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Abstract: Lowbush blueberries (Vaccinium sp.) are perennial crops produced throughout eastern
Canada and Maine through management of wild populations. Given the constraints of this cropping
system, the application of fungicides is critical to reducing disease pressure and ensuring consistent
yields. However, as plant health is intertwined with soil health, it is important to consider the impact
of fungicides on microbial communities. To understand the effects of fungicides in this context,
bacterial and fungal microbial communities from fungicide-treated plots, as well as untreated control
plots (UTG) were analyzed using amplicon sequencing. The fungicides, considered collectively as a
combined treatment group (CTG), lead to a loss in fungal richness. One family, Clavariaceae, had
an increased abundance under prothioconazole relative to UTG. This finding may be significant
as taxa in Clavariaceae have been thought to potentially form ericoid mycorrhizae with Vaccinium.
Five functional pathways and 74 enzymes differed significantly in relative abundance between
CTG and UTG including enzymes associated with soil nutrient cycles. Most notably, enzymes
corresponding to the breakdown of halogen-organic compounds had an increased abundance in
CTG, suggesting bacterial fungicide degradation. Some enzymes associated with soil nutrient cycles
differed significantly, possibly implying changes to nutrient pathways due to fungicide treatment.

Keywords: Vaccinium angustifolium; Vaccinium myrtilloides; fungicides; prothioconazole; chlorothalonil;
soil microbiome

1. Introduction

Microbe-plant interactions play a critical role in the agroecological system, and un-
derstanding these relationships is a significant frontier in plant ecosystems management.
These symbiotic relationships are the product of concurrent evolution between plants
and microbes and are, in many cases, necessary to ensure that the plant will thrive [1].
Microbe-plant interactions may be particularly important in case of lowbush blueberries (a
heterogeneous population consisting of Vaccinium angustifolium and Vaccinium myrtilloides)
which are grown as a managed wild crop throughout the Canadian Atlantic Provinces,
Quebec, and Maine. With over 67,000 hectares devoted to their production, lowbush
blueberries are the most widely produced fruit crop in Canada by area of production [2].

Lowbush blueberries occur naturally on sandy acidic soils. Commercial production
consists of managing pre-existing, wild populations and using practices including mechan-
ical pruning and integrated pest management [3-5]. As lowbush blueberries are grown
in their native habitat, spawned directly from wild populations, it stands to reason that
managed lowbush blueberries may exhibit a particularly intimate relationship with the
soil microbiome. Additionally, plants in the genus Vaccinium, as with many members of
order Ericales, develop a distinctive mycorrhizal relationship with fungal species from the
phyla Ascomycota and Basidiomycota known as ericoid mycorrhizae [6-8]. These fungi
form coils of hyphae within the host root cell, with each cell being individually colonized
from the root surface [8].
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The crop is produced using a two-year cycle. After harvest, the field is mechanically
pruned close to ground level and the crop spends the next year in a period of formation
of new shoot uprights with floral induction and initiation occurring in midsummer [9].
The resulting floral bud growth and development occurring through to late autumn [9].
The following year, bloom occurs with floral densities in excess of 350 million flowers per
hectare needing to be pollinated and fertilized [10]. The berries are typically harvested
70 days after anthesis, after which the management cycle repeats. Lowbush blueberry
crops are managed with a number of fungicidal compounds in order to maintain a healthy
canopy free of leaf disease pressures including Septoria leaf spot, blueberry rust, and
Valdensinia leaf spot. Left unabated, these leaf diseases can cause extensive damage to
the canopy resulting in premature defoliation, inadequate carbohydrate supply for plant
growth and development, and significantly reduced berry yields [11]. While the effects of
these chemical treatments on the plant itself have been well-studied, little is known about
their effect on the plant microbiome. Given the interconnected nature of the blueberry
and its native soil-combined with the potentially disruptive effects that these fungicides
may have on the lowbush blueberry microbiome-developing a rigorous understanding of
the effects that fungicides have on agriculturally-relevant microbes and the microbiome is
crucial in advancing production techniques for this crop and in preserving this valuable
natural resource.

The question of the effects of pesticides on the health of the soil microbiome is one
of considerable environmental concern and has, as a result, been extensively studied.
However, given the multiplicity of pesticides, both in terms of target organism (insecticide,
fungicide, herbicide, etc.) and active ingredient mode of action, mobility, and persistence,
it can be difficult to predict the effects of a given pest control product to a soil’s ecosystem.
For instance, fungicides have been linked to an increase in soil organic matter and, as
a result, microbial activity [12]. Conversely, the effect of fungicides on the health of the
soil microbiome tends to be deleterious. The application of many fungicides resulted in
decreased levels of soil biological carbon and nitrogen, and had variable effects on the
nitrogen cycle depending on the environmental context of the experiment [13].

In order to further understanding of the ecotoxicology of fungicides in soil ecosys-
tems, in general, and in the lowbush blueberry crop system, in particular, this study uses
molecular genomics techniques to analyse the microbiomes of soils treated with two widely
used fungicides, prothioconazole (Proline 480 SC) and chlorothalonil (Bravo 500) that differ
in their mode of action and half-life in soil and are typically used to control leaf diseases.
While work has been done on the subject of pesticide-microbiome interactions [13], given
the context-dependent effects of pesticides on the soil ecosystem, it is important to investi-
gate the way that specific fungicides affect specific agroecosystems. Given the potentially
disruptive fungicidal effects, this study was aimed to evaluate the effect of prothioconazole
and chlorothalonil, on the diversity, structure and function of soil microbiome. The choice
of the fungicide was defined by their differences in mode of action, differences in uptake
and mobility within plant tissue, and half-life in soil. Prothioconazole is an inhibitor of
ergosterols has been demonstrated to have a short half-life of under 5.82 days [14,15], while
chlorothalonil causes cell death by disrupting enzymatic action and has been demonstrated
to persist in the soil and to lead to reduced levels of soil respiration 60 days after appli-
cation [16,17]. Additionally, chlorothalonil has been found to be more prone to run-off
compared to prothioconazole [18]. It was thus hypothesized that the two fungicides would
induce significant changes to the fungal and bacterial microbiomes relative to control,
and that the two fungicides would elicit significantly different effects from one another.
Additionally, it was expected that the fungicide treatments may lead to changes in the
function of the bacterial microbiome.

2. Materials and Methods

Site and Sampling: The soil samples were collected from a fungicide trial conducted
in a commercial blueberry production field, in the first year of its crop cycle, in Highland
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Village, Nova Scotia (45.40406887, —63.6679066) on 28 August 2019. Soil samples taken on
1 June 2021 revealed the soil at the sampling site to be highly acidic with a mean pH of 4.98.
Additionally, the field was low in organic matter with a mean organic matter content of
3.95%. Visual observations of the soil suggested it to be of a sandy character, and outside of
the topmost centimeter, the soil possessed a light orange color. This observation conforms
to the soil test results regarding organic matter and suggests a low retention rate of humic
compounds. Soil surveys conducted by the Canadian government described the soil of
the region as an orthic humoferric podzol and noted the soil of the region to be strongly
acidic [19]. Soils such as these are typical of lowbush blueberry production, with sand and
high acidity being common features of lowbush blueberry fields and acidity in particular
has been associated with optimum plant growth in this context [20,21] For additional
information about the characteristics of the sample site soil, see Table S1. Samples were
taken from two fungicide treatment groups (prothioconazole, and chlorothalonil), as well
as a control treatment to which no fungicide was applied. For each of the three treatments,
there were four replications with each replication consisting of a 4 m x 6 m plot with a
2 m buffer strip separating each plot from the next. The fungicides had been applied to
each of their respective plots three times prior to sampling—on 4 July, 15 July, and 26 July
2019. Prothioconazole (Bayer AG, Monheim am Rhein, Germany) was applied at a rate
of 151 g a.i.-ha~!, while chlorothalonil (Syngenta Crop Protection AG, Basel, Switzerland)
was applied at a rate of 3600 g a.i.-ha~!. Both fungicides were applied using a Bellspray
Inc. Model GS hand-held sprayer unit (Bellspray Inc., Opelousas, LA, United States). Three
samples of topsoil were taken from each plot for a total of 12 samples per treatment group.
In total, 36 soil samples were acquired and kept on ice until they were returned to the
laboratory. Upon arrival at the laboratory, each soil sample was sifted through a 2 mm
sieve and then stored at —80 °C until DNA extraction could be performed.

DNA Isolation and Sequencing: For each sample, 0.250 g (wet weight) of sifted
soil was used for DNA extraction. Extraction was performed using the Omega Biotek
E.Z.N.A. Soil DNA extraction kit (Omega Bio-tek, Inc., Norcross, GA, United States)
according to the manufacturer’s specifications. Extracted DNA samples were subsequently
stored at —20 °C. Prior to sequencing, the extracted DNA was qualified with a NanoDrop
1000 spectrophotometer (Thermo Scientific, Waltham, MA, United States) to determine the
concentration of the genetic material. 5 uL of each extracted DNA sample was sent to the
Dalhousie University CGEB-IMR for library preparation and sequencing with the Illumina
MiSeq platform (Illumina Inc., San Diego, CA, United States) with paired-end 300 + 300 bp
reads, in accordance with the PCR procedure, primers, and sequencing details outlined in
the Microbiome Helper protocol [22]. The DNA was sequenced for fungi-specific ITS2 genes
(ITS2: GTGAATCATCGAATCTTTGAA forward primer, TCCTCCGCTTATTGATATGC
reverse primer) as well as prokaryotic V6-V8 16S rRNA (16S: ACGCGHNRAACCTTACC
forward primer, ACGGGCRGTGWGTRCAA reverse primer) [23,24].

Sequence Processing: The sequences were trimmed of their primers using QIIME2's
Cutadept plug-in [22,25,26]. The overlapping paired-end forward and reverse reads were
stitched together using the QIIME2 VSEARCH wrapper [27]. Low-quality sequences
were filtered from the dataset using QIIME2’s g-score-joined function (QIIME2 version
2019.7). Using QIIME2’s Deblur plug-in, the sequences were organized into amplicon
sequence variants (ASV-high resolution genomic groupings [22,27,28]. In order to account
for potential MiSeq bleed-through between runs (estimated by Illumina to be less than
0.1%), ASV which accounted for less than 0.1% of the total sequences were removed [22].
Taxonomic classifications were assigned to the ASV using QIIME2's naive-Bayes scikit-
learn function, referencing SILVA databases (16S V6-V8, and fungi-specific ITS2) [28,29].
ASV that had a high probability of being the product of chimeric reads were removed
from the dataset by filtering out any ASV which were unassigned at the division of level.
Additionally, ASV assigned to mitochondria and chloroplasts were filtered out [22]. These
ASV were used to construct two tables of ASV counts per sample—one each for the 16S
and ITS2 datasets-along with a listing of all taxa present, and a phylogenetic tree for both
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datasets [22]. A preliminary analysis of 16S rRNA data revealed one sample from UTG to
have much higher concentrations of both the phyla Firmicutes and Bacteroidetes compared
to the other samples. As these phyla are heavily associated with fecal material [30], it was
determined that this sample had likely been contaminated with fecal matter and it was
subsequently discarded from both the 165 and ITS2 datasets.

Data Analysis and Statistics: QIIME’s diversity function was used to calculate both
Shannon and Simpson’s indices (alpha diversity) as well as UniFrac matrices (beta diver-
sity) for both datasets [31,32]. These UniFrac matrices were then subjected to an ADONIS
test through which their values were fitted to a linear regression to determine what pro-
portion of variance in community structure could be attributed to treatment. Principal
coordinates analysis (PCoA) was performed using QIIME2 on the weighted UniFrac ma-
trices. The UniFrac PCoA files were ported to RStudio (Version 1.2.5001, RStudio Inc.,
Boston, MA, United States) using the qiime2R package and plotted using ggplot2 [33,34].
Differential abundance analysis was performed with the STAMP software (version 2.1.3)
using Welch's t-test to identify taxa whose relative abundance varied significantly between
treatments [35]. Adjusted p-values were calculated using the Benjamini-Hochberg FDR
multiple-test correction.

Functional Potential Analysis: Using the 165 rRNA based ASV tables and reference
sequences generated by QIIME2, functional potentials of the bacterial community were
predicted using the PICRUSt2 software (version 2.3.0). Through this method, abundance
tables were generated both for complete MetaCyc functional pathways as well as individual
enzymes, categorized by Enzyme Commission (EC) numbers [36—40]. The relative abun-
dances of these pathways and enzymes were tested for significantly differential abundance
between treatment and group using the ALDEX2 package in RStudio [41-43]. This data
was then graphically plotted using the ggplot2 package in RStudio [34].

In addition to being categorized by their specific treatment (prothioconazole, chloroth-
alonil, and untreated control (UTG)) and compared to each other (Treatment), the samples
were further categorized into groups based on whether or not they had received a fungicide
treatment. Both prothioconazole and chlorothalonil treatments were thus aggregated into a
combined treatment group (CTG) to be compared to UTG group.

3. Results
3.1. Data Description

Analysis of 165 rRNA data revealed one sample from UTG to have much higher
concentrations of both the phyla Firmicutes and Bacteroidetes compared to the other
samples. As these phyla are heavily associated with fecal material, it was suspected that
this sample had been contaminated with fecal matter and it was subsequently discarded
from both the 165 and ITS2 datasets [44]. From the ITS2 dataset, two samples, both taken
from the chlorothalonil treatment group, were deemed failed, as they contained fewer
than 800 reads (416 reads and 140 reads, respectively). Those samples were discarded.
From the 16S dataset, all noncontaminated samples were included. After the QIIME2
filtration processes had been performed, the two failed samples had been removed, the
ITS2 dataset contained a total of 220,326 reads spread across 33 samples, with a mean per-
sample frequency of 6677 reads/sample and a median frequency of 4137 reads/samples.
For normalization purposes, the ITS samples were rarefied to a depth of 874 reads/sample,
for a total of 28,842 reads. The 16S dataset consisted of a total of 835,577 reads across
35 samples, with a mean frequency of 23,874 reads/sample and a median frequency of
24,733 reads/samples. The 16S samples were normalized to a depth of 2400 reads/sample,
for a total of 84,000 reads evaluated.

3.2. Overall Community Composition

Basidiomycota was the major fungal division identified in our study and was rep-
resented by 88% of the total reads. Mortierellomycetes was the second most relatively
abundant division represented by 7% of the total ITS2 reads, with the remaining 5% of
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reads being from the remaining divisions (Figure 1A. Within Basidiomycota, Clavariaceae
was the most relatively abundant family, comprising 60% of the total reads, followed
by Tricholomataceae, Hydnodontaceae and Serendipitaceae (4% of the total ITS2 reads
each) (Figure 1B). Mortierellaceae was the most abundant Mortierellomycete found in the
microbiome (7% of the total ITS2 reads).

Family

Prothioconazole || Untreated Control | Class
Agaricomycetes
Mortierellomycetes
Umbelopsidomycetes
Tremellomycetes
Geminibasidiomycetes
GSs25
Kicoellomyoetes
Migobotryomycetes
Sordariomycetes
Rhizophydiomyoetes

=

43

other

Clavariacese
Mortierellacese
Tricholomatacese
Hydnodontaceae
Serendipitacese
Umbelopsidaceae
Pisturozymacese
Geminibasidiacese
Omphalotacese
Kidoellacese
other

Sample Sample
C Chlorothalonil_| | Prothioconazole || Untreated Control | - Phyjum D Prothioconazole || Untreated Control | Class
100 100
D_1_Proteobacteris Alphaproteobacteria
D_1_Acidobacteria Acidobacteriia
7% D_1__Adtinobacteria Actinobacteria
D_1__Vemrucomicrobis Thermoleophilia
s D_1_Bacteroidetes i Deltaproteobacteria
D_1_Gemmatimonadetes Vemucomicrobise
D_1__Planctomycetes Gammaproteobacteria
25 D_1_WPS2 Acidimicrobiia
D_1_Firmicutes Bacteroidia
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e ~

other other

x

Sample Sample

Figure 1. Microbial taxa identified in the study. (A)—fungal ITS2, class level; (B)—fungal ITS2, family level; (C)—bacterial
16S rRNA, phylum level; (D)—bacterial 165 rRNA, class level.

The five most relatively abundant bacterial phyla—which comprised 95% of the total
bacterial community—were Proteobacteria (43%), Acidobacteria (24%), Actinobacteria
(19%), Verrucomicrobia (7%), and Bacteroidetes (3%) (Figure 1C). At the class level, the five
most relatively abundant taxa were found to be Alphaproteobacteria (30%), Acidobacteria
(20%), Actinobacteria (8%), Thermoleophilia (8%), Gammaproteobacteria (7%), in total
comprising 74% of the total taxa present (Figure 1D).

3.3. Effect of Fungicides Application on Microbial Local Diversity

The Shannon diversity indices of fungal CTG was found to be significantly lower than
those of UTG (p < 0.05) (Table 1). The Shannon diversity indices of the prothioconazole
treated fungal community, when tested independently, was also significantly lower than
those of UTG (p < 0.05), while the Shannon diversity indices of chlorothalonil treated
fungal community was found not to differ from UTG (p > 0.05). Compared to UTG, CTG
fungal microbiome had significantly lowered Simpson’s evenness (p < 0.05). However,
neither fungicide, when compared independently to UTG, was found to be significantly
different in its effect on fungal evenness (p > 0.05) and Simpson’s index variance between
prothioconazole and chlorothalonil was not found to be significant (p > 0.05) (Table 1).
Pairwise comparisons of Simpson’s evenness, and Shannon diversity indices did not
reveal significant differences between CTG and UTG in bacterial alpha-diversity, as well as
between prothioconazole and UTG, chlorothalonil and UTG, and between prothioconazole
and chlorothalonil treated soils.
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Table 1. Shannon richness and Simpson evenness of fungal and bacterial communities.
Category Shannon Simpson Shannon Simpson
ITS2 16S rRNA

UTG 3.769 A 0.786 & 9.217 A 0.996 A

Prothioconazole 3.158 B 0.791 AB 9.133 4 0.996 A

Chlorothalonil 3.098 AB 0.789 AB 9.0124 0.995 A

CTG 3.159 B 0.790 B 9.072 4 0.996 A

Significance of variance tested by Kruskal-Wallis test of alpha-diversity indexes by treatment and group. Within
both ITS2 and 168, variables with an # are significantly different from those with a B; variables with 48 do not
significantly differ from either (p < 0.05).

3.4. Effect of Fungicides Application on Communities Dispersion

Visualization of dissimilarity between fungal communities across treatments (pro-
thioconazole vs. chlorothalonil vs. UTG) revealed limited clustering or visible trends in
beta diversity (Figure S1A). The analysis of strength and statistical significance of sample
groupings (ADONIS test) indicated that the treatments influenced the structure of the
fungal community (R? = 0.11, p < 0.05; Table 2). Additionally, comparing CTG to UTG
indicated that 10% of fungal community variance can be attributed to whether a field was
treated with fungicide (R? = 0.099, p < 0.01). On the other hand, the type of fungicide
(prothioconazole vs. chlorothalonil) was not a driving factor affecting fungal community
structure (p > 0.1; Table 2). The fungicide treatments imparted a lesser effect on the bacterial
community structure compared to the fungal microbiome. There was no visual separa-
tion between the treatment groups based on weighted UniFrac distances (Figure S1B), as
well as no statistical significance of sample groupings into CTG and UTG, treatments, or
prothioconazole and chlorothalonil was detected (Figure S1B; Table 2). However, the struc-
ture of bacterial communities treated with chlorothalonil differed significantly from UTG
(p > 0.05), around 9% of community variation was explained by chlorothalonil treatment.

Table 2. Variation in amplicon sequencing sample groupings explained by weighted UniFrac dissimilarity.

Grouping ITS2 16S rRNA
Treatment 0.113* 0.073
Group (CTG vs. UTG) 0.099 ** 0.051
Prothioconazole vs. Chlorothalonil 0.024 0.025
Prothioconazole vs. UTG 0.139 ** 0.063
Chlorothalonil vs. UTG 0.101 * 0.092 *

Weighted UniFrac distances were calculated for each subset of samples. ADONIS tests were used to assess
whether beta-diversity is related to sample groupings, 999 permutations, R?, ** p < 0.01 and * p < 0.05.

3.5. Effect of Fungicides Application on Soil Community Structure

The fungal family, Clavariaceae, was found to have an increased relative abundance in
plots treated with prothioconazole compared to UTG (p < 0.05). Interestingly, this difference
in abundance was not present in comparisons of chlorothalonil and UTG. The relative
abundance of a member of Clavariaceae, Clavaria sphagnicola, was also increased in the
prothioconazole treatment group (p < 0.05) compared to UTG (Figure S2). In comparing
chlorothalonil and UTG, no taxa at any level of classification were found to differ signif-
icantly in their relative abundances (p > 0.05). Furthermore, no taxa were differentially
represented between prothioconazole and chlorothalonil treatment groups (p > 0.05). In
the 165 rRNA dataset, one bacterial genus, Rudaea, was found to be significantly more
relatively abundant in UTG compared to CTG (p < 0.05). However, no taxa were found to
differ significantly in relative abundance between the soils treated with either fungicide
individually and UTG, nor did any taxa differ between prothioconazole and chlorothalonil
treated soils.
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3.6. Effect of Fungicides Application on Bacterial Functional Potentials

Based on 16S rRNA sequencing data, in total 2096 Enzyme Commission (EC) com-
prising 396 MetaCyc pathways were identified in the study. An analysis of the strength
and statistical significance of sample function groupings (ADONIS test) indicated that indi-
vidual treatments (prothioconazole vs. chlorothalonil vs. UTG) were not associated with
differences in bacterial microbiome’s functional composition considering both individual
enzymes (EC) and functional pathway (p-value > 0.05) (Table 3). However, when com-
paring pathway abundances by group (CTG vs. UTG), a small but statistically significant
functional variation between CTG and UTG (R2 = 0.056, p-value < 0.05) was detected.

Table 3. Variation in amplicon sequencing sample groupings explained by weighted UniFrac dissimilarity.

Grouping Pathway EC
Treatment 0.078 0.088
Group (CTG vs. UTG) 0.056 * 0.068
Prothioconazole vs. Chlorothalonil 0.036 0.032
Prothioconazole vs. UTG 0.057 0.068
Chlorothalonil vs. UTG 0.083 0.101

PICRUSt2 pathway and CE tables were used with QIIME2 pipeline for ADONIS tests to assess whether their
Bray—Curtis dissimilarity was related to sample grouping, 999 permutations, R?, * p < 0.05.

Four predicted biological pathways were differentially represented between UTG to
CTG (p < 0.1). PWY-5676 (acetyl-CoA fermentation to butanoate II), PWY-6588 (pyruvate
fermentation to acetone), and PWY-6641 (superpathway of sulfolactate degradation) were
significantly increased in their relative abundances in CTG relative to UTG. One, PWY-
7003 (glycerol degradation to butanol), was overrepresented in UTG relative to CTG
(Figure 2). PWY-6641 was also overrepresented in plots treated with chlorothalonil treated
soils compared to UTG, while no pathways were found to differ significantly between
prothioconazole treated soils and UTG.

PWY-5676 ||| acetyl-CoA PWY-6588 ||| pyruvate
fermentation to butanoate Il fermentation to acetone

0.221 g
0.233 .

0.201

.
0203 $0.181 3
PWY-6641 ||| superpathway of

0.161 sulfolactate degradation

0.173 o2 B
’ 0.141 5
0.0201
0.143 0.121 e:
CTG uTG CTG uTG Group = . Treatment
Group Group W ce 00161
M UG S B3 Prothioconazole
PWY-6641 ||| superpathway of PWY-7003 ||| glycerol m UTG
sulfolactate degradation degradation to butanol . B
. > 0.0121 w]
0.0241 . 0.012
¢ 0.0081 i
0.0201 0.009 P Prothioconazole UTG
. Treatment
R >
0.0161 0.006
0.0121 0.003
e .

00081 5 0.000 .
008 CTG UTG

CTG

uTG Group

Group

Figure 2. Pathways that were at differential relative abundances between CTG and UTG. Corrected p-values (g-values)

were calculated based on Benjamini-Hochberg FDR multiple test correction. Features with (Welch's t-test) g-value < 0.1 in

ALDEX2 were considered significant and were thus retained. The analysis was based on 165 rRNA sequencing data.
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EC:6.2.1.32, Anthranilate--CoA ligase

EC:3.5.2.12, 6-aminohexanoate-cyclic-dimer hydrolase
EC:1.14.12.10, Benzoate 1,2-dioxygenase

EC:4.2.1.83, 4-oxalmesaconate hydratase

EC:5.1.2.2, Mandelate racemase

EC:1.3.99.8, 2-furoyl-CoA dehydrogenase
EC:1.14.14.1, Unspecific monooxygenase
EC:2.3.1.174, 3-oxoadipyl-CoA thiolase
EC:1.14.13.107, Limonene 1,2-monooxygenase
EC:1.14.13.2, 4-hydroxybenzoate 3-monooxygenase
EC:2.8.3.8, Acetate CoA-transferase

EC:5.5.1.2, 3-carboxy-cis,cis-muconate cycloisomerase
EC:4.2.1.103, Cyclohexyl-isocyanide hydratase
EC:1.14.13.1, Salicylate 1-monooxygenase
EC:1.14.13.82, Vanillate monooxygenase

EC:3.8.1.3, Haloacetate dehalogenase

EC:3.1.1.24, 3-oxoadipate enol-lactonase

EC:3.8.1.2, (S)-2-haloacid dehalogenase

EC:3.5.1.32, Hippurate hydrolase

EC:3.1.1.17, Gluconolactonase

In total 109 ECs were differentially represented between CTG and UTG. The 71 highly-
abundant ECs are listed in (Table S2). Together they comprised around 3.5% of total
predicted feature counts from 16S rRNA reads. A highly abundant enzyme, nitronate
monooxygenase, EC:1.13.12.16 was significantly increased in CTG relative to UTG. Another
potentially consequential enzyme to the processing of nitrogen in the soil is EC:1.17.1.4
(Xanthine dehydrogenase). Additionally, two enzymes, EC:3.8.1.2 and EC:3.8.1.3-(5)-2-
haloacid dehalogenase and Haloacetate dehalogenase respectively were found to have
significantly increased in abundance in CTG relative to UTG. 25 EC involved in xeno-
biotics biodegradation or metabolism were overrepresented in fungicide treated soil
(Figure 3), including highly abundant CEs-Glutathione transferase (EC:2.5.1.18), Isoquino-
line 1-oxidoreductase (EC:1.3.99.16), 4-carboxymuconolactone decarboxylase (EC:4.1.1.44),
Gluconolactonase (EC:3.1.1.17), Hippurate hydrolase (EC:3.5.1.32), and 3-oxoadipate enol-
lactonase (EC:3.1.1.24). They represented around 43% of predicted feature counts compris-
ing all CEs differentially represented between CTC and UTG.

e
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Figure 3. ECs involved in synthetic chemical degradation that were at differential relative abundances between CTG and
UTG. Corrected p-values (g-values) were calculated based on Benjamini-Hochberg FDR multiple test correction. Features
with (Welch's t-test) g-value < 0.1 in ALDEx2 were considered significant and were thus retained. The analysis was based
on 165 rRNA sequencing data.

4. Discussion

Our data indicated that application of the fungicides prothioconazole and chlorothalonil
had some effect on soil microbiome, but bacterial and fungal communities differed in their
responses to the treatments, as reflected in the changes in the communities” structure
and/or diversity. When combined in one group (CTG), the fungal microbiomes from
fungicide treated soils exhibited decrease in alpha-diversity and fungicide treatment was a
driving factor affecting fungal community structure. However, no response of bacterial
microbiome to fungicides treatments was detected. Interestingly, when compared to each
other, despite their differing mechanisms of action and degrees of persistence in the soil,
there was no significant difference between the two fungicides based on their overall effect
on community structure (ADONIS test) and alpha diversity.

Considering individual fungicides, the treatment with chlorothalonil significantly
affected both fungal and bacterial communities’ structure. Previous research on the effects
of chlorothalonil application on bacterial communities have had mixed findings. In a 2019
study, it was found that the growth of 33% of the strains, isolated from the soils exposed to
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chlorothalonil, was affected by the presence the fungicide [45]. However, other trials have
identified an increased growth in some bacterial taxa in the presence of chlorothalonil [46].
The effect of chlorothalonil on the soil microbiome was not surprising as chlorothalonil is
persistent in the soil and has been shown to reduce soil respiration [17,46]. It was perhaps
somewhat more surprising that prothioconazole, with its relatively shorter half-life, led to
the loss in fungal richness as well as affected fungal community structure (ADONIS test).
However, given that the fungicides are foliar treatments, in this context, it is perhaps not
surprising that the two treatments did not yield more dramatic changes to soil microbial
community structure relative to control as the amount of the fungicide-soil contact would
not be expected to be large. An additional factor which may mitigate the effects of the two
treatments on soil communities may be the physical and chemical characteristics of the soil
itself. Given the coarse texture of the soil, its capacity for water retention is relatively low,
and its low pH minimizes amount of adsorption in the soil matrix. It may be the case that
these two factors combine to minimize the amount of time that any fungicide remains in
the soil further reducing its impact on the soil microbiome.

Clavariaceae was found to be the most relatively abundant fungal family in all types of
soils. The relative abundance of Clavariaceae, and more specifically Clavaria sphagnicola, was
increased in prothioconazole treated soils. C. sphagnicola may be of agricultural relevance
to the lowbush blueberry as it had been putatively associated with the formation of ericoid
mycorrhiza associations (EMA) with plants in the genus Vaccinium and may exist in a
symbiotic relationship with the blueberry plant [7]. One possible explanation for the
expansion of C. sphagnicola may be that it fills niches which have been thinned out by
fungicide treatment. If indeed C. sphagnicola is forming EMA with the blueberry crop, the
increased abundance of C. sphagnicola may imply that it is replacing other symbionts or
pathogens which are killed by the fungicide treatment, possibly implying a limited loss of
overall mycorrhizal symbiosis. Alternatively, it may be the case that the plants, with the
burden of disease lessened, have greater photosynthetic resources to spare and can support
a larger number of symbionts per plant.

Analysis of functional compositions of soil microbiome identified four pathways
differentially represented between UTG and CTG. Pathways PWY-5676, PWY-6588 and
PWY-7003 were associated with anaerobic respiratory pathways. PWY-5676 and PWY-6588
were overrepresented in CTG, and PWY-7003 had an increased relative abundance in
UTG. Superpathway of sulfolactate degradation, PWY-6641, was overrepresented in CTG
compared to UTG. PWY-6641 is an umbrella category of three related pathways through
which bacteria convert organosulfonate into sulfite and either pyruvate or acetyl-CoA.
Additionally, PWY-6641 was found to have increased significantly in relative abundance
in plots treated with chlorothalonil in comparison to UTG. The overrepresentation of this
pathway may imply a change to the way in which sulfur compounds are processed in the
soil induced by either chlorothalonil or fungicide treatment in general.

Variation in the relative abundances of a number of enzymes between UTG and CTG
suggested changes in the function of bacterial microbiome under fungicide treatments. A
highly abundant enzyme, nitronate monooxygenase, EC:1.13.12.16 was significantly in-
creased in CTG relative to UTG. This enzyme is degrading aci-nitroethane into acetaldehyde
converting a nitrogenous organic compound into an inorganic plant-available nitrogen
compound [47]. Another potentially consequential enzyme to the processing of nitrogen in
the soil is EC:1.17.1.4 (Xanthine dehydrogenase), which processes xanthine into urate [48].
The increase in the relative abundances of these enzyme under CTG may be an indicator of
changes to the way in which the soil nutrients become available to the plants. Xanthine
dehydrogenase is also involved in metabolism of pesticide ingredients. Additionally, two
enzymes, EC:3.8.1.2 and EC:3.8.1.3-(S)-2-haloacid dehalogenase and Haloacetate dehaloge-
nase respectively pertaining to the degradation of halo-organic compounds were found
to have significantly increased in abundance in CTG relative to UTG [49,50]. This finding
is significant in that both prothioconazole and chlorothalonil are themselves halocarbons,
potentially alluding to the breakdown of pesticides by microbial action. Several other
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enzymes involved in synthetic chemical degradation and metabolism were found over-
represented in fungicides treated soils. These findings suggested a functional shift toward
degradation of synthetic chemicals explained by the introduction of the fungicides into soil.
Additionally, this apparent increase in bacterial degradation of fungicides may suggest the
possibility of a reduction in fungicide effectiveness in certain contexts. If bacteria reduce
the time in which the active ingredient is present, the total time during which the plant is
protected from disease pressure is reduced. Indeed, it has been observed that the microbial
selection process induced by repeated applications of a given fungicide may lead to an
accelerated rate of biodegradation [51]. The increased abundance of these enzymes may be
associated with this phenomenon and would therefore imply that the efficacy of the trial
fungicides would decrease over time.

Despite some differences in relative abundances of several enzymes and functional
pathways between CTG and UTG, where was a minor effect of fungicide treatments on the
overall bacterial functional composition. While the analysis of the strength and statistical
significance of sample function groupings did find that a small proportion of functional
variation in pathways between CTG and UTG, comparing the individual treatment groups
did not return significant results.

Considering EC abundances, no significant variation was found in response to either
group or individual treatment. Some of the significantly differentially abundant enzymes
mapped to reactions of potential ecological significance, suggest changes to the soil ecology
as a result of fungicide application. Furthermore, though some variance in functional
pathway abundances corresponded to fungicide intervention, the amount of variance
was small enough that it is unclear whether fundamental changes to the soil’s ecosystem
services would be expected as a result.

5. Conclusions

Given increased awareness of the importance of the soil microbiome on soil health and
crop production, developing an understanding of the effects of agrichemicals on the soil
microbiome is equally critical. While both fungicides evaluated in this study were shown to
diminish soil fungal diversity, our findings suggest that the effects of prothioconazole may
have a less deleterious effect on crop symbionts as shown by the increased abundance of a
taxa of potential blueberry symbionts. Analysis of the bacterial microbiome did not indicate
significant changes to the taxonomic profile but the predicted functions of the microbiome
under treatment conditions relative to control did suggest the possibility of changes to soil
nutrient processing and suggested the breakdown of fungicides by bacterial action.
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