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Simple Summary: Direct observation of mammalian behavior requires a substantial amount of effort
and time, particularly if the number of animals to be observed is sufficiently large or if the observation
is conducted for a prolonged period. In this study, different machine learning methods were applied
to detect and estimate whether a goat is in estrus, based on the goat’s behavior. The percentage
concordance (PC) of their behavior, based on tracking data and human observations, was evaluated.
The results establish that HMM is an adequate method from the viewpoints of estimation, statistical,
and time series modeling. In this experiment, neural network did not seem to be adequate method,
however, if the more goat’s data were acquired, neural network would be an adequate method
for estimation.

Abstract: Mammalian behavior is typically monitored by observation. However, direct observation
requires a substantial amount of effort and time, if the number of mammals to be observed is
sufficiently large or if the observation is conducted for a prolonged period. In this study, machine
learning methods as hidden Markov models (HMMs), random forests, support vector machines
(SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based
on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was
obtained using a video tracking system and used to estimate whether they, which are in “estrus” or
“non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally,
the PC of random forest seems to be the highest. However, The percentage concordance (PC) value
besides the goats whose data were used for training data sets is relatively low. It is suggested that
random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs
is high. However, considering the calculation time and HMM’s advantage in that it is a time series
model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s
data were acquired, neural network would be an adequate method for estimation.
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1. Introduction

The purpose of this study was to show that machine learning can be applied to detect and estimate
whether a goat is in estrus based on the goat’s behavior, and the adequacy of detection and estimation
method by machine learning is verified. Estrus is a state of sexual receptivity during which the
female will accept the male and is capable of conceiving. This behavioral state occurs under hormonal
regulation involving the ovary and pituitary gland, and precedes or coincides with ovulation [1].
Behaviors exhibited during estrus are significant for successful mating in all mammals. Estrus behavior
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is characterized by three components: attractivity, receptivity, and proceptivity [2]. Attractivity is the
female’s stimulus value in evoking sexual responses by the male [2]; an example can be changes in
the female’s scent (pheromones) [3]. Receptivity is defined as female responses that are necessary and
sufficient for the male’s success in achieving intravaginal ejaculation [2]. Proceptivity is any behavior
exhibited by a female that initiates or maintains sexual interaction with a male, which in goats includes
approaching males, sniffing, mounting, and tail wagging [4–6]. Here, upon sniffing and mounting,
the female permits mounting by the male. These behaviors are generally monitored by a human
observer because direct observation is currently regarded as the best method for obtaining detailed
data regarding specific behaviors [7]. Generally, direct observation requires substantial effort and
time, if the number of targets to be observed is large and the observations are to be conducted for a
prolonged period. For example, a previous study shows that it takes 24 h/day for 13 days to describe
breeding behavior and activity budgets of an undisturbed pair of adult polar bears [8]. The case of
goats is almost similar to this. In addition, observation-based data are based on a human observer’s
subjective judgment, and the observation by other observers might yield different results. In other
words, the observation results differ depending on the observers, particularly their skill or experience.
For this reason, it is necessary to develop objective and effective quantitative evaluation methods to
replace ineffective evaluation methods based on an observer’s direct observation. In the livestock
industry in particular, the need for information and communication technology (ICT) and the Internet
of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects,
animals, or people that are provided with unique identifiers and the ability to transfer data over a
network without requiring human-to-human or human-to-computer interaction [9]) for monitoring
and management of production, mating, and health of animals has been growing [10].

Previous studies [7] have shown that automated video tracking systems for studying animal
behavior were introduced in the early 1990s and that they have been increasingly incorporated into
studying laboratory mice [11–13] and other small animals. In addition to the development of digital
image processing technology, several types of specialized computer software for animal tracking have
been proposed, which allow tracking of positions and movement of subjects automatically and generate
coordinates of a target position as time series data. Vector analysis of the trajectory data, i.e., the
subject’s position, can be used to assess the activity of the subject by calculating movement distance
and speed. More complex behaviors, such as social interactions between male and female mice can be
identified automatically using statistical models [14–16]. The merit of quantitative evaluation methods
is that they are not limited by an observer’s capacity and proficiency. Even if well-trained and proficient
observers judge the behavior, the judgment might vary between two observers. In addition, even if the
observers are well-trained, they might make mistakes, i.e. human error. According to our previous
study, the machine learning method could detect states of mice that well-trained observers could
not judge well due to human error [17]. We think that the case of estimating goat states is similar.
Considering this, quantitative evaluation method has merit in terms of solving these problems.

The video tracking systems are widely used to track small objects, such as laboratory mice [12,14–16],
small animals [18,19] and fishes [20], to large animals, such as monkeys [21] and pigs [22].

On the other hand, from the point of effective behavior analysis of large animals such as goats,
tracking the animal’s behavior and analyzing its tracking data can be beneficial. For example, previous
studies have involved fixing a data logger to cattle and detecting their estrus behavior, in cases of
large animals’ behavior detection, and that data logger has been commercialized [23,24]. In addition,
statistical modeling can be quite effective towards utilizing the recorded animal’s behavioral data.
Previous studies show effective behavioral analysis and tag development from the point of statistical
modeling [25]. However, it takes time and effort to attach sensors because the sensors are affixed to
the animals by winding a band around them. In addition, there is a need to improve the materials
used in sensors to prevent breakage by animals and shifting of attached sensors. It is also necessary
to downsize sensors and facilitate sensor attachment considering field use [10], because it becomes
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difficult for animals to move around if the sensors are large in size, and it takes a long time, if attaching
the sensor is not facilitated. This prevents efficient data acquisition.

Therefore, alternative methods for identifying estrus behavior in large animals must be developed.
Video tracking is one of these methods because it does not restrict the animals’ movement due to
attached sensors. Tracking data are acquired by attaching a marker to a goat (which is considered as
an example of a large animal) and methods for estimating the goat’s estrus behavior from these data are
devised. A previous study has shown that an estrus goat has an increased tendency to approach and
stand near a male goat’s paddock, based on the male goat’s behavior [7]. In this case, the female goat’s
behavior is recorded as a movie, and a professional evaluator judges the goat’s behavior subjectively
for exhibiting estrus tendencies in each frame.

Generally, machine learning is used for pattern recognition [26] or estimation [27]. One application
of machine learning is to estimate behavior. For example, machine learning is used for prediction
of ambulation behavior [28] or everyday life activities [29]. As for animals’ behavior, it is used for
automated measurement of social behavior of mice with depth sensing and video tracking [30].
In another study, dairy cows’ behavior is predicted by variable segmentation and ensemble
classifiers [31]. It is suggested that machine learning could be applied to detect and estimate,
and/or predict a goat’s behavior as well. Especially, as far as author’s survey, there are no previous
studies about machine learning methods that estimate whether goat is in estrus state or not. In this
study, as methods of machine learning, hidden Markov models (HMMs) [32–34], random forest,
support vector machines (SVMs), and neural networks was applied to detect and estimate whether
a goat is in estrus, based on the goat’s behavior, and the adequacy of this detection and estimation
method is verified. As for HMMs, a previous study has shown that HMMs are adequate for detecting
and estimating a large animal’s “estrus” and “non-estrus” behaviors [10]. However, in this study,
“estrus” behavior is divided into “approaching the male” state and “standing near the male” state
(this will be described in Section 2.4). The purpose of dividing goat’s behavior into two is for estimating
more detail states of goats. Here, there are other machine learning methods asides from HMMs, and if
we can estimate when these states related to “estrus” behavior occur by some machine learning method,
it might help breeding management to mate animals successfully. This paper can contribute to this. In
general, for breeding goats, it is said that different areas are needed if a large number of animals should
be kept, and they should be divided into groups. Ideally, they are divided into groups, such as seeded
male goats, young male goats, young female goats, mother and child goats (calving to weaning), adult
female goats (unconceived), and sick goats. At mating time, sired goats are placed into the female
flock [35].

It is important to detect estrus accurately because the breeding season will be over if estrus is
missed. For this reason, breeders need to determine if their goats are in estrus. They need to train
to discern whether goats are in estrus or not accurately. By demonstrating the possibility of using
machine learning methods, such as those in this manuscript, to estimate goat behavior, breeders who
are uncertain about their goats’ states will be able to learn about goat behavior in real time, eliminating
the need to spend their time training to distinguish between estrus and non-estrus accurately.

The remainder of this paper is organized as follows. Section 2 comprehensively explains the
experiments and the estimation methods used in this study, Section 3 describes the estimation results
and discusses the results, and Section 4 summarizes the main findings of this research with a brief
consideration for future study.

2. Materials and Methods

The methods described in the study by Endo et al. [7] are followed in this study.
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2.1. Ethics Approval and Consent to Participate

Adult female Shiba goats used in this study were maintained at the Tokyo University of
Agriculture and Technology, and all of the experimental procedures were approved by the University
Committee for the Use and Care of Animals at Tokyo University of Agriculture and Technology (#27-18).

2.2. Animals and Housing

Six to eight goats were housed in a paddock with an outside area of 25 m2, a sheltered area of
15 m2, and a natural photoperiod. The goats were fed maintenance diets of alfalfa hay cubes twice a
day (0900 h and 1500 h). Clean water and mineralized salt were provided ad libitum.

2.3. Video Recording

The study was conducted between November 2014 and January 2015. All female goats were
checked for estrus once or twice daily and were considered to be in estrus when they allowed mounting
by a male goat. Here, female goats and a male goat are housed separately. Between December 2014
and January 2015, 16 goats were tested (age = 2–9 years, body weight = 21–37 kg) and confirmed to
be in estrus (n = 8: #24, #23, #17, #33, #12, #9, #4, and #22) or not in estrus (n = 8: #25, #13, #6, #3, #14,
#15, #21, and #35). An observation pen (2.5 m × 2.5 m) was set up at a corner of the female paddock,
with one side adjacent to the male paddock. A network camera (DG-SF334, Panasonic Corporation,
Kadoma, Japan) was fixed to the ceiling. A captured image from the video recording data is shown in
Figure 1.

Before beginning the observations, one male goat was tied loosely with a rope to the adjacent side
of the observation pen. A bright-colored circle marker (red or blue, 12 cm in diameter) was attached
to the back of the female goats to enable identification and tracking in video recordings. The female
goats were then moved gently into the observation pen by one observer. The female and male goats
were allowed to contact each other partially by poking their muzzles through the bars on the adjacent
side of the observation pen. After an adaptation period of approximately 10 min, the behaviors of the
goats were recorded for 10 min using a network camera recorder (BB-HNP17, Panasonic) connected to
a personal computer. The computer was located in a building at a distance from the goat paddocks.
During video recordings, the observer remained in the building to prevent disturbing the behaviors of
the goats. Here, each goat was observed and their behavior was recorded individually.

Figure 1. Image from the video recording data. One side of the observation pen was adjacent to the
male paddock. A marker was attached to the back of the female goat to track its movements.
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2.4. Behavioral Analysis by Human Observation

After finishing the video recording, behavioral observations were performed once by a well-trained
observer, who is a veterinary expert, using the video recordings. On the basis of previous descriptions
of sexual behaviors during estrus in goats [7], the occurrence of two behaviors, “approaching the male”
and “staying near the male,” were investigated as indicators of proceptivity. The following criteria was
used to define each behavior:

• Approaching to the male
Walking or running from the other side of the observation pen toward the area adjacent to the
male paddock.

• Standing near the male
Standing or behaving restlessly (continuously) in the area adjacent to the male paddock,
and occasionally contacting the male through the bars of the pen.

The data frames were scored as 0 (behavior besides approaching and standing), 1 (approaching the
male), or 2 (standing near the male) by the observer to analyze each behavior in terms of its frequency
or duration. The continuous time was taken as the duration of the behavior. The video recordings were
processed using ABDigitizer software (Chinou Jouhou Shisutemu, Kyoto, Japan). Here, we used large,
visible markers to track the goats’ movements; however, this was because we used the ABDigitizer.
Needless to say, even small devices, such as RFID tags, could be used to track the goats’ movements.
Any device that can track the goats’ movements could be used. As for judgment whether goat is in
estrus or non-estrus, receptivity symptoms, such as a flush look to the vulva, outflowing of swelling
and mucus, loss of appetite, increase in the frequency of urination, and characteristic cries, were used.

The positions and movements of the markers attached to the back of the goats were tracked
automatically (Figure 2), and the x- and y-coordinates of the central point of the marker were outputted
every 0.5 s. Thus, a 10-min video tracking dataset contained 1200 frames.

Figure 2. Image from the video recording data. One side of the observation pen was adjacent to the
male paddock. A marker was attached to the back of the female goat to track goat movements.

In this context, it was considered that a goat pair assumed one of three states sk at each time
point k (1, . . . , 1200):

sk = 0: behavior besides approaching and standing (state 0),
sk = 1: approaching the male (state 1),
sk = 2: standing near the male (state 2)
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where sk is the state of the pair at time point k. The reason for considering these three states was that
the human observer identified three behavioral states, and the ability of the model to classify those
three states correctly needed to be assessed.

Next, observable variables were calculated. The number of observable variables in this model
were three:

(a) x-coordinate: x(k)
(b) y-coordinate: y(k)
(c) step length of a goat at k and k + 1: L(k) =

√
{x(k + 1)− x(k)}2 + {y(k + 1)− y(k)}2

Here, the reason for adopting these three observable variables was based on a previous study [10]
(see Appendix A).

2.5. Modeling and Estimation of Estrus Behavior by Hmm

An HMM is composed of a Markov process that updates “states” and a (conditional) probabilistic
distribution of the observable variables in a given state. The principal purpose of applying an HMM
was to estimate behavioral states from a time series of observable variables.

The state was considered to be updated according to Markov process (Figure 3).

Figure 3. Three-state HMM. Shiba goats show three states, behavior besides approaching and standing,
approaching the male, and standing near the male. There is a timing when the state remains the same,
and there is a timing when the state transitions to another state.

Next, the conditional distribution p(y|s) of observable variables for a given state was explained,
where y was the set of observable variables and s is the state. For all the goats, the state s during each
data frame was labeled by the observer, thus p(y|s) was easily calculated if y was observed.

In addition, Figure 4 shows the tracking data of the female goat’s movement from the experiment.
Figure 4 shows tendencies for the x-coordinate of an estrus goat to be smaller, indicating that a female
goat approaches the male goat in estrus. On the other hand, the x-coordinate of a non-estrus goat tends
to be larger, indicating that a female goat which is not in estrus, approaches the opposite side of the
male goat. Considering these results and the previous study [7], the position, i.e., x- and y-coordinates
of female goats seemed to be adequate for observable variables. Step length of a goat, which could be
considered as an observable variable from the result of the observation, was also included.
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Figure 4. Tracking data of female goats in estrus and non-estrus. The x-coordinate of a female goat
tends to be smaller when the female goat is in estrus and larger when the goat is in non-estrus.

Thus, the observed zk at time point k is the three-dimensional vector zk = (x(k), y(k), L(k)).
The number of sets of zk given was 1200 × 3, because each set of eight goats had 1200 data frames
and three observable variables. These sets were divided into three groups, based on whether the
state exhibited was any behavior besides approaching and standing (state = 0), approaching the male
(state = 1), or standing near the male (state = 2), respectively.

It is assumed that zk adhered to the distribution p(zk|sk = 0) if the state was “behavior besides
approaching and standing,” p(zk|sk = 1) if the state is “approaching the male,” and p(zk|sk = 2) if the
state is “standing near the male.” p(zk|sk = 0), p(zk|sk = 1) and p(zk|sk = 2) were calculated based on
three observable values and scores by the observer. Here, it was assumed that the observable variables
conformed to Gaussian distribution, based on our previous studies [10,36].

The state sk was updated in accordance with a Markov model, as determined by the Markov
transition matrix T:

T =

 p00 p01 p02

p10 p11 p12

p20 p21 p22


The Markov transition matrix T was estimated by counting the transitions between the states

0→ 0, 0→ 1, 0→ 2, 1→ 0, 1→ 1, 1→ 2, 2→ 0, 2→ 1, and 2 → 2 for all eight pairs. This was the
model that was used to determine the behavioral state of the goats, in place of a human observer.
To implement this model, T, p(zk|sk = 0), p(zk|sk = 1), and p(zk|sk = 2) were assumed. Based on the
training data (eight pairs formed out of 16 goats, of which four were in estrus and the others were in
non-estrus), the Markov transition matrix T and the conditional distribution of observable variables
p(zk|sk = 0), p(zk|sk = 1), and p(zk|sk = 2) using a Gaussian mixture model were estimated, where
the variance–covariance matrix of each component Gaussian was assumed to be diagonal. Data from
the estrus goats, namely, #24, #23, #17, and #33, and non-estrus goats, namely, #25, #13, #3, and #35,
were used to construct a Gaussian mixture model (i.e., they were used as training models). There
were six transition probabilities, one mean, and one variance for each Gaussian component of the
state-dependent observation distributions. The component number of the Gaussian mixture model
was selected using Akaike’s Information Criterion (AIC) [10,36]. It was found that the number of
Gaussian elements in states 0, 1, and 2 was 10 by AIC. On the other hand, the other data from estrus
goats, namely, #12, #9, #4, and #22, and non-estrus goats, namely, #6, #14, #15, and #21, were used as
test data. In other words, (1200× 8)× (3 + 1) size matrix data, i.e., 38,400 data, was used for both the
training and test data. It may be true that non-estrus data does not need to be included for the training
group because the state which is not judged as estrus can be judged as non-estrus. However, if we
include non-estrus data for the training group, the estimation accuracy is expected to improve because



Animals 2020, 10, 771 8 of 20

the behavior on non-estrus goats is also used for training. Non-estrus data was therefore included for
the training group in this manuscript.

Next, using the tracking data from goats, s1, . . . , s1200 were estimated as follows. The sequence,
z1, . . . , zk of observable variables, was denoted up to time point k by Zk. First, the entire sequence
Z1200 = (z1, . . . , z1200) of observable variables, was computed from the tracking data. The application
of standard formulas of the HMM allowed the computation of the posteriori distribution p(sk|Z1200)

of the state as explained below, and the state sk at point k was determined as the model

sk = arg max
sk

p(sk|Z1200)

of p(sk|Z1200).
The sequence s1, . . . , s1200 of states, estimated using the HMM was used in place of the sequence of

states that would have been obtained by a human experimenter, and the associated Markov probability
was obtained.

To compute p(sk|Z1200), p(sk|Zk) was computed according to the following recursive formula:

p(sk|Zk−1) = ∑
sk−1

p(sk|sk−1)p(sk−1|Zk−1) (1)

p(sk|Zk) =
p(zk|sk)p(sk|Zk−1)

∑sk
p(zk|sk)p(sk|Zk−1)

(2)

Equations (1) and (2) were applied recursively to compute p(sk−1|Zk−1) → p(sk|Zk−1) →
p(sk|Yk) → p(sk+1|Yk) → ... . Here, it was noted that p(sk|sk−1) comprised only of the elements
in the Markov transition matrix T, and p(zk|sk) was estimated with the Gaussian mixture model.
After p(sk|Zk) had been computed, p(sk|Z1200) was computed according to the following backward
recursive formula:

p(sk|Z1200) = p(sk|Zk) ∑
sk+1

p(sk+1|Z1200)p(sk+1|sk)

p(sk+1|Zk)
(3)

Refer, Kitagawa [37] for the derivation of (1), (2), and (3), for instance. These equations were
calculated using MATLAB 2014a, and the HMM algorithms were implemented by the author. Hence,
packages pertaining to HMM were not used.

2.6. Modeling and Estimation of Estrus Behavior by Random Forest

For comparison of estimation accuracy, machine learning methods apart from HMM were
considered. The difference HMM and machine learning methods apart from HMM is that the latter
does not consider time transition and time-series. However, both the former and the latter is as
the same at the point of considering that these handle (1200× 16)× (3 + 1) size matrix data. Here,
1200 means the frame number of each goats, 16 means total number of goats, 3 means observable
variables, and 1 means the result of detection through human observation. Thus, the following machine
learning methods handle these matrix data. Here, as for modeling by machine learning, the data from
estrus goats, namely, #24, #23, #17, and #33, and non-estrus goats, namely, #25, #13, #3, and #35, were
used as training data, similar to the construction of a Gaussian mixture model.

Random forest was a data construct applied to machine learning that developed a considerable
number of random decision trees, which analyzed sets of variables. This type of algorithm helped
enhance the ways in which technology analyzed complex data [38]. Random forest was applied to
classification [39], detection [40] and so on.

Algorithm of random forest is consisted of the following four steps [41]:

(1) First, start with the selection of random samples from a given dataset.
(2) Next, this algorithm will construct a decision tree for every sample. Then it will get the prediction

result from every decision tree.



Animals 2020, 10, 771 9 of 20

(3) In this step, voting will be performed for every predicted result.
(4) At last, select the most voted prediction result as the final prediction result.

In calculation, R version 3.4.4 and randomForest function in randomForest package of R, which is a
commonly used software for statistical analysis, were used for estimation and calculation. The number
of feature values was determined from the results of simulation, changing the number of feature
values, and the appropriate number was applied when PC was maximized. Mtry (number of feature
values) was determined as 1. As for the number of trees, the default number of trees in randomForest,
the R package, was used.

2.7. Modeling and Estimation of Estrus Behavior by Svm

An SVM, a supervised machine learning algorithm, could be used for both classification
and regression challenges [42]. Support vector machine was applied to classification [43], pattern
recognition [44] and so on. The objective of SVM algorithm is to find a hyperplane in an N-dimensional
space that distinctly classifies the data points [45]. To separate the two classes of data points, there
are many possible hyperplanes that could be chosen. Thus, it is needed to find a plance that has the
maximum margin, i.e., the maximum distance between data points of both classes. Maximizing the
margin distance provides some reinforcement so that future data points can be classified with more
confidence [45]. Hyperplanes are decision boundaries that help classify the data points. Data points
falling on either side of the hyperplane can be attributed to different classes. Also, the dimension of
the hyperplane depends upon the number of features. Support vectors are data points that are closer
to the hyperplane and influence the position and orientation of the hyperplane. Using these support
vectors, the margin of the classifier is maximized. Deleting the support vectors will change the position
of the hyperplane [45].

In the SVM algorithm, the margin between the data points and the hyperplane should be
maximized. The loss function that helps maximize the margin is hinge loss:

c(x, y, f (x)) =

{
0 (y ∗ f (x) ≥ 1)

1− y ∗ f (x) (otherwise)

where x is observed value and y is estimated value. The cost is 0 if the predicted value and the
actual value are of the same sign. If they are not, we then calculate the loss value. We also add a
regularization parameter the cost function. The objective of the regularization parameter is to balance
the margin maximization and loss. After adding the regularization parameter, the cost functions is
defined as following:

min
w

λ‖w‖2 +
n

∑
i=1

(1− yi〈xi, w〉)+

Now that we have the loss function, we take partial derivatives with respect to the weights to
find the gradients. Using the gradients, we can update our weights.

δ

δwk
λ‖w‖2 = 2λwk

δ

δwk
(1− yi〈xi, w〉)+ =

{
0 (yi〈xi, w〉 ≥ 1)

−yixik (otherwise)

where λ is regularization parameter.
When there is no misclassification, the only thing to do is update the gradient from the

regularization parameter.
w = w− α · (2λw)
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when there is a misclassification, the loss along with the regularization parameter is included to
perform gradient update.

w = w + α · (yi · xi − 2λw)

In calculation, R version 3.4.4 and SVM function in the Kernlab package of R, which is a commonly
used software for statistical analysis, were used for estimation and calculation. The number of feature
values was determined from the results of simulation, changing the number of feature values, and the
appropriate number was applied when PC was maximized. The radial basis function (RBF) kernel
and cost parameters were determined from the results of a grid search, and the number of k for k-fold
cross validation was determined based on Sturges’ formula:

k = 1 + log(n)/ log 2

where n is the sample size. In this paper, the sample size was 9600 (= 1200 × 8), and 14-fold cross
validation was applied. Cross (cross validation), gammaRange (RBF kernel parameter) and costRange
(cost parameter) was determined as 14, 105 and 102, respectively.

2.8. Modeling and Estimation of Estrus Behavior by Neural Network

Neural network which was a type of machine learning that modeled itself after the human brain,
created an artificial neural network, that allowed the computer to learn, by incorporating new data
via an algorithm [46]. Neural networks were applied to pattern classification [47], dynamic modeling
and control [48], signal processing [49] and so on. In calculation, R version 3.4.4 and the nnet function
in the nnet package of R, which is a commonly used software for statistical analysis, were used for
estimation and calculation. The number of hidden layers was determined from the results of the
simulation, changing the number of hidden layers, and the appropriate number was applied when PC
is maximized. Size (number of hidden layers) is determined as 10.

2.9. Calculation of Percentage Concordance

In order to examine the reliability of machine learning estimation, their rate of concordance was
estimated by focusing on the occurrence of estrus behavior (“approaching the male” and “standing
near the male”) at 1200 time points and compared to that detected through human observation.

Concordance was an event during which the machine learning estimate of behaviors matched the
occurrence of a social behavior, as determined by a human expert. Machine learning methods were
allowed a two-point window for calculating the rate of concordance, where the event was considered
to be concordant, if machine learning methods estimated a behavior to have occurred within the
range of a time point (which corresponds to 0.5 s each), before or after the time point at which the
behavior was noted by human observation. This was required to take into account the slight difference
between human cognitive response and the corresponding machine response to a video image. A false
negative (FN) was defined to be an event recorded as estrus behavior by the human observer but not
by machine learning methods. Correspondingly, a false positive (FP) was an event recorded as estrus
behavior by machine learning methods, and not by the human observer. The concordance at each of
the 1200 time points was examined, and the percentage concordance (PC) was calculated using the
following formula:

PC = TP/(TP + FN + FP)

where TP is the number of concordant events, FN is the number of false negative events, and FP is the
number of false positive events.

3. Results and Considerations

The average PC between the results obtained from human observation and HMM analysis was
calculated for 16 pairs of goats, including eight pairs of goats used as training data for the HMM.
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As for all machine learning methods, the PC of “approaching the male” state is shown in the upper of
Figure 5, and that of “standing near the male” is shown in the bottom of Figure 5.

Figure 5. PC of each goat and average PC of all goats using various machine learning methods.
Gray-colored frames represent goats used for training data.

The concrete numerical values of PC, FN, and FP of HMM, random forest, SVM and NN are
shown in Tables 1–4, respectively.

At first, from Figure 5, it is found that the observations of approaching behavior were less than
those of standing behavior. The following result and consideration are based on this.

As for “approaching the male” states estimated by HMM, from Figure 5 and Table 1, the minimum
PC was 5.17%, the maximum PC was 58.54%, and the average PC was 30.16% for estrus goats. On the
other hand, the minimum PC was 0.00%, the maximum PC was 100.00%, and the average PC was
42.36% for non-estrus goats. On the other hand, as for “standing near the male” state estimated by
HMM, the minimum PC was 80.93%, the maximum PC was 99.30%, and the average PC was 87.74%
for estrus goats. On the other hand, the minimum percentage is 0.00%, the maximum PC is 100.00%,
and the average PC is 39.70% for non-estrus goats. Thus, it could be determined that the results
of estimation by HMM reasonably emulated the results of estimation by human observation when
“standing near the male” state of estrus goats would be detected.

As for “approaching the male” states estimated by random forest, from Figure 5 and Table 2,
the minimum PC was 3.15%, the maximum PC was 100.00%, and the average PC was 55.59% for
estrus goats. On the other hand, the minimum PC was 0.00%, the maximum PC was 100.00%, and
the average PC was 52.02% for non-estrus goats. On the other hand, as for “standing near the male”
state estimated by random forest, the minimum PC was 86.46%, the maximum PC was 100.00%, and
the average PC was 94.54% for estrus goats. On the other hand, the minimum percentage is 0.00%,
the maximum PC is 100.00%, and the average PC is 36.91% for non-estrus goats.
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Table 1. PCs, false positives, and false negative of estimation using HMM. Gray-colored cells represent
goats used for training data.

Approaching Standing

PC FP FN PC FP FN

Estrus

#24 20.18 77.13 2.69 80.93 9.76 9.31
#23 58.54 21.95 19.51 97.40 2.26 0.34
#17 31.13 49.06 19.81 81.13 17.61 1.26
#33 46.00 52.00 2.00 99.30 0.00 0.70
#12 5.17 94.83 0.00 79.03 0.00 20.97
#9 26.44 66.83 6.73 92.16 3.70 4.14
#4 5.98 92.39 1.63 82.47 0.38 17.15

#22 47.87 13.83 38.30 89.51 10.49 0.00

Non-estrus

#25 31.62 18.97 49.41 10.56 76.40 13.04
#13 22.87 11.85 65.29 4.32 93.69 1.99
#3 10.55 13.91 75.54 0.00 100.00 0.00
#35 50.98 33.33 15.69 0.00 100.00 0.00
#6 100.00 0.00 0.00 100.00 0.00 0.00

#14 0.00 0.00 100.00 100.00 0.00 0.00
#15 22.87 37.22 39.91 2.73 96.82 0.45
#21 100.00 0.00 0.00 100.00 0.00 0.00

Table 2. PCs, false positives, and false negative of estimation using random forest. Gray-colored cells
represent goats used for training data.

Approaching Standing

PC FP FN PC FP FN

Estrus

#24 91.84 0.00 8.16 96.21 3.79 0.00
#23 100.00 0.00 0.00 99.54 0.46 0.00
#17 98.04 0.00 1.96 93.56 6.44 0.00
#33 100.00 0.00 0.00 100.00 0.00 0.00
#12 3.15 94.49 2.36 86.46 0.19 13.35
#9 22.22 40.74 37.04 93.05 6.84 0.11
#4 15.15 63.64 21.21 98.39 1.61 0.00
#22 14.36 59.41 26.24 89.14 7.67 3.19

Non-estrus

#25 100.00 0.00 0.00 65.45 34.55 0.00
#13 100.00 0.00 0.00 25.76 74.24 0.00
#3 95.07 1.10 3.84 0.00 100.00 0.00

#35 90.91 0.00 9.09 0.00 100.00 0.00
#6 0.00 100.00 0.00 100.00 0.00 0.00
#14 0.00 100.00 0.00 0.00 100.00 0.00
#15 30.15 19.40 50.45 4.07 95.93 0.00
#21 0.00 100.00 0.00 0.00 100.00 0.00

As for “approaching the male” states estimated by SVM, from Figure 5 and Table 3, the minimum
PC was 0.00%, the maximum PC was 100.00%, and the average PC was 47.35% for estrus goats. On the
other hand, the minimum PC was 0.00%, the maximum PC was 100.00%, and the average PC was
86.91% for non-estrus goats. On the other hand, as for “standing near the male” state estimated by
SVM, the minimum PC was 0.58%, the maximum PC was 100.00%, and the average PC was 51.80%
for estrus goats. On the other hand, the minimum percentage is 0.00%, the maximum PC is 100.00%,
and the average PC is 73.13% for non-estrus goats.

As for “approaching the male” states estimated by neural network, from Figure 5 and Table 4, the
minimum PC was 0.00%, the maximum PC was 17.65%, and the average PC was 5.90% for estrus goats.
On the other hand, the minimum PC was 9.30%, the maximum PC was 100.00%, and the average PC
was 56.21% for non-estrus goats. On the other hand, as for “standing near the male” state estimated by
neural network, the minimum PC was 82.75%, the maximum PC was 98.44%, and the average PC was
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90.63% for estrus goats. On the other hand, the minimum percentage is 0.00%, the maximum PC is
22.95%, and the average PC is 4.51% for non-estrus goats.

Table 3. PCs, false positives, and false negative of estimation using support vector machines.
Gray-colored cells represent goats used for training data.

Approaching Standing

PC FP FN PC FP FN

Estrus

#24 96.08 3.92 0.00 99.37 0.63 0.00
#23 100.00 0.00 0.00 99.88 0.12 0.00
#17 96.36 3.64 0.00 99.81 0.19 0.00
#33 86.36 13.64 0.00 100.00 0.00 0.00
#12 0.00 30.00 70.00 0.58 0.00 99.42
#9 0.00 0.00 100.00 5.80 0.34 93.86
#4 0.00 0.00 100.00 2.03 0.00 97.97

#22 0.00 6.90 93.10 6.96 0.00 93.04

Non-estrus

#25 100.00 0.00 0.00 100.00 0.00 0.00
#13 100.00 0.00 0.00 85.00 15.00 0.00
#3 95.32 0.83 3.86 100.00 0.00 0.00

#35 100.00 0.00 0.00 0.00 100.00 0.00
#6 100.00 0.00 0.00 100.00 0.00 0.00

#14 100.00 0.00 0.00 100.00 0.00 0.00
#15 0.00 0.00 100.00 0.00 0.00 100.00
#21 100.00 0.00 0.00 100.00 0.00 0.00

Table 4. PCs, false positives, and false negative of estimation using neural networks. Gray-colored
cells represent goats used for training data.

Approaching Standing

PC FP FN PC FP FN

Estrus

#24 5.26 57.02 37.72 84.92 12.24 2.84
#23 13.39 26.77 59.84 95.17 2.70 2.13
#17 0.00 37.04 62.96 82.75 15.97 1.28
#33 17.65 44.12 38.24 98.44 0.26 1.30
#12 0.00 88.52 11.48 86.54 0.19 13.26
#9 0.00 60.74 39.26 89.07 7.60 3.33
#4 0.00 70.73 29.27 98.13 1.13 0.75
#22 10.92 64.63 24.45 90.02 5.75 4.23

Non-estrus

#25 36.92 0.51 62.56 22.95 69.67 7.38
#13 51.43 2.22 46.35 9.52 90.48 0.00
#3 34.72 0.28 65.00 0.00 100.00 0.00
#35 9.30 20.93 69.77 0.00 100.00 0.00
#6 100.00 0.00 0.00 0.00 100.00 0.00
#14 100.00 0.00 0.00 0.00 100.00 0.00
#15 17.27 3.24 79.50 3.57 96.43 0.00
#21 100.00 0.00 0.00 0.00 100.00 0.00

With regard to all machine learning methods, the combination of PC and FP for #6, #14, and #21 is
either 100% and 0% or 0% and 100%. Trajectories of these goats are shown in Figure 6. From Figure 4
and Figure 6, it can be observed that trajectories of these goats are different from other non-estrus goats.
These goats appear to stay around a narrow region of the paddock, whereas the other goats move
around in a wide area. The human observer, through all the video frames, judges the behavior of these
goats as a “behavior besides approaching and standing” state, not an “approaching the male” state
or “standing near the male” state. If all frames were judged to be the “behavior besides approaching
and standing” state using machine learning methods, the value would be 100%. However, the PC
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value was 0%, and FP was 100%, even if a few frames were judged as “approaching” or “standing.”
These goats, #6, #14, and #21, are judged as shown above.

Figure 6. Tracking data of #6, #14 and #21 goats.

In total, the PC of the random forest and SVM are relatively high. However, we need to consider
that #24, #23, #17, #33, #25, #13, #6, and #3 is a training data set. As for approaching behavior, the PCs
of these goats are relatively high; however, the PCs of other goats are low. We think one reason is that
the random forest and SVM tend to overfit the data, and the other reason is because the training dataset
may not yet be sufficient to fit the variance that naturally occurs in the dataset with many individuals;
thus, data from many more animals and with a wider variance in the signal associated to each behavior
seem to be required for a good training dataset. Considering these reasons, the estimation of training
data by random forest and SVM have good accuracy; however, the estimation of other data does not.
Considering these reasons, the estimation of training data by random forest and SVM have good
accuracy, however, the estimation of other data does not have accuracy. The estimation accuracy of
the various goats would improve if the various goat’s behavior data were acquired. However, this
is not realistic from the viewpoint of efficiency. The random forest and SVM are not an adequate
machine learning method to estimate the goat’s behavior, considering this reasoning. This conclusion
is a consideration of the “approaching behavior.” However, this also applies to “standing behavior”
(this is discussed later). As for neural network, the PC value is low. The reason for this may be the lack
of training data and machine learning not being efficient. Thus, this estimation is not a good result.

As for the “approaching behavior” of estrus goats, the PC of #12 and #4 are smaller than that
of the other estrus goats. As shown in Figure 4, #12 and #4 stay in a narrow area near the male
paddock, unlike other estrus goats. The trajectory beside the #4 goat is spread widely along the y-axis.
However, #12 does not move in the x-axis direction much, which is different from the behavior of other
goats, and #4 does not move in the y-axis direction much, which is different from the behavior of other
goats. These are suggested that this causes the small PC value for #12 and #4.

As for the standing behavior of estrus goats, there is almost no difference between all the machine
learning methods. However, PC of random forest and SVM are relatively high. According to actual
data, the frame number of the standing behavior is much more than that of the approaching behavior,
and, unlike the PC of #6, #14, and #21, misestimation does not affect the PC value much. Also,
it is suggested that estrus goats tend to stay in a wide area near the male paddock; thus, they are
easily detected.

On the other hand, for non-estrus goats, the PC is totally smaller than the approaching state
and standing state of estrus, and the approaching state of non-estrus. The standing state of non-estrus
goats rarely occurs, being present in a few frames out of 1800 frames. Thus, the PC decreases if
misestimation occurs in a few frames out of 1800 frames. For non-estrus goats, the standing state
occur far less than the approaching states. Besides, the training data are still few. Considering these,
the PC is smaller than the approaching and standing state of estrus goats, and the approaching state of
non-estrus goats. The PC of the random forest seems to be the highest among all machine learning
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methods; however, an overfitting problem exists, as stated above. HMM gets the large PC next to the
random forest. HMM could model a Shiba goat’s behavior based on Markov probability and has the
probability of characterizing Shiba goat’s behavior statistically, similar to that of mice [16,17].

From the above discussion, considering the PC, convenience of modeling, and computing time
needed, we suggest that estimation by HMM is an adequate machine learning method for estimating
the goat’s behavior. The PC of neural network is small. However, if additional data are acquired and
learned by neural network, the PC of neural network would increase. If the amount of data is small,
HMM is an adequate method for estimation; on the other hand, if the amount of data is large, neural
network can be an adequate method for estimation.

As for SVM, we should also consider about computing time. It is said that SVM requires much
time. Thus, it might not take a long time to estimate the goat’s state by SVM if the data are small,
like those used in this study. However, it might take a long time to estimate if more data were used.
This will be a problem if the goat’s state estimation system is considered for practical use.

As a reference, Figure 7 shows the computing time from modeling to estimation of all 16 goats
by each machine learning method. From Figure 7, the neural network takes the shortest computing
time, while SVM takes the longest. HMM takes a long computing time compared to SVM. This may be
the difference in programing language: MATLAB is used for estimation by HMM, and R is used for
estimation by random forest, SVM, and neural network. In this study, we use MATLAB for estimation
by HMM because this was used in our previous study [10,16,17]; however, if HMM coded by R is
used, the computing time of HMM may be shorter. Totally, the computing time of HMM, random
forest, and neural network has little practical difference. Thus, SVM may be an inadequate method for
estimating goats’ behaviors practically from the point of computing time, though SVM has a high PC
value for estimating approaching and standing behaviors.

Figure 7. Computing time of each machine learning method.

Table 5 shows the percentage of time spent in estrus and non-estrus behavior as determined by
observation and all machine learning methods. From Table 5, as for estrus, from the result of the t-test,
significant differences between observation and HMM in the determination of approaching behavior,
and observation and SVM in the determination of standing behavior, were observed (p < 0.05). As for
non-estrus, from the result of the t-test, significant differences between observation and neural network
in the determination of approaching behavior, as well as observation and HMM and observation and
neural network in the determination of standing behavior, were observed (p < 0.05). On the other
hand, there was no significant difference between observation and RF. In other words, we could say
that RF seems to resemble human observation well. Considering this totally, random forest seems to
resemble human observation well and estimate goats’ behaviors similarly to a well-trained observer.
However, as described above, there is the problem of overfitting or variance in the dataset. As for SVM,
repeatedly, there is the problem of computing time. Totally, considering PCs, computing time, and the
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percentage of time spent in estrus and non-estrus behaviors, HMM may not be the best method, but it
is adequate for estimating goat behavior at this point, though the PC of HMM is relatively low.

Table 5. Percentage of time spent in estrus and non-estrus behavior from observation and HMM.
Gray-colored cells represent goats used for training data (unit: %).

Approaching Standing

Observation HMM RF SVM NN Observation HMM RF SVM NN

Estrus

#24 4.08 2.33 2.42 3.83 5.50 65.17 74.67 68.00 65.33 69.42
#23 7.75 4.08 6.33 7.25 3.83 71.5 73.42 71.92 71.5 70.42
#17 4.25 0.25 2.67 4.5 2.50 43.58 53.67 46.25 43.42 50.08
#33 1.58 1.08 1.25 1.83 1.33 95.75 95.75 95.67 95.17 93.67
#12 0.58 6.08 10.08 0.25 4.50 85.83 71.42 63.17 0.08 70.17
#9 5.33 4.08 4.00 0.00 8.25 73.00 76.83 73.25 1.58 69.17
#4 1.00 8.17 1.83 0.00 2.42 65.75 58.75 65.08 0.50 63.92

#22 6.75 9.67 10.67 0.50 12.92 71.83 73.50 69.58 2.17 69.00

Non-estrus

#25 16.00 8.08 14.08 15.92 4.83 3.00 5.17 4.58 3.00 8.33
#13 25.67 16.25 22.67 25.42 8.92 1.33 14.33 5.42 1.67 18.92
#3 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.17

#35 29.83 26.83 28.67 28.83 10.00 0.00 7.75 0.67 0.00 21.00
#6 0.00 0.92 0.17 0.00 0.00 0.00 0.00 0.25 0.00 0.08

#14 22.33 16.25 7.50 0.00 1.75 0.50 9.33 14.08 0.00 16.08
#15 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#21 2.75 3.42 1.75 2.17 0.83 0.00 5.08 2.08 0.33 4.75

4. Conclusions

In this study, machine learning method as HMMs, random forests, SVMs, and neural networks,
were applied to detect and estimate whether a goat, a typical mammal, was in estrus based on the
goat’s behavior, and the adequacy of the method was verified. From calculations and analysis, the
results of the estimation using HMM seemed to emulate the results of estimation by human observation
reasonably well now. In particular, unlike other machine learning methods, the HMM has an advantage
in that it is a time series model; thus, estimations by the HMM can clarify the detailed time series
changes in a goat’s behavior and its underlying cause.

As for statistical modelling, the goat’s observable variable was considered as a Gaussian
distribution. However, upon choosing to model the step length, we recommended using a standard
parametric distribution, defined for positive numbers, such as the exponential, Weibull, or gamma
distributions [50–54].

Poor PC values in some goats could have been caused by the choice of distribution modelling.
Therefore, the application of these distributions as observable variables and verification of the validity
of modelling are proposed. In addition, verification of interpretation of parameters biologically is also
required and is proposed as a future study.

In the future, we aim to construct a system based on the results of this manuscript. Although
this is only a concept at this stage, we would like to propose our system that uses IoT technology for
estimating a goat’s estrus or non-estrus state using recorded behavior. Each goat is monitored from
above by a camera. Data from the goat that can be detected by several methods are then transformed
into numerical data. In this manuscript, each goat’s behavioral data is acquired by filming a marker
attached to the goat’s back. This may be improved by acquiring data that was image-processed.
The data is transferred to a server and the server then estimates the goat’s estrus state using the
machine learning method. The estimation result gets sent to a user’s device, such as a tablet PC or
smartphone, and the user can then see whether each goat is in estrus. We have constructed a similar
system for estimating mice behavior [15], and our new proposed system is an application of this former
system for estimating a goat’s behavior. The concept of our proposed system is shown in Figure 8.
A trial system for goats has already been constructed [55]. We think that constructing this system can
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contribute to animal science, enabling the detection of animal states automatically and by increasing
the efficiency of observers.

Figure 8. The proposed automated estrus estimation system for goats.
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Abbreviations

The following abbreviations are used in this manuscript:

PC percentage concordance
TP true positive
FN false negative
FP false positive
HMM hidden Markov model
RF random forest
SVM support vector machine
NN neural network

Appendix A. The Number of Observable Variables in This Model

The reason for adopting these three observable variables in this study was based on the results of
a previous study [7]. Based on that study, the x-coordinate, y-coordinate, and step length of a goat
were related to the goat being in estrus. However, it did not seem to be necessary to use all these
parameters. Thus, some pairs of these observable variables were chosen, and the PC was calculated
using a HMM, based on these same pairs of observable variables. In addition, the results of estimation
between HMM and other machine learning methods were compared, and HMM seemed to be the
most adequate of all estimation methods, from the point of modeling.
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