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Abstract: To date, several cases of thrombosis have been confirmed to be related to Sars-CoV-2
infection. Multiple attempts detected the prolonged occurrence of Sars-CoV-2 viral RNA (long
COVID) in whole blood suggesting that virus byproducts may remain within cells and tissues well
over the disease has finished. Patients may develop severe thrombocytopenia, acute anemia of
inflammation and, systemic thrombosis with the fatal course of disease, which is suggestive of
further interferences of Sars-CoV-2 on hematopoietic stem cells (HSCs) within the differentiation
process towards erythroid and megakaryocytic cells. Therefore, we speculated whether Sars-CoV-2
propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic
cells as the main cause of thrombotic events in either COVID-19 patients or vaccinated individuals.
Results: The Sars-CoV-2 RNA replication, protein translation and infectious particle formation as the
spike proteins in hematopoietic cell lines take place via the angiotensin-converting enzyme 2 (ACE2)
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entry pathway within primary CD34+ HSCs inducing, ex vivo, the formation of defected erythroid
and megakaryocytic cells that eventually become targets of humoral and adaptive immune cells.
Conclusions: Viral particles from affected CD34+ HSCs or the cellular component of RBC units and
eventually platelets, present the greatest risk for sever thrombosis-transmitted Sars-CoV-2 infections.

Keywords: COVID-19; Sars-CoV-2; CD34+ hematopoietic stem cell (HSCs); thrombosis; throm-
bophilia; angiotensin-converting enzyme 2 (ACE2)

1. The CD-34+ Hematopoietic Stem Cells and the Risk of Thrombocytopenia and
Thrombotic Events in COVID-19 Infection, the Hypotheses of the Disturbances in
the Myeloid Trait

Sars-CoV-2 virus, a member of the Coronavirus family, was recently isolated in 2019
in the city of Wuhan in Hubei province, People’s Republic of China, as the etiologic
agent of coronavirus disease 2019 (COVID-19). The Sars-CoV-2 virus caused several large
outbreaks in Asia before it spread through Europe, the Americas and India [1,2]. The
majority of infected people remain asymptomatic or develop mild symptoms such as
fever, cough, conjunctivitis, myalgia, fatigue and, minor neuropathies [3]. However, more
severe complications such as Guillain-Barré syndrome in adults and elderly have been
associated with Sars-CoV-2 infection and led to the declaration of COVID-19 as a Public
Health Emergency of International Concern by the World Health Organization (WHO) in
2020 [4–6].

Data from different studies confirmed a drastic drop in platelet count (thrombocytope-
nia), microcytic anemia, low iron, and a fatal outcome for a patient with sickle cell anemia.
These observations raised the question whether Sars-CoV-2 has the capability to infect
hematopoietic stem cells interfering in the myeloid differentiation process and particularly
those cells belonging to the erythroid and megakaryocytic lineage [7].

During hematopoiesis, multipotent human HSCs and progenitor cells, characterized
by the expression of a cluster of differentiation 34 (CD34), are able to differentiate into
several lineages, including common myeloid cells and lymphoid progenitors (Figure 1).
Myeloid progenitor cells differentiate to megakaryocyte/erythroid lineage or granulo-
cyte/macrophage progenitor phenotypes.

The entire process of differentiation to erythrocytes, megakaryocytes, and megakaryocyte-
derived platelets is mainly driven by erythropoietin (EPO) and thrombopoietin (TPO) [8,9].
During the differentiation process, the HSCs lose the distinctive CD34+ marker; instead,
the erythroid and megakaryocytic differentiation is characterized by the appearance of
CD71/Glycophorin A (GLYA) or CD41/CD42b (Figure 1) on erythrocytes and megakary-
ocytes/platelets, respectively [10–12].

Sars-CoV-2 was reported to infect leukocytes—mainly monocytes and macrophages—
and B and T cells subtypes—mainly CD4, CD4 naïve, CD8 naïve, T suppressor (CD8-CD57)
and T regs (CD4+CD25+high) [13]. However, so far, little is known about the infection of
CD34+ HSCs or platelets phenotype by Sars-CoV-2.

Nevertheless, the mechanism of Sars-CoV-2 infection is well understood and could
presumably work for any types of cells. The binding between the viral surface spike
glycoprotein (S) and target cell surface takes place via the angiotensin-converting enzyme-2
(ACE2), followed by the cleavage of S by the transmembrane protease serine 2 (TMPRSS2).
Several research teams observed that this mechanism via ACE2 could also be observed
in intestinal epithelial cells, hepatocytes, and neurons, which explains the multiplicity
of symptoms that characterize COVID-19 disease [13,14]. Since recently, an aberrant
increase in erythroid progenitors together with an aberrant decrease in platelets circulation
has been showed either in critical hospitalized cases or after receiving the vaccine shot.
Indeed, these observations together with hypoxia, hypocapnia, alkalosis, iron anemia, and
coagulopathies were seen highly correlated with an alarming grade of death risk [15–17].
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Of note, progenitors of the erythroid and myeloid lineage appear to be the only cell types
expressing both ACE2 and TMPRSS2 among the cells present in bone marrow. Medical
reports from COVID-19 patients showed an increased mean platelet volume (MPV) and
platelet hyperactivity, which were occasionally associated with a decrease in the overall
platelet count. In our experience, detectable Sars-CoV-2 RNA in the blood stream was
associated with platelet hyperactivity in critically ill patients.
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Figure 1. The etiopathogenesis of thrombotic event caused by the S proteins released by the Sars-CoV-2 virus. The current
hypothesis is substantially based on three momenta: (i) The subversive activity perpetrated by the virus at the very
beginning of the initial differentiation phase of CD34+ HSCs towards the myeloid lineage. (ii) The presence of SNPs at
various level of the immune system’s both inflammatory and modulatory response. (iii) SNPs present of gene controlling
the coagulation system (MTHFR and Leiden).

Zhang and colleagues clearly demonstrated that platelets are able to express ACE2 and
TMPRSS2; they also described the mechanism by which Sars-CoV-2 spike proteins induce
platelet hyper-activation and super-aggregation via PAC-1 binding, CD62P expression, α
granule secretion and dense granule release, thereby enhancing thrombosis formation [18].

Although they provided clear evidence suggesting the role of the MAPK pathway,
downstream of ACE2, enhancing the magnitude of Sars-CoV-2 on platelet activation, in re-
leasing coagulation factors, inflammatory factors, and in the formation of leukocyte–platelet
aggregates, we assume otherwise that this is not comprehensive. In fact, the coagulation
process was well described by Di Castelnuovo and colleagues referring to the hypercoagu-
lable condition as a possible pathogenic mechanism contributing to disease progression
and lethality in COVID-19 hospitalized patients [18]. The insurgence of rare thrombosis
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events either in COVID-19 affected patients or in post-vaccinated individuals needs further
consideration. In our opinion, four factors should be considered: (i) the formation of the
“abnormal” platelet progenies from Sars-CoV-2-infected myeloid megakaryocytes which be-
come targets of host immunity (T cells, Th1, NK cells, macrophage M-1); (ii) the presence of
single nucleotide polymorphisms (SNPs) on genes regulating the coagulation cascade such
as MTHFR and Leiden-factor V; (iii) SNPs at the level of genes regulating the expression of
both pro-inflammatory responses (IL-6, TNFα, IFNγ) and immune-modulatory responses
(IL-10); (iv) fast platelets turnover with an average lifespan of 8–10 days (Figures 1 and 2).
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Figure 2. The capacity of the Sars-CoV-2 of interfering the differentiation process from CD34+ to megakaryocytes tend
to generate a lineage of affected platelets that become target of autoimmune response via macrophages-M1, neutrophils,
T-killers that in turn increase the production of pro-inflammatory cytokines and interleukins IL-6, IL-1β, TNFα and INFγ.
The impossibility of reversing the process is probably due to two main factors; first, the presence of SNPs on genes regulate
the expression of coagulative factors such as MTHFR and Leiden factor; second, the SNPs present on genes regulate the
inflammatory responses (IL-6, IL-1β, TNFα and INFγ) and genes conversely regulate the immunomodulatory responses
(IL-10, TGF-β).

Several viruses showed this capability of interfering during the myeloid differentiation
process to platelets or erythrocytes mainly in consequence of their fast turnover and due to
their short half-life. The example may come from idiopathic thrombocytopenic purpura
(acute or chronic) that may follow a viral illness, such as chickenpox or Zika virus. In Zika
infection, authors observed that cell contagion started from the granulocyte/macrophage
lineage, by which patients developed severe thrombocytopenia and microcytic anemia,
stressing that the death risk may have followed in complications due to the interference
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of Zika virus with erythroid and megakaryocytic cells. According to the authors, the
hematopoiesis phase is a crucial moment for the Zika virus to execute its opportunistic
attack. This is the most critical phase as multipotent human hematopoietic stem and
progenitor cells (HSPCs-CD34) start differentiating into several lineages, including common
myeloid (CMP) and lymphoid (CLP) progenitors [19–21].

The contaminated platelet progenies become an easy and highly vulnerable target of
the host immune cells. In addition, in response to an acute infectious phase, such as sepsis,
platelets tend to be hyper-reactive promoting the formation of disseminated intravascular
coagulation (DIC), which obstructs vessels leading to the formation of systemic ischemic
blood clots and multiple organ failure [22,23]. In this scenario, platelets will be both the
target and promoter of an uncontrolled pro-inflammatory cytokine storm and bind to
neutrophils and release NETs, which in COVID-19 terminal patient promotes lung collapse
and failure [22–25].

The presence of SNPs in cytokine and interleukin genes promotes a further aggrava-
tion of the symptoms. The variants not only could be related to the disease susceptibility
and cytokine storm, but to COVID-19 complications as well. For instance, variants in
ACE2 and TMPRSS2 have been associated to irreversible thrombotic risk condition, while
variants in both IL-6 and IL-10, which regulate the level of inflammatory and immune mod-
ulatory response, may compromise the correct balance between the two phases leading to
an uncontrolled irreversible inflammatory process. The low or total lack of the expression
of IL-10 together with an overexpression of IL-6, TNFα and IFNγ as a consequence of poly-
morphisms attracts great attention especially in diseases following metabolic dysfunctions
and in aging-related diseases, typical features of COVID-19-affected individuals. All this
information open up a new discussion on COVID-19, especially if one considers the long
COVID disease manifestation as it may exhibit different patterns with permanent organ
damages and persistent post-COVID symptoms [26–29].

2. Validating the Premises

Albeit, it is yet scientifically to be demonstrated, there are raising concerns toward a
possible association between SARS-CoV-2 and the potential breakdown of the hematopoi-
etic stem cells differentiation process which causes thrombocytopenia, thrombolytic events
and acute anemia. We proposed here in accordance with recent immunological advance-
ments in COVID-19 research a new model of pathogenesis. This means that COVID-19 is a
complex condition consequent of multiple local, systemic and genetic factors that worsen
an individual’s correct response.

Several results and findings have validated this hypothesis. The analysis and measure-
ment of serum CD34+ HSCs, affected megakaryocytes and platelets, the polymorphism
on cytokines and interleukins, the over-expression of T-cells, neutrophils NET and M1
macrophages are all features that have been routinely found and assessed which eventually
explain those death cases of devastating thrombosis as a consequence of Sars-CoV-2 and
vaccine-released S proteins.

In addition, due to its close relation to Zika and Dengue virus present in the Asia
Pacific region, the Americas and the Caribbean, the Sars-CoV-2 virus similarly showed
its association with significant clinical manifestations such as neural damages and the
Guillain-Barré Syndrome, a tropism that has been seen in the context of hematopoietic
stem cells activity [30]. We also speculated that Sars-CoV-2-induced impairment of blood
vessel integrity or development is mainly related to the high degree of inflammation
due to the presence of specific polymorphisms (SNPs) on genes in charge of regulating
inflammatory and immune-modulatory responses such as IL-6, IL-1a;b, TNF-α, IFN-γ and
IL-10. However, further investigations are crucial to unravel the connection of Sars-CoV-2
pathogenicity and symptom manifestation towards prevention and therapy.
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