Effects of colonization, geography and environment on genetic divergence in the intermediate leaf-nosed bat, *Hipposideros larvatus*

Xiangfeng Meng¹, Tong Liu¹, Lin Zhang¹, Tinglei Jiang, Longru Jin^{1,*}, Keping Sun^{1,2,*}, Jiang Feng^{1,3}

¹ Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China.

² Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.

³ School of Life Science, Jilin Agricultural University, Changchun, 130118, China.

*Authors to whom correspondence should be addressed. E-mail: <u>sunkp129@nenu.edu.cn</u> and

jinlr915@nenu.edu.cn

Table S1. The codes of 19 bioclimatic variables used in this study. This scheme follows those ofWorldClim and ANUCLIM.

Abbreviation	Bioclimatic Variable
Bio1	Annual Mean Temperature [°C]
Bio2	Mean Diurnal Range [°C]
Bio3	Isothermality (Bio2/Bio7) (* 100)
Bio4	Temperature Seasonality (standard deviation *100)
Bio5	Max Temperature of Warmest Month [°C*10]
Bio6	Min Temperature of Coldest Month [°C*10]
Bio7	Temperature Annual Range (Bio5–Bio6)
Bio8	Mean Temperature of Wettest Quarter [°C*10]
Bio9	Mean Temperature of Driest Quarter [°C*10]
Bio10	Mean Temperature of Warmest Quarter [°C*10]
Bio11	Mean Temperature of Coldest Quarter [°C*10]
Bio12	Annual Precipitation [mm/year]
Bio13	Precipitation of Wettest Month [mm/month]
Bio14	Precipitation of Driest Month [mm/month]
Bio15	Precipitation Seasonality [coefficient of variation]
Bio16	Precipitation of Wettest Quarter [mm/quarter]
Bio17	Precipitation of Driest Quarter [mm/quarter]
Bio18	Precipitation of Warmest Quarter [mm/quarter]
Bio19	Precipitation of Coldest Quarter [mm/quarter]

Table S2. Sampled populations with geographical coordinates and the GenBank accession

Population	Longitude	Latitude	cytb	CR
GD1	111.944	22.434	MW670581-MW670586	MW670746-MW670751
GD2	113.561	24.772	MW670587-MW670595	MW670752-MW670760
GX1	107.824	22.862	MW670596-MW670605	MW670761-MW670770
GX2	106.919	22.563	MW670606-MW670615	MW670771-MW670780
GX3	110.683	25.413	MW670616-MW670625	MW670781-MW670790
GX4	109.674	23.477	MW670626-MW670635	MW670791-MW670800
GX5	110.380	24.510	MW670636-MW670641	MW670801-MW670806
GZ	105.533	25.283	MW670642-MW670649	MW670807-MW670814
JX	114.091	25.462	MW670708-MW670721	MW670873-MW670886
YN1	103.847	22.603	MW670722-MW670726	MW670887-MW670891
YN2	100.709	22.605	MW670727-MW670730	MW670892-MW670895
YN3	103.906	22.743	MW670731-MW670738	MW670896-MW670903
YN4	99.550	22.320	MW670739-MW670745	MW670904-MW670910
HN1	109.467	18.623	MW670650-MW670654	MW670815-MW670819
HN2	109.428	18.598	MW670655-MW670664	MW670820-MW670829
HN3	109.448	18.585	MW670665-MW670674	MW670830-MW670839
			MW670688-MW670674	MW670853-MW670862
HN4	110.212	19.945	MW670675-MW670687	MW670840-MW670852
HN5	110.127	19.231	MW670698-MW670707	MW670863-MW670872

numbers of cytb gene and control region sequences of Hipposideros larvatus.

Table S3. Results of Tajima's D test for Hipposideros larvatus based on the sequences of cytb

	Tajima's D
Cytb	
Clade A	-1.281
Clade B	-0.890
Subclade B1	-1.298
Subclade B2	-0.878
CR	
Clade A	-1.727
Clade B	-1.490
Subclade B1	-1.450
Subclade B2	-0.362

and CR. None of these appear to be significant.

Table S4. Results of mismatch distribution analysis and estimation of the time of populationexpansion (T_{MD} , Ma) for *Hipposideros larvatus* based on the cytb gene. Statistically significantresults are indicated by asterisks: *P < 0.05, **P < 0.01.</td>

	SSD	r	Tao (95% CI)	T _{MD} (95% CI)
Clade A	0.031	0.029	8.641(0.479–14.344)	0.146 (0.008-0.237)
Clade B				
Subclade B1	0.005	0.041	2.438(0.893-4.047)	0.041(0.015-0.068)
Subclade B2	0.123*	0.269**	-	-

Figure S1. Principle component analysis (PCA) of *Hipposideros larvatus*, based on 19 bioclimatic variables across 18 localities. The first two principle components accounted for 54.6% and 20.9% of the variation, respectively. Black dots represent the sampling localities. The code of each bioclimatic variable follows those of WorldClim and ANUCLIM, and is shown in Table S1.

Figure S2. Scatter plots of the relationships between genetic distance (F_{st} /1- F_{st}) and geographic distance (a, b), and climatic distance (c, d), and between nuclear distance and mitochondrial distance (e). F_{st} values were calculated based on nuclear microsatellites (a, c) and concatenated mitochondrial cytb and control region (b, d). Correlation coefficient *r* and significance were estimated by Mantel tests.