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Simple Summary: Inflammation induced by diet, environmental factors, and stimulated innate
immunity is not conducive to intestinal maintenance and remodeling. Fermented soybean meal
(FSBM) by Bacillus velezensis (Bv) and Lactobacillus brevis ATCC 367 (Lb) reduces these negative factors
and provides bioactive active peptides that are beneficial to intestinal repair and regulate the immune
system of the intestinal tract. This study showed that two-stage FSBM regulates the immunity and
tight junction in the jejunum, which are beneficial to health and performance.

Abstract: The effect of soybean peptides from fermented soybean meal on the intestinal immunity
and tight junction of broilers was assessed. Roughly, two-stage fermented soybean meal prepared
with Bv and Lb (FSBMB+L), which has nearly three times higher soluble peptides than soybean
meal (SBM), and reduced galacto-oligosaccharide (GOS) content and allergen protein. The one-stage
fermented by Bv (FSBMB) has the highest soluble peptides, while commercial lactic acid bacteria
(FSBML) has the highest Lactic acid bacteria count; these were used to compare the differences in the
process. Ross308 broilers (n = 320) were divided into four groups: SBM diet and a diet replaced with
6% FSBMB+L, FSBMB, or FSBML. The growth performance was recorded during the experiment, and
six birds (35-day-old) per group were euthanized. Analysis of their jejunum and ileum showed that
the fermented soybean meal significantly improved the villus height in the jejunum (p < 0.05) and
reduced the crypt hyperplasia. The FSBMB group had the highest reducing crypt depth; however,
the FSBMB+L group had the highest villus height/crypt depth in the ileum (p < 0.05). In the jejunum,
the relative mRNA of CLDN-1 and Occludin increased 2-fold in the treatments, and ZO-1 mRNA
increased 1.5 times in FSBML and FSBMB+L (p < 0.05). Furthermore, the level of NF-κB and IL-6
mRNAs in FSBML increased, respectively, by 4 and 2.5 times. While FSBMB, along with FSBMB+L,
had a 1.5-fold increase in the mRNA of IL-10, that of NF-κB increased 2-fold. FSBMB+L and FSBMB

singly led to a 2- and 3-fold increase in IL-6 mRNA, respectively (p < 0.05). FSBMB and FSBMB+L can
also upregulate MUC2 in the jejunum (p < 0.05). In short, using the soybean peptides from two-stage
fermented soybean meal can ameliorate the negative factors of SBM and effectively regulate immune
expression and intestinal repair, which will help broilers maintain intestinal integrity.

Keywords: soybean meal; soy peptide; two-stage fermentation; immunity; intestinal morphology;
tight junction; broiler
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1. Introduction

Soybean meal (SBM) has 44 to 48% crude protein content [1]. It is a suitable material for
the production of soy peptide, which exhibits potent bioactivity including antioxidant, anti-
inflammatory, and ACE-inhibitory activity and has antimicrobial and anticancer properties.
On the other hand, the fermented soybean meal (FSBM) used in animals’ diets also enhances
growth performance [2], redox status [3,4], and immune regulation [5]. However, the main
bioactive ingredient in FSBM that affects livestock after intake needs to be examined.

The influence of FSBM on the host are divided into two categories: (I) Reduction
in the antigen from glycinin (11S globulin, 40% of total protein) and β-conglycinin (7S
globulin, 30% of total protein) after enzyme hydrolysis leads to better absorption of FSBM,
down-regulation of the NF-κB pro-inflammatory pathway [6], and then restoration of the
intestinal tight junction proteins [7]; (II) soy isoflavone release and deglycosylase after the
hydrolysis of cellulose, hemicellulose modified by β-glucosidase [8], and soy peptides
produced by the hydrolysis of glycinin and β-conglycinin [9]. While these compounds
provide FSBMs bioactivity, soy peptides are considered to have more potential for FSBM
development.

According to Sanjukta [10] and Hou [11], hydrolysis of bioactive soy peptides from 65
to 85% of the structural protein produce 2 to 20 amino acid residues. From the digestive
fluid, these peptides pass through the duodenum and act to scavenge hydroxyl radicals
and chelate transition-metal ions [12]. The structure or amino acid composition peptides
also help in regulating pro-inflammatory factors in the intestinal epithelium, including Th1
(interleukin, IL-12, TNF-α, and IFN-γ), Th17 (TGF-β, IL-6, and IL-17) related cytokines,
and IL-10 at the regulatory T cell [6]. When peptides arrive at the jejunum, they can be
transferred by peptide transporter 1 (PepT1), or be passively transported through tight
junction protein, or through pinocytosis [13]. The bioactive peptides can be transported
through serum and continue activating the target organ (liver, spleen, and breast).

So far, the functions of soy peptides have been confirmed in vivo animal experiments,
including mice [14] and piglet [15], but there have been only a few studies on poultry,
especially broilers. For nearly half a century, dealing with commercial demand, industrial
production of broilers has been accelerated. This has worsened the stress in birds, including
oxidative stress and potential pathogen and environmental stress [16]. The gastrointestinal
tract, especially complex microbiota of feces, feed material, and foreign factors, are consider
to be vital against oxidative stress and potential pathogens [17]. Soy peptides are usually
present in FSBM in livestock diets [11]; however, only a few studies have discussed the effect
of soy peptides in two-stage FSBM on the animals’ intestinal immunity and permeability. In
recent studies, a partial replacement diet from 3% to 6% showed better growth performance,
immunity, and intestinal morphology [4,5]. Cheng’s group, using two-stage fermentation,
showed reducing anti-nutrition factors and increasing with <6 kDa soy peptide content,
which decreased the serum IgG and downregulated spleen IL-4 and IL-10 mRNA levels by
partial replacement in 10% of broiler diets [18]. However, more investigation in needed
regarding the relationship between the FSBM content and the intestinal cell repair ability,
which is associated with immune response in broilers. We hypothesized that FSBM can
regulate the immune response and restore epithelial cell repair ability due to glycinin
hydrolysis. This article focuses on the effects and associated molecular mechanisms of the
soy peptides included in FSBM on broilers’ intestinal immunity and permeability.

2. Materials and Methods
2.1. Preparation and Characteristics of FSBM

Lb and Bv were used for SBM fermentation. First, enrichment of Lb was carried
out in de Man, Rogosa, and Sharpe (MRS) broth at 30 ◦C under anaerobic conditions
for 48 h; enrichment of Bv was done in Luria–Bertani (LB) broth at 37 ◦C in aerobic
conditions for 24 h. Fifty grams of commercial SBM from Central Union Oil Corporation
(Taichung, Taiwan) was sterilized at 121 ◦C for 15 min. Initial moisture was adjusted
to 50% after cooling the SBM and fermented under the following conditions: one-stage
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fermentation after inoculating Bv 2.5% in aerobic fermentation for 60 h (FSBMB); two-
stage fermentation after inoculating Bv 2% in aerobic fermentation for 24 h, and then
inoculating Lb in anaerobic fermentation for 36 h (FSBMB+L). After fermentation, 1 g fresh
fermented product was collected for live cell count. The remaining portions were dried
at 55 ◦C for 12 h and ground for composition analysis according to AOAC [19], including
dry matter (DM) and crude protein (CP). Anti-nutrition factors were measured using a
commercial ELISA kit for allergen protein (Biofront, Tallahassee, FL, USA), trypsin inhibitor
(Eurofins Immunolab, Kassel, Germany), and high-performance liquid chromatography
(HPLC) for GOS according to Faridah [20] and Yin’s [21] method using a column (ZORBAX
carbohydrate, 4.6 mm × 150 mm, 5 µm). The TCA-soluble protein content was as per the
method by Xie [22]. All of FSBM’s composition were showed as Table 1. Then, 20 kg FBSM
was processed for the animal trials after measuring the contents.

Table 1. Chemical composition of SBM and two-stage FSBM products.

Nutrient SBM FSBML FSBMB FSBMB+L SEM p-Value

Composition
DM (%) 88.4 c 93.2 a 88.2 c 89.9 b 0.001 <0.001

CP (% DM) 43.0 45.1 50.8 48.1 1.72 0.104
TCA-soluble protein (% DM) 4.21 d 7.42 c 15.17 a 10.29 b 0.49 <0.001

Lactic acid Bacteria
(Log CFU/g DM) 5.54 c 8.82 a 8.00 b 8.97 a 0.08 <0.001

Anti-nutritive factors
Raffinose (% DM) 1.29 a 0.11 b 0.08 b 0.0 3b 0.04 <0.001
Stachyose (% DM) 4.15 a 1.19 b ND ND 0.08 <0.001

Allergen protein (mg/g DM) 505 a 226 b 183 b 198 b 35.8 0.001
Trpsin inhibitor (mg/g DM) 17.5 a 9.03 b 0.43 d 1.57 c 0.16 <0.001

Each value represents the mean ± standard deviation (n = 3). ND: Not detected. SBM: Soybean meal; FSBML:
commercial control; FSBMB: SBM one-stage fermented by Bv; FSBMB+L: SBM two-stage fermented by Bv and Lb.
a–d Means within a row with different letters differed significantly (p < 0.05).

2.2. Animal Experiment
2.2.1. Animal Feeding and Housing

The feeding trial was conducted during summer at the National Chung Hsing Univer-
sity (NCHU) Experimental Husbandry Farm (Taichung, Taiwan) with an average environ-
mental temperature of 30 ± 2 ◦C and average environmental humidity of 77 ± 11%. The
protocols for feeding and housing were carried out according to the Animal Care and Use
Committee, NCHU (IACUC: 109-055). Three hundred and twenty Ross 308 broilers, one-
day-old (initial weight 44 ± 1.2 g) were categorized into four groups with four replicates,
with feeding and water drinking ad libitum. The groups were corn-soybean meal (SBM) and
diets replaced by 6% FSBMB, FSBMB+L, and commercial FSBM fermented by Lactobacillus
spp. (FSBML). The feeding formula for the starter (day 1–21) and finisher (day 22–35) was
as per the NRC (1994), with equal amounts of protein and energy showed as Table 2. Per
pen from day 1, the temperature (34 ± 1 ◦C) was slowly downgraded to room temperature
by day 7 (27 ± 1 ◦C) and kept as such until the experiment ended.
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Table 2. Composition and calculated analysis (% as fed) of the basal diet for broilers (1–35 days) 1.

Ingredients
Starter Diet (Day 1–21) Finisher Diet (Day 22–35)

SBM FSBML FSBMB FSBMB+L SBM FSBML FSBMB FSBMB+L

Composition, %
Corn, yellow 52.99 53.27 54.18 53.49 57.15 57.39 58.45 57.61

Soybean meal (CP-44%) 34.0 28.0 28.0 28.0 28.0 22.0 22.0 22.0
Fermented soybean meal - 6.0 6.0 6.0 - 6.0 6.0 6.0

Full fat soybean meal 3.00 2.99 2.00 2.47 4.15 4.18 3.04 3.65
Soybean oil 3.16 2.89 2.97 3.20 4.13 3.86 3.93 4.17

Fish meal (CP-65%) 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Monocalcium phosphate 1.32 1.32 1.32 1.32 1.25 1.25 1.25 1.25

Calcium carbonate 1.36 1.36 1.36 1.36 1.28 1.28 1.28 1.28
NaCl 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

DL-Methionine 0.35 0.35 0.35 0.35 0.27 0.27 0.27 0.27
L-Lysine HCl 0.20 0.20 0.20 0.20 0.16 0.16 0.16 0.16

Choline-Cl 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Vitamin premix 2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Mineral premix 3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Calculated nutrient levels
Crude protein, % 23.0 23.0 23.0 23.0 21.0 21.0 21.0 21.0

Crude fat, % 6.6 6.4 6.3 6.6 7.8 7.7 7.6 7.8
ME, kcal/kg 3050.0 3050.0 3050.0 3050.0 3175.0 3175.0 3175.0 3175.0
Calcium, % 0.96 0.96 0.96 0.96 0.90 0.91 0.91 0.91

Total phosphorus, % 0.70 0.71 0.71 0.71 0.66 0.68 0.67 0.67
Available phosphorus, % 0.48 0.47 0.46 0.46 0.46 0.44 0.44 0.44
Methionine,+Cysteine, % 1.08 1.08 1.07 1.07 0.95 0.95 0.94 0.95

1 SBM: Soybean meal; FSBML: commercial control; FSBMB: SBM one-stage fermented by Bv; FSBMB+L: SBM two-stage fermented by Bv
and Lb. 2 Vitamins (premix content per kg diet): Vit. A, 15,000 IU; Vit. D3, 3000 IU; Vit. E, 30 mg; Vit. K3, 4 mg; thiamine, 3 mg; riboflavin, 8
mg; pyridoxine, 5 mg; Vit. B12, 25 µg; Ca-pantothenate, 19 mg; niacin, 50 mg; folic acid, 1.5 mg; and biotin, 60 µg. 3 Minerals (premix
content per kg diet): Co (CoCO3), 0.255 mg; Cu (CuSO4·5H2O), 10.8 mg; Fe (FeSO4·H2O), 90 mg; Mn (MnSO4·H2O), 90 mg; Zn (ZnO), 68.4
mg; Se (Na2SeO3), 0.18 mg.

2.2.2. Growth Performance and Sample Collection

When the birds were 21 and 35 days old, the body weight (BW) and feed intake (FI)
for each group with replicate were measured, then the body weight gain (BWG) and feed
conversion rate (FCR) were calculated. On day 35, serum samples from the wing vein
of eight birds from each group were collected intravitally. Serum samples were kept at
4 ◦C for 4 h and centrifuged at 3000 rpm at 4 ◦C for 10 min. Six birds within the average
weight from each group were then selected for euthanizing and sampling. For intestinal
morphology and RT-qPCR analysis, birds were fasted for 24 h and euthanized by cervical
dislocation, then 2 cm of the middle section of the jejunum and ileum were sampled and
rinsed by phosphate buffer solution. Samples were soaked in 10% formalin solution at
room temperature for intestinal morphology and RNA shield (Zymo research CO., Irvine,
CA. USA) treatment at −20 ◦C for RNA extraction. For quantitative estimation of ILs, the
samples (jejunum, serum) were stored at −80 ◦C for future use by a commercial ELISA kit
(FineTest, Wuhan, China).

The samples for intestinal morphology were embedded by paraffin and stained with
hematoxylin and eosin. The slices was observed under a light microscope using the
Mosaic 2.1 analysis system (Tucsen Photonics Co., Ltd., Fujian, China). For each treatment,
30 images were acquired for the measurement and calculation of villus height and crypt
depth.

2.2.3. Jejunum Total RNA Isolation and qPCR

The sample (0.1 g) was taken from the RNA shield, soaked in RNAzol (Molecular
research center, Ohio, USA), and macerated in a lysis tube (Zymo research CO., Irvine,
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CA, USA). The supernatant was extracted following the protocol in the commercial kit
(Zymo research CO., Irvine, CA, USA). A Prime Script™ RT reagent Kit with gDNA Eraser
(Applied Biosystems, Waltham, MA, USA) was used for reverse transcription of extracted
RNA. The qRT-PCR analysis was conducted on the StepOnePlus™ Real-Time PCR System
(Thermo Fisher, Waltham, MA, USA). The dilution of cDNA and primer was carried out
according to the included protocol. The PCR mix consisted of 1.2 µL cDNA samples, 5 µL
2× SYBR GREEN PCR Master Mix-ROX (Appliedbiosystems, Waltham, MA, USA), 1.8 µL
deionized water, and 1 µL forward and reverse primers. The performance of qRT-PCR was
used to measure relative mRNA expression level by the 2−44Ct method. While β-actin
was used for the housekeeping gene, the genes of Gallus gallus (chicken) were used as
gene-specific primers, as listed in Table 3.

Table 3. The primer sequence of each gene according to Genbank or other research.

Gene Name 1 Primer Sequence Genbank No.

ß-actin F: 5′-CTGGCACCTAGCACAATGAA-3′

R: 5′-ACATCTGCTGGAAGGTGGAC-3′ X00182.1

NFκB F: 5′-CCAGGTTGCCATCGTGTTCC-3′

R: 5′-GCGTGCGTTTGCGCTTCT-3′ D13719.1

IFN-γ F: 5′-CTCCCGATGAACGACTTGAG-3′

R: 5′-CTGAGACTGGCTCCTTTTCC-3′ Y07922

IL-1ß F: 5′-GCTCTACATGTCGTGTGTGATGAG-3′

R: 5′-TGTCGATGTCCCGCATGA-3′ NM_204524

IL-6 F: 5′-AGGACGAGATGTGCAAGAAGTTC-3′

R: 5′-TTGGGCAGGTTGAGGTTGTT-3′ NM_204628

IL-10 F: 5′-TTCAGCTTGGATGTGTGAGC-3′

R: 5′-TGTCAGTTCTGCATGCTTCC-3′ XM_025143715.1

Claudin-1 F: 5′-GGAGGATGACCAGGTGAAGA-3′

R: 5′-TCTGGTGTTAACGGGTGTGA-3′ NM_001013611.2

MUC-2 F: 5′-GCTACAGGATCTGCCTTTGC-3′

R: 5′-AATGGGCCCTCTGAGTTTTT-3′ NM_001318434.1

Occludin F: 5′-GTCTGTGGGTTCCTCATCGT-3′

R: 5′-GTTCTTCACCCACTCCTCCA-3′ NM_205128.1

ZO-1 F: 5′-AGGTGAAGTGTTTCGGGTTG-3′

R: 5′-CCTCCTGCTGTCTTTGGAAG-3′ XM_015278975.1

1 NFκB: Nuclear factor kappa B p 65; IFN-γ: Interferon-γ; IL-1ß: Interleukin-1ß; IL-6: Interleukin-6; IL-10:
Interleukin-10; MUC-2: Mucin2; ZO-1: Zonula occludens 1.

2.3. Statistical Analysis

The experimentation of the fermented products was carried out in triplicate. SAS
software (SAS® 9.4, 2016, SAS Institute Inc., Cary, NC, USA) with analysis of variance
mode was used to analyze all data variance. The differences between treatment means
were separated using Duncan’s multiple range test with p-value < 0.05.

3. Results
3.1. The Composition and Enzyme Activity of SBM and FSBM by Bv and Lb

Table 1 presents the changes in the composition of the feeds after two-stage fermen-
tation. Compared with SBM, the TCA-soluble protein of the FSBML increased by 176%,
that of FSBMB+L increased by 244%, and that of FSBMB increased by 360% (p < 0.05).
Concurrently, the contents of stachyose and raffinose in the three treatments reduced sig-
nificantly (p < 0.05). Among the treatments, the stachyose content of FSBMB and FSBMB+L
were below the detection limit (0.234 mg mL−1). Allergic protein and trypsin inhibitor
decreased significantly in three treatments, the lowest content being in FSBMB (p < 0.05).
After adjusting the pH value to 5.5 for enzyme activity assay, protease and α-galactosidase
activity was not detected in FSBML, while FSBMB had the highest protease, α-galactosidase,
mannanase, and xylanase activities of about 4.79, 8.87, 6.27, and 3.03, respectively. The
results of other enzyme activities of the fermented products are shown in Figure 1.
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value represents the mean ± standard deviation (n = 4). SBM: Soybean meal; FSBML: commercial control; FSBMB: SBM
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3.3. Effect of Two-Stage FSBM on Intestinal Morphology of 35-Day-Old Broilers

In the jejunum (Figure 3a), we observed that SBM had a thin villus with a thickened,
proliferated crypt compared to the other groups. FSBMB+L had a less proliferated crypt.
In the ileum (Figure 3b), four groups had similar villus apparent traits, but SBM had the
same status as the jejunum on the proliferated crypt. According to the images we captured,
the intestinal morphology results are shown in Table 4. All three treatments significantly
increased the villus height; only FSBMB significantly decreased the crypt depth compared
with the other groups (p < 0.05). In the ileum, FSBMB+L had a higher villus height/crypt
depth ratio (p < 0.05).
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Figure 3. Effect of two-stage FSBM on Jejunum (a) and ileum (b) intestinal morphology of 35 day-old broilers. SBM: Soybean
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and Lb.

Table 4. Effect of two-stage FSBM on intestinal morphology of 35 day-old broilers 1.

Items
Experimental Diet

SBM FSBML FSBMB FSBMB+L SEM p-Value

Jejunum
Villus height (µm) 1181 b 1326 a 1293 a 1312 a 26.2 <0.001
Crypt depth (µm) 210 a 206 a 175 b 196 a 5.38 <0.001

Villus height/crypt depth 5.62 c 6.44 b 7.39 a 6.69 b 0.18 <0.001
Ileum

Villus height (µm) 955 971 965 985 17.5 0.676
Crypt depth (µm) 202 204 204 193 5.79 0.461

Villus height/crypt depth 4.73 4.76 4.73 5.10 0.15 0.125
1 Each value represents the mean ± standard deviation (n = 6). SBM: Soybean meal; FSBML: commercial control;
FSBMB: SBM one-stage fermented by Bv; FSBMB+L: SBM two-stage fermented by Bv and Lb. a–c Means within a
row with different letters differed significantly (p < 0.05).

3.4. Effect of Two-Stage FSBM on Serum and Jejunum’ s Immunity of 35 Day-Old Broilers

The quantitative pro-inflammatory cytokine detected in the serum and jejunum of
broilers is listed in Table 5. FSBML significantly increased IL-1β, IL-10, and IL-6 in the
jejunum, compared with those in the other groups (p < 0.05). FSBML, FSBMB, and FSBMB+L
had significantly decreased serum IL-1b at 47, 20, and 39 pg mL−1, respectively (p < 0.05).
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Table 5. Effect of two-stage FSBM on serum and jejunum’s immunity of 35 day-old broilers 1.

Items
Experimental Diet

SBM FSBML FSBMB FSBMB+L SEM p-Value

Jejunum
IL-1β (pg/mg protein) 10.2 b 16.9 a 11.7 b 12.5 b 1.15 0.016
IL-10 (pg/mg protein) 134 b 208 a 130 b 135 b 4.44 <0.001
IL-6 (pg/mg protein) 655 b 769 a 510 c 500 c 36.3 0.002

Serum
IL-1β (pg/mL) 90.1 a 43.1 c 70.9 ab 51.5 bc 7.95 0.018

1 Each value represents the mean ± standard deviation (n = 5). SBM: Soybean meal; FSBML: commercial control;
FSBMB: SBM one-stage fermented by Bv; FSBMB+L: SBM two-stage fermented by Bv and Lb. a–c Means within a
row with different letters differed significantly (p < 0.05).

3.5. Effect of Two-Stage FSBM on Relative mRNA Expression in Jejunum of 35 Day-Old Broilers

The relative mRNA expression of tight junction protein is shown in Figure 4a–c. Com-
pared with SBM, Caludin-1 in FSBML, FSBMB, and FSBMB +L was significantly upregulated
by about 1.9, 2.5, and 2.1 times, respectively (p < 0.05). In both FSBML and FSBMB+L,
ZO-1 was significantly upregulated by about 2 times (p < 0.05), while it was upregulated
1.5 times in FSBMB, but there was no significant difference compared to SBM (p > 0.05). All
three treatments significantly upregulated Occuldin by about 1.7 times, but there was no
significant difference between each group.
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The relative mRNA expression of the pro-inflammatory cytokines is shown in Figure 5a–e.
Compared to SBM, FSBMB had significantly upregulated NF-κB, by about 2 times the
amount, and that in FSBML was upregulated by about 4 times the amount (p < 0.05). IL-1β
in FSBMB was significantly upregulated by about 2.5 times, while that in FSBML and
FSBMB+L was significantly upregulated by about 2 times (p < 0.05). The IL-6 in FSBMB+L
was upregulated by about 2 times the amount, while that in FSBML and FSBMB was
upregulated by about 2.5 times and 3 times, respectively (p < 0.05). IL-10 was only signifi-
cantly upregulated by 1.5 times the amount compared to SBM (p < 0.05), while IFN-γ was
significantly upregulated by 3 times in FSBMB compared to SBM.
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The relative mRNA expression of the MUC2 is shown in Figure 6. The level of MUC2
in FSBMB was significantly upregulated 2.6 times more than that in other treatments
compared to SBM (p < 0.05).
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control; FSBMB: SBM one-stage fermented by Bv; FSBMB+L: SBM two-stage fermented by Bv and Lb.

3.6. Effect of Two-Stage FSBM on Economic Benefits

An evaluation of the economic benefits of adding EP to the broiler diet is summarized
in Table 6. The income over feed cost (IOFC) of the control, FSBML, FSBMB, and FSBMB+L
groups were 61.9, 59.9, 57.2, and 63.3 TWD/bird, respectively.
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Table 6. Evaluation of the economic benefit of two-stage FSBM supplemented in diet.

Item
Experimental Diets

SBM FSBML FSBMB FSBMB+L

Feed cost, TWD/bird
1–35 days 46.6 49.0 49. 6 49.3

Meat income, TWD/bird
1–35 days 108.6 108.9 106.8 112.6

Income over feed cost, TWD/bird
1–35 days 61.9 59.9 57.2 63.3

Feed cost, based on the costs (TWD/kg) of the ingredients, as follows: corn meal, 10.1; soybean meal, 15.0;
fermented soybean meal, 23.5; full fat soybean meal, 18.2; soybean oil, 40.0; fish meal, 42.0; monocalcium
phosphate, 14.5; calcium carbonate, 1.70; salt (NaCl), 4.5; DL-Methionine, 110.0; L-Lysine-HCl, 58.00; choline
chloride, 50% 46; vitamin premix, 210.0; and mineral premix, 44.00. The fees for the processing of basal rations per
kg were 14.54 for the grain mixture of the control group, 14.97 for the FSBML group, 14.92 for the FSBMB group,
and 15.02 for the FSBMB+L group, respectively, over 1–21 days. The fees for the processing of basal rations per kg
were 14.54 for the grain mixture of the control group, 14.97 for the FSBML group, 14.90 for the FSBMB group, and
15.02 for the FSBMB+L group, respectively, over 22–35 days.

4. Discussion

Past studies have suggested that partial replacement of dietary SBM by FSBM im-
proved the broiler’s BWG and FCR due to increased protein digestibility [23]. Although
fermentation with the soy peptide upgraded the content, only a 3 to 6% partial replacement
diet could reach a similar effect [5,24]. FSBMB+L showed a better FCR through the entire
feeding period compared to SBM, and we observed that FSBMB+L increased the income
over feed cost, which means FSBMB+L has the potential to bring more economic value. This
may be due to the fact that the nutrients and peptides in FSBMB+L were better absorbed
and utilized by the chickens, at the same time ensuring the birds’ increased protein intake,
which corresponds to the effects of fermented products on animal nutrition seen previously.

The GOS from SBM could not be digested by the digestive enzymes of monogastric
animals. In young monogastric animals, it may cause nutritional diarrhea and lead to
serious gut injury at the distal end of the intestine [25,26]. The jejunum is the main ab-
sorption part of the digestive tract. If gut epithelial cells cannot renew in time, the crypt
shows compensatory hyperplasia [6]. From our results, FSBM had reduced hyperplasia
of the crypt and provided soy peptides, amino acids, and lactic acids as a direct nutritive
recourse to intestine villi or regulated microbiota indirectly to re-establish the gut epithe-
lium. MUC2 secreted by gut goblet cells provides nutrients to the native microbiota and
cushions between the cavities of epithelial cells and is primarily affected by the changing
of microbiota [27]. In the study, FSBMB had upregulated expression of MUC2 and was
beneficial to native microbiota proliferation.

The tight junction is related to osmosis in intestinal epithelial cells. When intestinal
osmosis is enhanced, more potential pathogens can pass through the epithelial cells and
cause inflammation [28]. The factors that cause gut injury (ROS from chyme and cell
metabolism, and nutritional diarrhea) and NF-κB, which inhibit zonula occludens 1 (ZO-1)
expression lead to impeded tight junction repair [29]. The allergen fragment in the SBM
storage protein inhibits tight junction repair by the active NF-κB pathway [28]. Peng [30]
showed that β-conglycinin is harmful to the maintenance of the tight junction. Soy peptides
only protect from injury due to allergens, pathogens, or other signals, but could not restore
the situation before damage [31]. Zhang [15] also proved that soy peptides could support
intestinal epithelial repair in piglets by decreasing ROS and NF-κB expression. In this study,
we did not induce inflammation by 4 4′-Diaminodiphenylsulfone or other pathogens. All
three treatments upregulated ZO-1, claudin-1, and occludin expression, which improved
and stabilized the tight junction barrier.

β-conglycinin from SBM can enhance innate inflammation-related mRNA levels,
including those of NF-κB [30]. In the jejunum, FSBML has the highest mRNA-related
level of NF-κB and upregulated IL-6 from the CD4+ T cell and leads to tissue inflamma-
tion [32]. FSBML also upregulated the IL-1β and IL-10 levels. IL-1β was synthesized from
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macrophages by accepting pathogen-associated molecular patterns and secondary signals
(ROS, crystals, or potassium efflux from cell damage), and upgrades the T cell NF-κB
expression. The other cytokine, IL-10, from the Treg cell, can regulate the overexpression
by IL-1β and cause innate inflammation [32,33]. The reason for this upgradation of innate
inflammation by FSBML may be ascribed to minimal degradation of allergen protein and
induction of the pro-inflammatory cytokine IL-6 by Lb [34].

On the other hand, the levels of IL-6 and IL-1β were enhanced in FSBMB. The
degradation of glycinin and β-conglycinin fragments could possibly still stimulate the
immune cells, but not enough to synthesize pro-inflammatory cytokines. The upregulation
of IFN-γ and IL-10 showed that soy peptides from FSBMB could still promote self-healing
and immune-regulated ability in intestinal epithelial cells. IFN-γ from T helper cell 1 could
inhibit and clear the damaged cells [35]. Furthermore, the soy peptides could support
appropriate expression in the dextran sodium sulfate (DSS)-damaged epithelial cells of
piglets [5]. Among other treatments, unlike FSBMB, FSBMB+L had minimal upregulation of
IL-6. After allergen protein was hydrolyzed by protease or fermentation, the lactic acid
bacteria could reduce the peptides into a smaller size and increase their bioactivity [36–38].
Likewise, Ren [31] also indicated that soy peptide contains a large percentage of Glu and
Asp that can down-regulate NF-κB, which causes an innate inflammatory response, and
help repair the gut injury.

In serum, we did not detect a sufficient amount of IL-10 and IL-6 proteins. However,
we detected the highest level of IL-1β in the SBM group, which is considered to stimulate
other organs via β-conglycinin subunit fragments such as Gly m Bd 30K, Gly m Bd 60K, and
Gly m Bd 28K [16,39]. FSBMB had a high content of soy peptides that could pass through the
intestine epithelium and enter the circulatory system to increase the stimulation of IL-1β in
the FSBM group more than in FSBML and FSBMB+L, but was significantly decreased in SBM
because of the elimination of the allergen. In Cheng’s group experiment [18], fermented
SBM decreased the anti-nutrition factor while increasing < 6 kDa soy peptides contents.
Additionally, 10% partial replacement FSBM of feed downregulated IL-4 and IL-10 in the
spleen and IgG levels in serum due to degradation of anti-nutrition factors. However, they
did not further describe the positive effect to immunity from their fermented soy peptides.
FSBMB, which, degrades anti-nutritional factors and increases peptide content. However,
our experiments have shown that fermentation strains with site fermentation conditions
that strongly degrade allergic protein factors and producing soybean peptides cannot be
fully equipped to regulate the function of intestinal immunity. We suggest that cooperation
of functional strains may fix the peptides that improve the peptide bioactive activity, but
we still need further investigation to support our hypothesis, such as separation and
identification of specific fragments.

Although the degradation of soybean structural protein in FSBMB and FSBMB+L is
higher than FSBML, we still observed that FSBMB and FSBMB+L and its TCA-soluble
protein stimulate the expression of IL-1β, IL-6, and IL-10 to a certain extent in the jejunum.
The residues of the decomposed soy peptides may partially stimulate the innate immune
response, which will help animals accelerate the immune system’s activation when facing
acute or chronic stress [40].

So far, the ability of soy peptides to repair or balance gut injury could be tested through
in vitro study or with in vivo experiment [14,15]. In Zhu’s studies [41], they showed that
FSBM soy peptides affect animals’ immune responses by measuring the TCA-soluble
protein, and the expression of LC3B from the jejunum and ileum in the piglets correlated
with soy peptides, which inhibit the ROS overexpression and cause innate immunity and
gut injury. In this study, the FSBMB+L and FSBMB TCA-soluble proteins show positive traits
regarding immunity of the jejunum and tight junction through molecular mechanisms.

5. Conclusions

The FSBM fermented by Bv or through a two-stage combination with Lb could increase
the TCA-soluble protein and reduce the anti-nutrition factors (GOS, allergen protein) of
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the feed. Partial replacement of 6% of broiler diet by FSBM improved the intestinal traits,
maintaining the expression of tight junction-related genes while stimulating the expression
of inflammatory factor and MUC2 in the jejune. Compared to FSBML, FSBMB+L exhibited
less NF-κB and IL-6 related expression, indicating better intestinal repairability in animals
facing potential environmental stress and maintaining good growth performance.
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IL-10 Interleukin-
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