity in R3 can be attributed to the high ferric dosing and
prevalence of FeRB whereas R1 and R2 were mostly sulfidogenic. R1 was used to treat
AMD/MWW mixtures that had high sulfate and low ferric concentrations after the first
stage treatment. R2 was dosed with ferrous iron and had only limited ferric iron from the
recycled oxidized sludge. We did not use microbial data of R4 reactor for diversity analysis,
as this reactor was designed to investigate Feammox activities.
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3.2. Iron-Reducing Bacteria

No FeRB were characterized for R1 as that was not the scope of that study. The only
FeRB observed in the Fe (II)-dosed bioreactor (R2) was Alkaliphilus metalliredigens. This
species is an alkaliphilic bacterium that uses lactate, acetate, and hydrogen as electron
donors for Fe (III) reduction [43]. The synthetic wastewater used in the study contained
primarily acetate and lactose, and had an alkalinity of 1.68 mM, which was conducive to
the prevalence of this bacteria. This strictly anaerobic bacteria from the Firmicutes phylum
has the capability to thrive under extreme alkaliphilic and salinity conditions [44].

Major putative FeRB observed in the Fe (III)-dosed bioreactor (R3) were Geobacter sp.,
Geothrix sp., and Ignavibacteria sp. Among the three FeRB, Geobacter sp. was predominant
in abundance (83%) and others included Geothrix sp. (2%), and Ignavibacteria sp. (15%).
Geobacter is heterotrophic, gram-negative, non-spore-forming, curved rod-shaped bacteria
belonging to the Geobacteraceae family in the Deltaproteobacteria phylum [45–49]. This
bacterium maintains an obligately anaerobic lifestyle, and typically performs complete
oxidation of small organic substrates such as acetate to CO2 via ferric reduction. The
dominance of Geobacter sp. in the Fe (III)-dosed bioreactor (R3) is attributed to the acetate
(approximately 250 mg/L) as one of the main organic compounds of the synthetic wastew-
ater. Acetate is one of the prime volatile fatty acids (VFAs) present in the real wastewater,
which comprises approximately 49% to 71% of the total influent VFAs in full-scale wastew-
ater treatment plants [50,51]. There are also evidences that Geobacter sp. can use lactate and
ethanol via Fe(III) reduction [45,49].

Similar to Geobacter, Ignavibacteria has also been observed to grow well in acetate
amended incubations [52]. This strictly anaerobic, moderately thermophilic, neutrophilic
and obligately heterotrophic bacterium has recently been isolated from several hot springs
under iron-reducing conditions [53,54]. Genome analysis of Ignavibacteria revealed it as a
versatile bacterium which has the capability to live under both oxic and anoxic conditions
by using a variety of electron donors and acceptors [55]. With the complex composition of
real wastewater containing different types of electron donors and acceptors, presence and
growth of Ignavibacteria can be anticipated. As ferric compounds are typically insoluble in
the bioreactor at circumneutral pH, Geobacter and Ignavibacteria can facilitate the ferric
reduction either by direct contact with outer-membrane cytochromes or via conductive pili
structures [17]. For Geobacter sp., direct electron transfer to Fe(III) mostly occurred at the
outer cell surface through c-type cytochromes [47,56,57]. Among these outer membrane
(OM) cytochromes, only four of the cytochromes (OmcB, OmcS, OmcE, OmcZ) were
identified to play a role in Fe (III) reduction. Another means of electron transfer for Geobacter
sp. is to utilize Type IV pilin filaments, which are also known as ‘bacterial nanowires’ or
‘protein nanowires’ [58]. These filaments are composed of multiple copies of PilA proteins.
Due to the high electrical conductivity of Geobacter pili, Geobacter sp. was observed to
generate the highest electrical current density among exoelectrogenic bacteria [59]. This
bacterial species has the potential to be used in bioelectrochemical systems for electricity
generation from wastewater and/or sewage sludge to enhance energy efficiency of the
iron-dosed treatment method. Geothrix sp. is phylogenetically different than Geobacter
sp., but has several physiological similarities with members of the Geobacteraceae [48]. In
addition to Fe (III), Geothrix sp. can utilize other electron acceptors such as Mn (IV), nitrate,
fumarate, and disulfonate for redox reactions, which is also a common trait observed in the
Geobacteraceae family. However, the electron transfer mechanism of Geothrix is different
from Geobacter and Ignavibacteria. Geothrix sp. has the ability to facilitate iron reduction
without direct contact with the insoluble Fe(III) compounds by releasing compounds that
act as electron shuttles and solubilize Fe(III) from Fe(III) oxides [56].

In addition to chemical characteristics, other environmental factors may affect the
growth of FeRB and SRB. Table 1 summarizes the potential growth conditions of pH
and temperature for FeRB and SRB previously reported in the literature. In particular,
bacteria such as Geobacter sp. and Alkaliphilus metalliredigens can grow in a broader range of
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temperature, making them more resilient to temperature variations than other species and
adaptable for broader waste treatment applications.

3.3. Sulfate-Reducing Bacteria

Putative SRB observed in the cotreatment bioreactor (R1) were Desulfovibrio sp., Desul-
fovirga sp., Desulfobulbus sp. and Desulfatibacillum sp.; in Fe (II)-dosed bioreactor (R2) was
Desulfomonile tiedjei; and in Fe (III)-dosed bioreactor (R3) were Desulfovibrio sp., Desulfobul-
bus sp., Desulfatirhabdium sp., Desulforhabdus sp. and Desulfomonile sp. The microbial analy-
sis of R3 bioreactor revealed that the major SRB was Desulfovibrio sp. with an abundance of
38% among the total SRB (Figure 2). Other SRB such as Desulfobulbus sp., Desulfatirhabdium
sp., Desulforhabdus sp., Desulfomonile sp. were present in the bioreactor with abundances of
30%, 21%, 8% and 2% of the total SRB, respectively.
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All these SRB belong to the Deltaproteobacteria phylum and use sulfate as an electron
acceptor for redox reactions. Desulfovibrio sp., Desulfobulbus sp., Desulfovirga sp., and Desul-
fomonile sp. can facilitate incomplete oxidation of large organic compounds (e.g., lactate),
and Desulfatirhabdium sp., Desulforhabdus sp. can oxidize smaller organic substrate such
as acetate and ethanol [25,26,60–62]. Co-existence of these bacteria suggests a synergis-
tic relationship among these diverse SRB where Desulfovibrio sp., Desulfobulbus sp., and
Desulfovirga sp. yield smaller substrates such as acetate through lactate oxidation, that can
subsequently be used by other FeRB and SRB for complete oxidation of organic substrates.
As wastewater is a complex mixture of various organic compounds, a diverse composition
of different SRB is anticipated in iron-reducing treatment systems.

The suitable temperature ranges for the growth of SRB (Table 1) indicate that most
of the SRB can survive at the temperatures commonly found in wastewater treatment.
Similarly, the pH conducive to the growth of these bacteria overlap the pH range typically
observed with wastewater effluents (6.5–8.5) [63].
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Table 1. Potential growth conditions pH and temperature for different FeRB and SRB observed in
the bioreactors.

Bacteria Temperature pH Reference

Iron Reducing
Bacteria

Geobacter sp. 4–37 ◦C 6.5–7.5 [64]

Ignavibacteria sp. 30–55 ◦C 6.5–8.0 [53]

Geothrix sp. 35–40 ◦C [48]

Alkaliphilus
metalliredigens 4–45 ◦C 7.5–11.0 [65]

Sulfate Reducing
Bacteria

Desulfovibrio sp. 15–45 ◦C 5.0–8.0 [66,67]

Desulfobulbus sp. 10–40 ◦C 6.1–7.5 [68,69]

Desulfovirga sp. 20–36 ◦C 6.6–7.4 [62]

Desulfatirhabdium sp. 15–37 ◦C 6.5–8.0 [60]

Desulforhabdus sp. 25–45 ◦C 6.6–8.5 [70]

Desulfomonile sp. 30–38 ◦C 6.5–7.8 [71]

Desulfatibacillum sp. 15–40 ◦C 6.6–7.8 [72]

3.4. Synergistic Relationships between FeRB and SRB

A critical research question regarding the iron-based wastewater treatment is whether
FeRB and SRB can perform synergistically to oxidize organics. Previous studies suggested
that FeRB could inhibit SRB by competing for electron donors when the organic level is
low [24,73,74]. In wastewater treatment applications, high organic content of wastewater
can provide sufficient organic substrates and support the growth of both FeRB and SRB. The
microbiological analyses of R3 showed the presence of diverse FeRB and SRB, and chemical
analyses also corroborated that ferric and sulfate reduction contributed concurrently to
organic oxidation [12]. Fe (III) and SO4

2− concentrations (expressed by Fe/S ratio) played
a significant role in regulating the activities of FeRB and SRB in the Fe (III)-dosed treatment.
The overall organic oxidation rate is dependent on the individual oxidation rates of FeRB
and SRB and their populations. The average abundances of putative Geobacter sp. and
Ignavibacteria sp. at different Fe/S ratios (molar ratios: 0.5, 1, and 2) were 22 ± 9%, and
4 ± 2% respectively, and those of Desulfovibrio sp., Desulfobulbus sp. and Desulfatirhabdium
sp. were 5± 2%, 4± 2%, 3± 1%, respectively (Figure 3). Desulfovibrio sp. and Desulfobulbus
sp. are known to facilitate incomplete oxidation of larger organic compounds to smaller
compounds, which can subsequently be utilized by FeRB (Geobacter sp. and Ignavibacteria
sp.) for complete oxidation, a synergy between FeRB and SRB that occurred in the Fe
(III)-dosed bioreactor (R3).

An interesting trend observed with R3 was that the abundances of FeRB and SRB both
increased with increasing ferric concentration. In this comparison, Fe/S molar ratios 0.5, 1
and 2 were used by changing Fe (III) and SO4

2− concentrations to maintain the same total
equivalent of electron acceptors for all the ratios (Figure 4). While sulfate concentration
decreased slightly with the increasing Fe/S ratio, the abundance of putative SRB increased
from 12% to 16%. This was attributed to presence of Desulfovibrio sp. and Desulfobulbus
sp. which have been reported capable of facilitating both ferric and sulfate reduction
under iron reducing conditions [75–77]. For examples, sulfate reducers were reported to
produce H2S via sulfate reduction, which can chemically reduce Fe (III) oxyhydroxides to
form iron sulfides [78]. There is also evidence that these SRB could reduce Fe (III) directly
through an enzymatic Fe (III) mechanism and produce siderite concretions [75]. These
synergistic relationships between FeRB and SRB under the iron-reducing conditions in R3
can be an important microbial feature that contributes to the resilience of the iron-dosed
biological treatment.
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3.5. Feammox and Denitrifying Bacteria

R4 was designed to investigate the presence and activities of Feammox bacteria in the
bioreactor when organic substrate was not limited. The microbiological analysis showed the
presence of Acidimicrobiaceae bacterium at a concentration of 1.84 × 106 gene copies/mL.
This Acidimicrobiaceae sp., (represented by band A6 by Huang and Jaffe) belongs to the
Actinobacteria phylum, which is the only representative of Feammox bacteria [35]. This
Acidimicrobiaceae A6 is a Gram-positive, rod-shaped bacteria with an average length of
1.5–3 µm. Approximately 18% removal of NH4

+-N with significant presence of Acidimi-
crobiaceae sp. in R4 showed the evidence of the Feammox activity in the Fe (III)-dosed
bioreactor. The disparity in the high COD removal (90%) and the low NH4

+-N removal
(18%) indicated the competitive advantage of heterotrophic FeRB over the Feammox bac-
teria for ferric iron as the common electron acceptor. However, FeRB did not entirely
suppress the Feammox activity.

Another important aspect of Feammox reaction is the production of N products in-
cluding nitrite (NO2

−), nitrate (NO3
−) or nitrogen (N2) from NH4

+. Our results showed
the insignificant presence of NO2

− and NO3
− in the effluent of R4. The presence of denitri-

fying functional genes nirS and nirK with the concentrations of 1.05× 1010 gene copies/mL
and 6.80 × 107 gene copies/mL, respectively, indicated the denitrifying activities in the
bioreactor. These denitrifying activities were most likely stimulated by NO2

− generated
from Feammox. Due to denitrification, NO2

− and NO3
− did not accumulate in the biore-

actor. As no Anammox bacteria were observed in the samples, Anammox reaction that
transforms NO2

− to N2 was considered an insignificant microbial pathway in this Fe
(III)-dosed bioreactor.

3.6. Fermentative Bacteria

Diverse fermentative bacteria were observed in the biomass samples of the bioreactors
(R1, R2, and R3, Table 2). All these fermentative bacteria were capable of fermenting large
organic compounds to smaller compounds [79–88]. These smaller organic compounds can
then be utilized by FeRB and SRB for further carbon oxidation. This suggests a synergistic
relationship of fermentative bacteria with FeRB and SRB for substrate utilization. The
presence of such wide range of fermentative bacteria contributed to the high microbial
diversity under the iron-reducing conditions in these bioreactors.

Table 2. Fermentative bacteria identified in bioreactors R1, R2, and R3.

Bacteria Phyla Functional Activities Bioreactor

Clostridium sp. Firmicutes Ferment glucose, lactose to produce acetate and H2 R1, R3

Prolixibacter sp. Bacteroidetes Ferment sugar, lactose to acetate and other smaller
C compounds R1

Marinilabilia salmonicolor Bacteroidetes Ferment lactose to smaller C compounds R1

Leptolinea tardivitalis Chloroflexi Ferment glucose, fructose, and sucrose to smaller
C compounds R1

Ruminococcaceae bacterium Firmicutes Ferment lactate to smaller C compounds R1

Sedimentibacter sp. Firmicutes Ferment pyruvate with the presence of yeast extract to
produce acetate, lactate R1

Candidatus Saccharimonas Saccharibacteria Ferment sugars to smaller compounds R2

Parapedobacter sp. Bacteroidetes Ferment glucose, lactose to smaller C compounds R2

Paludibacter sp. Bacteroidetes Ferment glucose to acetate R2, R3

Treponema sp. Spirochaetes Ferment glucose, lactose to smaller C compounds R3

Ruminiclostridium sp. Firmicutes Ferment glucose, cellulose to acetate, ethanol, and lactate R3

Anaerolineae sp. Chloroflexi Ferment glucose, lactose to smaller C compounds R3



Microorganisms 2021, 9, 1039 11 of 17

Apart from FeRB, strains of fermentative Clostridium were observed that are known
to perform dissimilatory iron reduction [89,90]. The presence of Clostridium sp. in the
bioreactors suggests the possibility of their contribution to Fe (III) reduction. As fermen-
tation takes place in the absence of exogenous electron acceptors, fermentation pathway
needs to produce fermentative products that can be used as electron acceptors to dispose
of the electrons produced during oxidation reactions. If additional electron acceptors such
as Fe (III) are present, these excess reducing equivalents (electrons) might be delivered
to them. The diversion of reducing equivalents to Fe (III) might provide an energetic
advantage through utilizing the oxidation of coenzyme nicotinamide adenine dinucleotide
hydrogen (NADH) coupled to Fe(III) reduction to yield ATP [89] or through change in the
fermentation end products.

3.7. Nitrogen-Fixing Bacteria

The major NFB observed in these bioreactors were members of the Pleomorphomonas
genus, which are Gram-negative, nonmotile, and pleomorphic bacteria belonging to the
Alphaproteobacteria phylum [91]. They have the ability to fix atmospheric nitrogen where
bioavailable N becomes limiting [92].

A previous study on potential synergy between FeRB and NFB in flooded paddy
soils showed a positive correlation between the two types of bacteria [93]. The results
showed that FeRB played an important role in the microbial nitrogen-fixing process in the
presence of sufficient Fe (III). With increased iron concentrations, abundance of both NFB
and FeRB increased. Similar results were observed by Ahmed et al. in their batch reactors,
where with increasing Fe/S ratio, abundance of Pleomorphomonas sp. also increased [13].
Addition of organic carbon (e.g., glucose) also resulted in significant changes in community
structures of putative FeRB and NFB [93]. The FeRB-NFB synergy promoted nitrogen
fixation was attributed to two potential reaction pathways. One is that some FeRB can
reduce N2 directly to NH3 [94,95], and the other is that some FeRB can indirectly promote
nitrogen fixation by utilizing H2 as an electron donor, and preventing biological nitrogen
fixation inhibition by H2. Fermentative bacteria may add to the complexity of the FeRB-
NFB synergy. For example, Clostridium sp. are known to produce H2 by fermenting larger
organic compounds and presence of hydrogen-utilizing FeRB helps prevent H2 inhibition
of NFB. Some genera of Clostridium have been reported to be capable of biological nitrogen
fixation [96], which could meet the N demand from microbial growth under N limiting
conditions. Collectively, FeRB, NFB, and fermentative bacteria may synergistically promote
nitrogen fixation in Fe (III)-reducing bioreactors.

4. Functional Interrelationships among Microorganisms in Iron-Dosed Bioreactors

A conceptual model of functional interrelationships was developed based on the
putative functions of the bacteria identified in the iron-dosed bioreactors (Figure 5). It
illustrates the synergistic and competitive relationships among the identified bacteria and
the major factors that govern the interrelationships.

Due to ubiquitous presence of sulfate in wastewater, both FeRB and SRB are the
major bacterial species that contribute to organic oxidation in the iron-dosed bioreactors.
Fe/S ratio (measured by Fe (IIII) and SO4

2− concentrations of the inflows) is an important
operating factor that regulates the activities of FeRB and SRB. Some SRB contribute to
the treatment through direct organic oxidation to CO2, and some SRB through partial
oxidation of large organic compounds to small compounds, which are then used by FeRB.
Abundances of FeRB, SRB, and other microbes are regulated by the concentrations and
bioavailability of electron acceptors (e.g., Fe (III), SO4

2−) and electron donors (e.g., organics,
NH4

+). Fermentative bacteria contribute to the treatment by facilitating conversions of
larger organic compounds to smaller compounds that are subsequently used by FeRB
and SRB. Fermentative bacteria such as Clostridium can also participate in direct Fe (III)
reduction under iron reducing conditions.
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Our analyses suggest occurrence of the “heterotrophic vs. autotrophic” competition
between FeRB and Feammox bacteria. In the presence of abundant ferric iron, organic
substrate level is a key factor that regulates their activities and consequently organic and
ammonium removal efficiencies. With the wastewater composition used in these studies
(COD 400–420 mg/L), FeRB are the main contributor to organic oxidation and outcompete
the Feammox bacteria for ferric iron, resulting in only 18% NH4

+ removal. Evidences also
suggest another synergistic relationship between NFB and FeRB that could occur in the
iron-based treatment system. In nitrogen-limiting growth conditions (e.g., R3), nitrogen
fixation by NFB is an important mechanism to meet the demand of bioavailable N of
microbial growth. In the presence of ferric iron, the FeRB-NFB synergy is evidenced in
the positive correlations between microbial abundance of both FeRB and NFB, and iron
concentration [93,94]. Overall, this concept model provides a baseline understanding of
these functional interrelationships, which is critical for further developing the iron-based
treatment technologies.

5. Discussion

Several microbial functional interrelationships and their governing factors in Figure 5
can potentially be used to meet various needs of waste treatment, and they are explored in
this section.
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The synergistic relationship observed between FeRB and SRB can be very useful for
treatment of sulfate-rich wastewaters. Sulfate-rich wastewaters are generated by many
industrial processes such as paper mills and the food processing industry where sulfuric
acid or sulfate rich feedstocks are used [97,98]. Fe (III)-dosing to provide sufficient electron
acceptor in addition to sulfate for organic removal can be an effective and energy-efficient
method for managing these wastewaters. In such applications, Fe/S ratio can be used
as a key operating parameter to remove organic pollutants and limit sulfide toxicity by
chemical precipitation of FeS. The remaining reduced chemicals (i.e., ferrous, sulfide) in
the effluent of the biological treatment can be readily oxidized in a polishing unit before
environmental discharge.

Presence of Feammox bacteria in the Fe (III)-dosed bioreactor (R4) suggests the
prospect of concurrent organic and ammonium removal in a single Fe (III)-dosed bioreactor.
Nevertheless, as organic substrate level plays a major role in governing the competitive
activities of heterotrophic iron reducers and autotrophic Feammox bacteria, design con-
siderations need to be made for Fe (III)-dosed treatment to achieve satisfactory organic
and nutrient removal. For example, Feammox activities may be intensified by adopting
a two-stage treatment process, where the first stage is used to remove organic carbons,
and the second stage is used for ammonium oxidation via Feammox. For nutrient-rich
wastewaters containing low organic content, one-stage treatment may be sufficient to use
Feammox activities for N removal.

A thought-provoking aspect of the identified functional interrelationships is the
synergy between FeRB and NFB. This synergistic relationship is augmented by both ferric
iron and organic substrate, and can potentially be employed as an energy-efficient method
for ammonium production. Such an engineering application would also require techniques
that can recover the produced ammonium in separate process units to maintain N limiting
conditions. The limiting factors of this synergism need to be identified and technoeconomic
feasibility of this approach for ammonium production warrant further studies.

Microbial data of these iron-based bioreactors showed insignificant presence of
methanogenic bacteria, as thermodynamically Fe(III) reduction is more favorable than the
methanogenic process and generally can suppress methane production [74,99]. However,
recent studies in paddy soil environments suggested syntrophic relationships between
FeRB and methanogens [100,101] and postulated that bioaugmentation with iron-reducing
microbial consortium can intensify methanogenic process [102]. With less bioavailable
ferric, Geobacter species has been found to have syntrophic associations with methanogens
through direct interspecies electron transfer (DIET) and thus can attribute to increased
methane production [101]. This syntrophic relationship can potentially be used in anaerobic
digestion processes to enhance biogas production by iron dosing.

6. Conclusions

The functional interrelationships presented in this study provide insights to the vari-
ous synergistic and competitive relationships in wastewater treatment under iron-reducing
conditions. They are crucial for further development and design of the iron-based biological
technology for optimum treatment performance. The factors governing these relationships
need to be considered systematically to develop guidelines for operating the treatment pro-
cess. Moreover, the interrelationships reveal that there are great opportunities to develop
iron-based treatment not only for wastewater management, but also for enhanced nutrient
(e.g., ammonium) and biogas production.
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