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Simple Summary: Triggering of poultry capacity to resist challenge stressors could be vital for
animal performance and health. Diet may serve as a tool for modulating animal response to ox-
idative stress. Within the context of a balanced diet, certain feed additives of plant origin, such as
phytogenics, may confer additional cytoprotective effects. As gut health is a prerequisite for animal
performance, this work delved into advancing our knowledge on dietary and phytogenic effects on
the capacity of the poultry gut to counteract oxidative stress. Study findings showed that a reduction
in dietary energy and protein intake by 5% primed important antioxidant responses especially upon
phytogenic addition. The new knowledge could assist in devising nutritional management strategies
for counteracting oxidative stress.

Abstract: The reduction in energy and protein dietary levels, whilst preserving the gut health of
broilers, is warranted in modern poultry production. Phytogenic feed additives (PFAs) are purported
to enhance performance and antioxidant capacity in broilers. However, few studies have assessed
PFA effects on a molecular level related to antioxidant response. The aim of this study was to
investigate the effects of administering two dietary types differing in energy and protein levels
(L: 95% and H: 100% of hybrid optimal recommendations) supplemented with or without PFA
(−, +) on gene expressions relevant for antioxidant response along the broiler gut. Interactions
of diet type with PFA (i.e., treatments L−, L+, H−, H+) were determined for critical antioxidant
and cyto-protective genes (i.e., nuclear factor erythroid 2-like 2 (Nrf2) pathway) and for the total
antioxidant capacity (TAC) in the proximal gut. In particular, the overall antioxidant response along
the broiler gut was increased upon reduced dietary energy and protein intake (diet type L) and
consistently up-regulated by PFA addition. The study results provide a new mechanistic insight of
diet and PFA functions with respect to the overall broiler gut antioxidant capacity.
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1. Introduction

Gut health biomarkers associated with the regulation of the antioxidant response and
inflammation currently attract a lot of scientific attention [1–3]. In particular, one of the most
important regulators of antioxidant response and inflammation is the transcription factor
nuclear factor erythroid 2-like 2 (Nrf2) [4]. Transcription factor Nrf2 is a basic leucine zipper-
containing transcription factor that is regulated by Kelch-like ECH-associated protein-1
(Keap1) and activates phase II/detoxifying enzymes and more than 100 genes through
the antioxidant response element (ARE). These genes include NAD(P)H:quinone oxidore-
ductase 1 (NQO1), glutathione S-transferase (GST), heme oxigenase-1 (HO-1), glutathione
peroxidase (GSH-Px), catalase (CAT), superoxide dismutase 1 (SOD1), glutamate cysteine
ligase (GCL), glutathione-disulfide reductase (GSR) and the thioredoxin/peroxiredoxin
system [5–8].

In particular, Keap1 binding with various inducers (e.g., phytogenic compounds)
leads to transcription of many cyto-protective genes [9,10]. Briefly, CAT and SOD1 are
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antioxidant enzymes that directly react with radical species, whereas GPX and GSR re-
generate oxidized antioxidants [11]. In addition, NQO1 engages a two-electron transfer
to diminish quinones to hydroquinones preventing the production of free radical oxygen
intermediates [12]. Moreover, GST catalyzes the conjugation of GSH with xenobiotics and
protects cells against reactive oxygen metabolites [13]. On the other hand, PRDX1 is proven
to be a functional enzyme adjusting cell growth, differentiation and apoptosis [14]. Finally,
TXN operates along with PRDX1 as reductase in redox control, preserves proteins from
oxidative aggregation and inactivation, supports the cells confront various environmen-
tal stresses (e.g., ROS, peroxynitrite, arsenate) and regulates programmed cell death via
denitrosylation [15].

Research evidence highlights that activation of the Nrf2/ARE signaling pathway
could be regarded as beneficial for effectively counteracting oxidative stress in animals
and humans. In this respect, contemporary research tries to elucidate the role of di-
etary components for animal and human health and well-being [16]. In particular, while
there is evidence that reduced energy and protein intake could be beneficial for adult
humans [17,18], yet the role of energy and protein intake in the activation of the Nfr2
pathway [19] is still limited. On the other hand, accumulating evidence demonstrates that
inclusion of various phytogenic feed additives (PFAs) may regulate the Nrf2/ARE pathway
in a manner perceived as beneficial for human and animal health [3,6,20–22].

The aim of this study was to generate new knowledge on the effects of dietary energy
and protein levels with or without PFA addition on the modulation of the Nrf2/ARE
signaling pathway in the broiler gut mucosa. For the purpose of the study, the expression
of critical genes belonging to the Nrf2/ARE pathway was profiled along the chicken broiler
gut. In addition to the gene expressions, the antioxidant capacity of the intestinal mucosa
was assessed biochemically.

2. Materials and Methods
2.1. Animals and Experimental Treatments

For the purpose of the experiment, 540 one-day-old male Cobb 500 broilers vaccinated
at hatch for Marek, Infectious Bronchitis and Newcastle Disease were obtained from a
commercial hatchery. Birds were allocated to 4 experimental treatments for 6 weeks. Each
treatment had 9 floor replicate cages of 15 broilers each. Each replicate was assigned to
a clean floor cage (1 m2), and the birds were raised on rice hulls litter. The temperature
program was set at 32 ◦C at week 1 and gradually reduced to 23 ◦C by week 6. Heat was
provided with a heating lamp per cage. Except for day 1, an 18 h light to 6 h dark lighting
program was applied during the experiment to ensure adequate access to feed and water.

A 2 × 2 factorial design was used with diet specifications and PFA addition as the
main factors. A three-phase feeding program with starter (1 to 10 d), grower (11 to 22 d)
and finisher (23 to 42 d) diets was followed. In particular, for each growth phase, two
diet types () were formulated to meet 95% and 100% of optimal Cobb 500 metabolizable
energy (ME) and protein (CP) specifications, stated as L and H, respectively. The PFA used
contained a blend of compounds such as carvacrol, thymol, carvone, methyl salicylate and
menthol (Digestarom® Biomin Phytogenics GmbH, Stadtoldendorf, Germany). Diets were
in mash form, based on maize and soybean meal and were supplemented with coccidiostat.
Throughout the experiment, feed and water were available ad libitum.

The calculated chemical composition per kg of the basal diets (L vs. H) was as follows.
For the starter diet: AMEn (11.97 vs. 12.60) MJ; crude protein (204.3 vs. 215.0) g; lysine
(12.5 vs. 13.2) g; methionine + cysteine (9.4 vs. 9.9) g; threonine (8.2 vs. 8.6) g; calcium 9 g;
available phosphorus 4.5 g. For the grower diet: AMEn (12.27 vs. 12.92) MJ; crude protein
(185.3 vs. 195) g; lysine (11.3 vs. 11.9) g; methionine + cysteine (8.6 vs. 9.0) g; threonine (7.5
vs. 7.9) g; calcium 8.4 g; available phosphorus 4.2 g. For the finisher diet: AMEn (12.59 vs.
13.26) MJ; crude protein (175.8 vs. 185.0) g; lysine (10.0 vs. 10.5) g; methionine + cysteine
(7.8 vs. 8.2) g; threonine (6.8 vs. 7.1) g; calcium 7.6 g; available phosphorus 3.8 g.
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Depending on diet type (L and H) and PFA supplementation (0 and 150 mg/kg of diet),
the four experimental treatments were: L− (95% of optimal ME and CP requirements with
no PFA supplementation), L+ (95% of optimal ME and CP requirements with PFA supple-
mentation), H− (100% of optimal ME and CP requirements with no PFA supplementation)
and H+ (100% of optimal ME and CP requirements with PFA supplementation).

The experimental protocol was in compliance with the current European Union Direc-
tive on the protection of animals used for scientific purposes [23,24] and was approved by
the relevant national authority (Department of Agriculture and Veterinary Policy, General
Directorate of Agriculture, Economy, Veterinary and Fisheries). Birds were euthanized via
electrical stunning prior to slaughter.

2.2. Broiler Growth Performance Responses

Broiler performance parameters such as body weight gain (BWG), feed intake (FI),
and feed conversion ratio (FCR) were evaluated for the entire duration of the experiment
(42 days) (Table 2).

2.3. Organ Sampling

At 42 d of age, 9 broilers per treatment were randomly selected and the duodenum,
jejunum, ileum and ceca samples were excised carefully and immediately snap frozen in
liquid nitrogen and subsequently stored at −80 ◦C for further analyses.

2.4. Molecular Analyses
2.4.1. RNA Isolation and Reverse-Transcription PCR

The central section of duodenum, jejunum, ileum and the whole ceca were exposed
and the luminal digesta was ejected. Then, the segments without digesta were washed
completely in 30 mL cold phosphate buffered saline (PBS)–ethylene diamine tetra-acetic
acid (EDTA; 10 mmol/L) solution (pH = 7.2), and the mucosal epithelium was taken off
with a micro-slide to a sterile Eppendorf type tube. Eventually, the total RNA from the
duodenal, jejunal, ileal and caecal mucosa was obtained as reported by the manufacturer’s
protocol from Macherey-Nagel GmbH & Co. KG, Duren, Germany, by handling NucleoZOL
Reagent. RNA quantity and quality were ascertained by spectrophotometry with the use
of NanoDrop-1000 by Thermo Fisher Scientific, Waltham, United Kingdom.

DNAse treatment was exercised due to the removal of contaminating genomic DNA
from the RNA samples. Ten micrograms of RNA was diluted with 1 U of DNase I (M0303,
New England Biolabs Inc, Ipswich, UK) and 10 µL of 10x DNAse buffer to a final volume
of 100 µL upon the inclusion of DEPC water, for 15–20 min at 37 ◦C. Before the DNAse
inactivation at 75 ◦C for 10 min, EDTA should be added to a final concentration of 5 mM
to protect RNA from being degraded during enzyme inactivation. RNA integrity was
examined by agarose gel electrophoresis

From each sample, 500 ng of total RNA was reverse transcribed to cDNA by Prime-
Script RT Reagent Kit (Perfect Real Time, Takara Bio Inc., Shiga-Ken, Japan) according to
the manufacturer’s recommendations. All cDNAs were afterwards stored at −20 ◦C.

2.4.2. Quantitative Real-Time PCR

The following Gallus gallus genes were examined: nuclear factor erythroid 2-like 2
(Nrf2), kelch-like ECH associated protein 1 (Keap1), catalase (CAT), superoxide dismutase
1 (SOD1), xanthine oxidoreductase (XOR), glutathione peroxidase 2, 7 (GPX2, GPX7),
heme oxygenase 1 (HMOX1), NAD(P)H quinone dehydrogenase 1 (NQO1), glutathione
S-transferase alpha 2 (GSTA2), glutathione-disulfide reductase (GSR), peroxiredoxin-1
(PRDX1), thioredoxin (TXN), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
actin beta (ACTB). Suitable primers were designed using the GenBank sequences deposited
on the National Center for Biotechnology Information and US National Library of Medicine
(NCBI) shown in Table 1. Primers were checked using the PRIMER BLAST algorithm for
Gallus gallus mRNA databases to ensure that there was a unique amplicon.
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Table 1. Oligonucleotide primers used for gene expression of selected targets by quantitative real time PCR.

Target Primer Sequence (5′-3′) Annealing Temperature
(◦C)

PCR Product
Size (bp)

GenBank
(NCBI Reference

Sequence)

GAPDH F: ACTTTGGCATTGTGGAGGGT
R: GGACGCTGGGATGATGTTCT 59.5 131 NM_204305.1

ACTB F: CACAGATCATGTTTGAGACCTT
R: CATCACAATACCAGTGGTACG 60 101 NM_205518.1

Nrf2 F: AGACGCTTTCTTCAGGGGTAG
R: AAAAACTTCACGCCTTGCCC 60 285 NM_205117.1

Keap1 F: GGTTACGATGGGACGGATCA
R: CACGTAGATCTTGCCCTGGT 62 135 XM_025145847.1

CAT F: ACCAAGTACTGCAAGGCGAA
R: TGAGGGTTCCTCTTCTGGCT 60 245 NM_001031215

SOD1 F: AGGGGGTCATCCACTTCC
R: CCCATTTGTGTTGTCTCCAA 60 122 NM_205064.1

XOR F:GTGTCGGTGTACAGGATACAGAC
R:CCTTACTATGACAGCATCCAGTG 61 110 NM_205127.1

GPX2 F: GAGCCCAACTTCACCCTGTT
R: CTTCAGGTAGGCGAAGACGG 62 75 NM_001277854.1

GPX F: GGCTCGGTGTCGTTAGTTGT
R: GCCCAAACTGATTGCATGGG 60 139 NM_001163245.1

HMOX1 F: ACACCCGCTATTTGGGAGAC
R: GAACTTGGTGGCGTTGGAGA 62 134 NM_205344.1

NQO1 F: GAGCGAAGTTCAGCCCAGT
R: ATGGCGTGGTTGAAAGAGGT 60.5 150 NM_001277619.1

GST F: GCCTGACTTCAGTCCTTGGT
R: CCACCGAATTGACTCCATCT 60 138 NM_001001776.1

GSR F: GTGGATCCCCACAACCATGT
R: CAGACATCACCGATGGCGTA 62 80 XM_015276627.1

PRDX1 F: CTGCTGGAGTGCGGATTGT
R: GCTGTGGCAGTAAAATCAGGG 61 105 NM_001271932.1

TXN F:ACGGAAAGAAGGTGCAGGAAT
R: GATCCAGACATGCTCCGATGT 60 110 NM_205453.1

F—Forward; R—Reverse; GAPDH—glyceraldehyde 3-phosphate dehydrogenase; ACTB—actin beta; Nrf2—nuclear factor; erythroid 2-like
2; KEAP1—kelch-like ECH-associated protein 1; CAT—catalase; SOD1—superoxide dismutase 1; XOR —xanthine oxidoreductase; GPX 2,
7—glutathione peroxidase 2, 7; HMOX1—heme oxygenase 1; NQO1—NAD(P)H quinone dehydrogenase 1; GST—glutathione S-transferase;
GSR—glutathione-disulfide reductase; PRDX1—peroxiredoxin-1; TXN—thioredoxin.

Real-time PCR was accomplished in 96-well microplates with a SaCycler-96 Real-Time
PCR System (Sacace Biotechnologies s.r.l.,Como, Italy) and FastGene IC Green 2x qPCR
universal mix (Nippon Genetics, Tokyo, Japan). Every reaction included 12.5 ng RNA
equivalents along with 200 nmol/L of forward and reverse primers for each gene. The
reactions were incubated at 95 ◦C for 3 min, accompanied by 40 cycles of 95 ◦C for 5 s, 59.5
to 62 ◦C (depending on the target gene) for 20 s, 72 ◦C for 33 s. This was tailed by a melt
curve analysis to check the reaction specificity. Each sample was determined in duplicates.
Relative expression ratios of target genes were calculated according to [25] adapted for the
multi-reference genes normalization procedure according to [26] using GAPDH and ACTB
as reference genes.

2.5. Biochemical Analyses

Total Antioxidant Capacity of Intestinal Mucosa
Total antioxidant capacity (TAC) was determined using the oxygen radical absorbance

(ORAC) assay [27] to evaluate the hydrophilic antioxidants [28]. Appropriately diluted
mucosal samples from duodenum, jejunum, ileum and caecum in phosphate-buffered
saline (PBS) were used, and the ability to delay the decay of phycoerythrin fluorescence
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under the presence of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (APPH) used
as oxidant was compared with that of trolox (6-hydroxy-2,5,7,8 tetramethylchroman-2-
carboxylic acid) used as an anti-oxidant standard. Data were expressed as concentration of
trolox equivalents (TE) (mmol/L of serum).

2.6. Statistical Analysis

Experimental data were tested for normality using the Kolmogorov–Smirnov test and
found to be normally distributed. Data were analyzed with the general linear model (GLM)–
general factorial ANOVA procedure using diet type (L, H) and PFA addition (NO and YES)
as fixed factors. Statistically significant effects were further analyzed, and means were
compared using Tukey’s honestly significant difference multiple comparison procedure.
Statistical significance was determined at p ≤ 0.05. All statistical analyses were performed
using the SPSS for Windows Statistical Package Program (SPSS 17.0, Inc., Chicago, IL, USA).

3. Results
3.1. Growth Performance Responses

Significant interactions between diet type and PFA were found for BWG (PD×P = 0.001)
and FCR (PD×P = 0.024). In particular, broilers of treatments H- and H+ had higher BWG
and lower FCR values compared to treatments L− and L+, while broilers of treatment L+
had better BWG and FCR compared to treatment L−. Moreover, broilers fed diet type H
showed higher (PD < 0.001) BWG, FI (PD = 0.046) and lower FCR (PD < 0.001) compared to
broilers fed diet type L. In addition, PFA inclusion significantly increased BWG (PP = 0.002)
and improved FCR (PP = 0.043) for the whole experiment (Table 2).

Table 2. Overall broiler growth performance responses.

Overall BWG (g) Overall FI (g) Overall FCR (g FI/g BWG)

Diet type 1

L 2411.7 A 4114.9 A 1.71 B

H 2692.1 B 4194.3 B 1.56 A

PFA addition 2

No 2523.1 X 4138.2 1.65 Y

Yes 2580.7 Y 4171.1 1.62 X

Treatments
(Interactions)

L− 2353.3 a 4086.3 1.74 c

L+ 2470.1 b 4143.6 1.68 b

H− 2692.8 c 4190.1 1.56 a

H+ 2691.3 c 4198.6 1.56 a

SEM 4 16.78 38.20 0.013

PD
3 <0.001 0.046 <0.001

PP
3 0.002 0.395 0.043

PD×P
3 0.001 0.528 0.024

1 Diet type: L (i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs).
2 Phytogenic feed additive (PFA) supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). 3 Means
within the same column with different superscripts per diet type (A, B), PFA addition (X,Y) and their interactions
(a, b, c) differ significantly (P < 0.05). 4 Pooled standard error of means.

3.2. Profile of Selected Gene Expression along the Intestine
3.2.1. Duodenum

In the duodenal mucosa, significant interaction (PD×P = 0.017) was shown (Figure 1)
between diet type and PFA inclusion for HMOX1 gene expression levels, with broilers of
treatment (L−) having lower relative gene expression compared to the other treatments.
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relative gene expression of HMOX1 in the duodenal mucosa of 42-day-old broilers. Columns indicate
treatments means + SD and the asterisks denotes statistical difference (PD×P = 0.017).

Moreover, as shown in Table 3, diet type significantly affected (P < 0.05) relative
gene expression of GPX2 (PD = 0.043) and HMOX1 (PD = 0.017) with broilers fed diet
type L showing higher expression compared to broilers on diet type H. In addition, diet
type affected the relative gene expression of TXN (PD = 0.017) with broilers fed diet type
H showing higher expression levels compared to broilers fed diet type L. In addition,
PFA inclusion significantly (P < 0.05) up-regulated relative expression levels of Keap1
(PP = 0.001), CAT (PP = 0.035), SOD1 (Pp = 0.019), HMOX1 (Pp = 0.001), NQO1 (Pp = 0.001),
GSR (Pp = 0.041), PRDX1 (Pp = 0.019) and TXN (Pp = 0.035). Gene expression of Nrf2, XOR,
GPX7 and GST was not significantly affected (P > 0.05) by PFA inclusion of diet type

Table 3. Relative expression of the Nrf2/ARE pathway genes in the duodenal mucosa of 42-day-old broilers.

Item Type of Diet 2 PFA
Supplementation 3 p-Values 4

Duodenum L H No Yes SEM 5 Diet (D) PFA (P) D × P

Genes 1

Nrf2 1.01 1.29 1.17 1.13 0.222 0.224 0.836 0.794

KEAP1 1.08 1.05 0.89 X 1.25 Y 0.096 0.753 0.001 0.125

CAT 2.22 2.15 1.78 X 2.59 Y 0.366 0.842 0.035 0.491

SOD1 1.02 1.14 0.92 X 1.24 Y 0.131 0.385 0.019 0.063

XOR 1.16 1.04 0.97 1.23 0.184 0.513 0.171 0.475

GPX2 1.69 B 1.03 A 1.06 1.66 0.313 0.043 0.063 0.170

GPX7 1.33 1.23 1.49 1.07 0.367 0.791 0.262 0.862

HMOX1 0.94 A 1.19 B 0.87 X 1.26 Y 0.101 0.017 0.001 0.017

NQO1 1.11 1.01 0.86 X 1.25 Y 0.109 0.368 0.001 0.183

GST 1.48 1.15 1.03 1.60 0.327 0.271 0.071 0.934

GSR 1.10 1.18 0.93 X 1.34 Y 0.194 0.664 0.041 0.062

PRDX1 1.77 1.62 1.38 X 2.00 Y 0.249 0.557 0.019 0.794

TXN 0.92 B 1.26 A 0.94 X 1.24 Y 0.136 0.019 0.035 0.120
1 Relative expression ratios of target genes was calculated according to [25] adapted for the multi-reference genes normalization procedure
according to [26] using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin beta (ACTB) as reference genes. 2 Diet type: L
(i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs). Data shown per diet type represent
treatment means from n = 18 broilers (e.g., for L diet, 9 from treatment L− and 9 from treatment L+). 3 Phytogenic feed additive (PFA)
supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). Data shown for PFA represent means from n = 18 broilers (e.g., for No
PFA supplementation, 9 from treatment L and 9 from treatment H). 4 Means within the same row with different superscripts per diet type
(A, B) and PFA (X, Y) differ significantly (P < 0.05).5 Pooled standard error of means.
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3.2.2. Jejunum

In the jejunal mucosa, diet type significantly affected GPX2 (PD = 0.005) and PRDX1
(PD = 0.002), with broilers fed diet type L showing higher expression levels compared to
broilers fed diet type H, as presented in Table 4. On the other hand, relative gene expression
of Nrf2, Keap1, CAT, SOD1, XOR, GPX7, HMOX1, NQO1, GST, GSR and TXN was not
significantly affected (P > 0.05) neither by diet type nor PFA inclusion

Table 4. Relative expression of the Nrf2/ARE pathway genes in the jejunal mucosa of 42-day-old broilers.

Item Type of Diet 2 PFA Supplementation 3 p-Values 4

Jejunum L H No Yes SEM 5 Diet (D) PFA (P) D × P

Genes 1

Nrf2 1.28 1.20 1.26 1.22 0.330 0.849 0.829 0.743

Keap1 1.09 1.07 1.07 1.09 0.109 0.926 0.886 0.430

CAT 1.17 1.00 1.08 1.09 0.126 0.180 0.951 0.719

SOD1 1.10 1.06 1.03 1.13 0.137 0.734 0.480 0.066

XOR 1.15 1.05 1.08 1.12 0.158 0.492 0.831 0.953

GPX2 1.46 B 0.87 A 1.00 1.33 0.138 0.005 0.108 0.294

GPX7 1.13 1.10 1.12 1.11 0.175 0.850 0.960 0.930

HMOX1 0.96 1.22 1.01 1.16 0.095 0.064 0.285 0.375

NQO1 1.04 1.08 1.09 1.03 0.088 0.766 0.628 0.793

GST 0.91 1.34 1.00 1.24 0.148 0.050 0.260 0.245

GSR 0.95 1.12 1.05 1.01 0.110 0.130 0.749 0.206

PRDX1 2.39 B 1.63 A 1.99 2.01 0.225 0.002 0.908 0.654

TXN 1.06 1.09 1.11 1.04 0.136 0.818 0.637 0.824
1 Relative expression ratios of target genes was calculated according to [25] adapted for the multi-reference genes normalization procedure
according to [26] using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin beta (ACTB) as reference genes. 2 Diet type: L
(i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs). Data shown per diet type represent
treatment means from n = 18 broilers (e.g., for L diet, 9 from treatment L− and 9 from treatment L+). 3 Phytogenic feed additive (PFA)
supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). Data shown for PFA represent means from n = 18 broilers (e.g., for No
PFA supplementation, 9 from treatment L and 9 from treatment H).4 Means within the same row with different superscripts per diet type
(A, B) differ significantly (P < 0.05). 5 Pooled standard error of means.

3.2.3. Ileum

In the ileal mucosa, significant interactions between diet type and PFA inclusion were
noted for GPX2 (PD×P = 0.007) and HMOX1 (PD×P = 0.024) as shown in Figures 2 and 3. In
particular, the highest relative expression level of GPX2 was found on the L+ treatment,
whereas on HMOX1, treatment H+ had the higher gene expression level compared to the
other treatments.

In addition, diet type significantly affected (PD = 0.006) the expression of CAT, with
broilers fed diet type L showing higher expression levels compared to broilers fed diet type
H. Moreover, as displayed in Table 5, PFA inclusion, significantly up-regulated (PP < 0.001)
the relative gene expression of GPX2. Finally, relative gene expression of Nrf2, Keap1, SOD1,
XOR, GPX7, NQO1, GST, GSR, PRDX1 and TXN was not significantly affected (P > 0.05)
neither by diet type nor PFA inclusion
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Figure 3. Interaction effects of diet type and phytogenic feed additive (PFA) supplementation on relative gene expression of
HMOX1 in ileal mucosa of 42-day-old broilers. Columns indicate treatments means + SD, and the asterisk denotes statistical
difference (PD×P = 0.024).

3.2.4. Ceca

In the cecal mucosa, as shown in Table 6, diet type significantly affected (P < 0.05)
the gene expression levels of Keap1 (PD = 0.014), GPX2 (PD = 0.003), GPX7 (PD = 0.032)
and PRDX1 (PD = 0.006), with broilers fed diet type L showing higher expression levels
compared to broilers fed diet type H. Moreover, PFA inclusion significantly up-regulated
(PP = 0.041) relative gene expression level of GST. However, relative gene expression
of Nrf2, Keap1, CAT, SOD1, XOR, HMOX1, NQO1, GSR and TXN was not significantly
affected (P > 0.05) neither by diet type nor PFA inclusion.
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Table 5. Relative expression of the Nrf2/ARE pathway genes in the ileal mucosa of 42-day-old broilers.

Item Type of Diet 2 PFA
Supplementation 3 p-Values 4

Ileum L H No Yes SEM 5 Diet (D) PFA (P) D × P

Genes 1

Nrf2 1.33 1.05 1.35 1.03 0.226 0.220 0.166 0.114

Keap1 1.11 1.03 1.02 1.12 0.126 0.553 0.438 0.433

CAT 1.26 B 0.91 A 1.00 1.17 0.120 0.006 0.149 0.151

SOD1 1.11 1.00 1.06 1.05 0.113 0.336 0.903 0.981

XOR 1.05 1.08 1.04 1.08 0.128 0.836 0.757 0.724

GPX2 1.45 1.06 0.81 X 1.70 Y 0.251 0.657 <0.001 0.007

GPX7 1.10 1.21 1.23 1.08 0.224 0.633 0.507 0.779

HMOX1 0.96 1.20 0.97 1.19 0.134 0.096 0.115 0.024

NQO1 1.18 0.95 1.05 1.08 0.119 0.058 0.845 0.184

GST 1.08 1.42 0.98 1.51 0.347 0.477 0.629 0.333

GSR 1.22 0.94 1.01 1.15 0.153 0.078 0.375 0.994

PRDX1 1.65 2.06 1.57 2.14 0.289 0.163 0.060 0.125

TXN 1.03 1.13 1.08 1.08 0.155 0.528 0.994 0.599
1 Relative expression ratios of target genes were calculated according to [25] adapted for the multi-reference genes normalization procedure
according to [26] using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin beta (ACTB) as reference genes. 2 Diet type: L
(i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs). Data shown per diet type represent
treatment means from n = 18 broilers (e.g., for L diet, 9 from treatment L− and 9 from treatment L+). 3 Phytogenic feed additive (PFA)
supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). Data shown for PFA represent means from n = 18 broilers (e.g., for No
PFA supplementation, 9 from treatment L and 9 from treatment H). 4 Means within the same row with different superscripts per diet type
(A, B) and PFA (X, Y) differ significantly (P < 0.05). 5 Pooled standard error of means.

Table 6. Relative expression of the Nrf2/ARE pathway genes in cecal mucosa of 42-day-old broilers.

Item Type of Diet 2 PFA Supplementation 3 p-Values 4

Ceca L H No Yes SEM 5 Diet (D) PFA (P) D × P

Genes 1

Nrf2 1.16 1.14 1.18 1.13 0.204 0.910 0.787 0.718

Keap1 1.31 B 0.93 A 1.01 1.24 0.147 0.014 0.133 0.077

CAT 1.05 1.24 0.91 1.38 0.255 0.454 0.077 0.202

SOD1 1.13 1.11 1.04 1.20 0.172 0.926 0.352 0.135

XOR 1.21 1.07 1.00 1.28 0.262 0.402 0.393 0.359

GPX2 1.40 B 0.86 A 1.02 1.24 0.166 0.003 0.198 0.102

GPX7 1.39 B 0.94 A 1.08 1.25 0.201 0.032 0.406 0.144

HMOX1 1.22 1.04 1.12 1.15 0.152 0.247 0.865 0.991

NQO1 1.11 1.09 1.17 1.03 0.148 0.911 0.359 0.454

GST 1.34 0.99 0.98 X 1.35 Y 0.175 0.058 0.041 0.461

GSR 1.10 1.23 1.24 1.10 0.207 0.522 0.505 0.191

PRDX1 1.94 B 1.29 A 1.44 1.79 0.221 0.006 0.127 0.962

TXN 1.21 1.05 0.99 1.27 0.199 0.445 0.167 0.560
1 Relative expression ratios of target genes were calculated according to [25] adapted for the multi-reference genes normalization procedure
according to [26] using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and actin beta (ACTB) as reference genes. 2 Diet type: L
(i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs). Data shown per diet type represent
treatment means from n = 18 broilers (e.g., for L diet, 9 from treatment L− and 9 from treatment L+). 3 Phytogenic feed additive (PFA)
supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). Data shown for PFA represent means from n = 18 broilers (e.g., for No
PFA supplementation, 9 from treatment L and 9 from treatment H). 4 Means within the same row with different superscripts per diet type
(A, B) and PFA (X, Y) differ significantly (P < 0.05). 5 Pooled standard error of means.
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3.3. Total Antioxidant Capacity (TAC) along the Intestine

Significant interactions between diet type and PFA inclusion for TAC were noted in
the duodenal (PD×P = 0.024) and ileal (PD×P = 0.007) mucosa as shown in Figures 4 and 5,
respectively. In particular, treatment L+ had higher TAC compared to the other treatments.
In addition, diet type significantly affected TAC in jejunal mucosa (PD = 0.001) with broilers
fed diet type H having higher TAC compared to broilers fed diet type L.
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Finally, as presented in Table 7, PFA inclusion significantly increased TAC in the
jejunal (PP < 0.001), ileal (PP = 0.033) and cecal (PP = 0.032) mucosa.

Table 7. Total antioxidant capacity (TAC) along the intestinal mucosa of 42-day-old broilers.

TAC 1

(mmol TE/g Tissue) Type of Diet 2 PFA Supplementation 3 SEM 4 p-Values 5

Item L H No Yes Diet (D) PFA (P) D × P

Duodenum 46.46 46.53 44.38 48.60 2.279 0.976 0.073 0.024

Jejunum 39.22 A 52.38 B 38.32 X 53.29 Y 3.748 0.001 <0.001 0.250

Ileum 32.53 34.31 29.73 X 37.11 Y 3.316 0.594 0.033 0.007

Ceca 33.94 39.03 32.49 X 40.48 Y 3.564 0.163 0.032 0.300

TE = trolox equivalents. 1 Data represent treatment means from n = 9 replicate floor pens per treatment (L, L+, H, H+). 2 Diet type: L
(i.e., 95% of recommended ME and CP specs) and H (i.e., 100% of recommended ME and CP specs). Data shown per diet type represent
treatment means from n = 18 broilers (e.g., for diet type L, 9 from treatment L− and 9 from treatment L+). 3 Phytogenic feed additive (PFA)
supplementation (No = 0 mg/kg diet and Yes = 150 mg/kg diet). Data shown for PFA represent means from n = 18 broilers (e.g., for No
PFA supplementation, 9 from treatment L and 9 from treatment H). 4 Pooled standard error of means. 5 Means within the same row with
different superscripts per diet type (A, B) and phytogenic feed additives (X, Y) differ significantly (P < 0.05).

4. Discussion

A deeper understanding of the effects of dietary energy and protein levels on broiler
gut function and health is still warranted. In this study, overall BWG and FCR were better
in chickens receiving diet type H compared to diet type L (Table 2). These results were
in line with previous studies regarding effects on performance and relevant biological
responses [29–32]. However, the topic of energy and protein reduction on metabolic
pathways related to cyto-protection via the Nrf2/ARE pathway is still scarce in broilers.
On the other hand, there are indications for beneficial effects of dietary energy and protein
reductions on the Nrf2/ARE pathway for adult humans [10,11].

In this study, overall body weight gain and FCR were improved in chickens receiving
PFA, especially in the case of diet type L, whereas chickens in treatment L+ were better
compared to L− (Table 2). Similar results have been previously reported [1,29,31]. Phy-
togenic compounds beyond their benefits for growth performance, nutrient digestibility
and meat antioxidant capacity in broilers [1,29,31,33] are currently gaining attention for
their functional role on critical elements of gut barrier integrity and inflammation [34–36].
Interestingly, emerging evidence reveals that PFA may modulate beneficially the Nrf2/ARE
pathway in the broiler gut [3,37].

Therefore, the present study aimed to generate new knowledge regarding the effects
of dietary energy and protein levels in conjunction or not with PFA supplementation on
the stimulation of antioxidant and cyto-protective enzymes, via the activation of Nrf2/ARE
pathway. For this reason, this study has employed a powerful analytical palette of gene
coding for cytoprotective factors and enzymes in order to profile diet and PFA effects along
the broiler gut. The genes and factors studied include a number of phase-2 proteins and
antioxidant gene components of the Nrf2 signaling pathway (i.e., Nrf2, Keap1, CAT, SOD1,
XOR, GPX2, GPX7, HMOX1, NQO1, GST, GSR, PRDX1 and TXN).

In this study, the overall feed intake did not differ significantly between the experimen-
tal treatments. Therefore, according to diet specifications, birds on the low specification diet
(i.e., treatments L and L+) had indeed lower overall ME and CP intake by approximately
5%, compared to birds on the high dietary specification (i.e., treatments H and H+).

Data analysis revealed interactions between diet type and PFA inclusion for HMOX1
and GPX2. In particular, the low diet specs in combination with PFA supplementation up-
regulated the GPX2 gene in the ileal intestinal segment. Meanwhile, HMOX1 in duodenum
had shown a significant up-regulation in all treatments compared to L−. However, in
ileum relative gene expression of HMOX1 was increased only in H+ treatment. Regarding
the interactions between diet and PFA, the biological significance of a single gene changes
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(HMOX1) by its own is questionable and could be considered with the findings about GPX2
gene and TAC results in ileum (Table 5) that indicate PFA role in improving antioxidant
capacity. Concerning the segment dependence for gene responses, PFA constituents had
been shown to be mainly absorbed in the proximal gut (e.g., stomach and duodenum) [38].
As it was observed in this study, the examined genes that were up-regulated in duodenum
upon PFA addition were above 60% (8/13 genes).

Moreover, reduced energy intake has been shown to intensify the repairment of DNA
systems, advocate the elimination of damaged proteins and oxidized lipids and increase
antioxidative defense mechanisms in humans [16], rats and monkeys [39,40]. The results
of the present study support the modulatory effects of lower ME and CP intake towards
an improved broiler anti-oxidative status. In particular, the low diet specs up-regulated
the expression of genes relevant for cyto-protection (i.e., Keap1, GPX2, GPX7 and PRDX1)
mainly at the cecal level. In addition, benefits of reduced ME and CP diet specs for other
gut health biomarkers (i.e., TLR, tight junctions) have also been shown previously in broiler
ceca [36].

In this study, PFA supplementation resulted in Keap1 up-regulation in the duodenum.
This could be considered relevant for overall gut inflammation management since Keap1,
besides its active participation in the Nrf2 pathway [41], also inhibits NF-κB via binding to
its activator protein Ikkb [42]. Up-regulation of Keap1 and down-regulation of NF-κB have
recently been shown in the case of a PFA dose response study in broilers [3].

The PFA inclusion in this study up-regulated CAT and SOD1 expressions in the
duodenal mucosa. Increased CAT and SOD1 activity have been shown in broiler blood
following PFA addition [43], whereas [44] observed a significant up-regulation in these
two enzymes with oregano essential oil (carvacrol) addition in porcine small intestinal
epithelial cells. Furthermore, a significant up-regulation of SOD1 expression in duodenal,
jejunal and cecal mucosa has been shown in a PFA dose response study in broilers [3].

Irrespective of diet type, the administration of PFA up-regulated NQO1 in the duode-
nal mucosa. In another study, an up-regulated NQO1 expression in the duodenum was
also shown following PFA supplementation [3]. NQO1, as mentioned earlier, catalyzes
the two-electron mediated reduction of quinones to hydroquinones, which is commonly
proposed as a mechanism of detoxification [12].

Furthermore, in this study, PFA inclusion resulted in increased GSR, PRDX1 and TXN
expressions in duodenal mucosa. Although there are no other relevant studies to compare
directly, PRDX1 up-regulation has also been reported in the case of other gut function
modulating additives such as mannan-oligosaccharides in young broilers chickens [45].

From all the above, it appears that there are differences regarding the intensity and
intestinal site specificity of PFA modulation of the Nrf2 pathway components, between
various studies [3,36,37]. It is possible that phytogenic composition and inclusion level, as
well as the absorption and metabolism kinetics of phytogenic active components within the
birds, could possibly account for the differences between studies. However, the required
knowledge on these topics is still rather limited.

The effects of PFA on the broiler intestine at a molecular level have been recently
shown to correlate with increased intestinal mucosa TAC [3]. Similarly, in this study, PFA
inclusion resulted in increased TAC in the jejunum, ileum and ceca. Overall, both studies
above provide evidence for PFA cytoprotective and anti-oxidative potential at the broiler
intestine.

5. Conclusions

In conclusion, this study has confirmed our previous findings on performance [1,31]
and provided new knowledge for the effects of diet ME and CP specs on host antioxidant
response. We found that a more intense priming of host antioxidant response was seen
in birds fed the diets with ME and CP reduced by 5% of the recommended optimal
dietary specifications for the broiler genetic line used. Moreover, beyond the known PFA
benefits for performance [1,31], the study results have highlighted the PFA potential for
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host antioxidant protection, detoxification and inflammation management at intestinal
level. Interestingly, it was shown that when PFA was used in conjunction with the low
specifications diet, the cyto-protection potential at the intestine was maximized. From a
human perspective, and given the higher than 60% homology between the Gallus gallus
and the human genome [46], study findings could also be relevant for human gut health as
contemporary dietary recommendations for reduced food intake and use of plant bioactive
compounds increase in popularity.
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