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Simple Summary: Fat is a vital body tissue of pigs and a crucial index that affects the production
efficiency of pigs. In this study, Duroc pigs and Luchuan pigs were used as animal materials,
transcriptome sequencing was used to compare the back adipose tissue of the two breeds, to explore
the key reason of difference in fat deposition. The result provided new ideas and reference for further
study of fat development.

Abstract: Fat deposition is a crucial element in pig production that affects production efficiency,
quality and consumer choices. In this study, Duroc pigs, a Western, famous lean pig breed, and
Luchuan pigs, a Chinese, native obese pig breed, were used as animal materials. Transcriptome
sequencing was used to compare the back adipose tissue of Duroc and Luchuan pigs, to explore the
key genes regulating fat deposition. The results showed that 418 genes were highly expressed in
the Duroc pig, and 441 genes were highly expressed in the Luchuan pig. In addition, the function
enrichment analysis disclosed that the DEGs had been primarily enriched in lipid metabolism,
storage and transport pathways. Furthermore, significant differences in the metabolic pathways
of alpha-linolenic acid, linoleic acid and arachidonic acid explained the differences in the flavor of
the two kinds of pork. Finally, the gene set enrichment analysis (GSEA) exposed that the difference
in fat deposition between Duroc and Luchuan pigs may be due to the differential regulation of
the metabolism pathway of fatty acid. Therefore, this study described the differential expression
transcriptional map of adipose tissue of Duroc pig and Luchuan pig, identified the functional genes
regulating pig fat deposition, and provided new hypotheses and references for further study of fat
development.
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1. Introduction

Adipose tissue is the main organ to maintain the balance of energy metabolism in
animals [1]. Fat is an important economic trait that affects the production efficiency and
reproductive performance of pigs [2]. According to its location, adipose tissue can be
divided into subcutaneous fat (SCF) and intramuscular fat (IMF), and the body fat is mainly
deposited in SCF [3]. Fat deposition is characterized by an increase in the number and size
of adipocytes [4]. Fat deposition form and amount are important indicators to evaluate
animal meat quality. With the continuous improvement of living standards, peoples’
requirements for meat products have changed from quantity to quality, and people prefer
lean meat products [5]. In order to meet peoples” demands for lean meat products, animal
husbandry needs to reduce the content of SCF and improve the lean meat rate of pigs [6].

Duroc pig is one of the major commercial lean pig breeds originating in the United
States. It is famous for its thin backfat, high rate of lean meat and fast growth [7]. Luchuan
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pig is a typical fat species in China. It has thick backfat, high fat content and slow growth [8].
Due to the significant differences in backfat thickness and fat deposition capacity [9], Duroc
and Luchuan pigs are ideal models for studying the molecular mechanism of fat deposition.

Transcriptome sequencing can identify and quantify the global changes at the tran-
scriptional level, which is a typical bioinformatics analysis technique and has been widely
used in animal husbandry [10]. Shi et al. found that IncRNAs may be involved in regulating
subcutaneous fat development [11]. R et al. revealed a new aspect of genetic regulation of
fat deposition in pigs [12]. Xing et al. used transcriptome sequencing to provide important
insights into miRNA expression patterns in porcine dorsal adipose tissue [13]. Based on
weighted gene co-expression network analysis between Landrace and Songliao pigs, Xing
et al. identified the key genes affecting fat deposition in pigs [14]. However, the transcrip-
tome study on the comparison of backfat between Duroc and Luchuan pigs has not been
conducted yet.

In this study, transcriptome sequencing was performed on backfat tissues of Duroc
and Luchuan pigs to explore key genes regulating adipose deposition. This study is of
great significance for improving the quality of meat products and provides reference for
exploring the regulation mechanism of fat deposition.

2. Materials and Methods
2.1. Animals and Diet

Duroc boars (n = 6) were bought from Guangxi State Farms Yongxin Animal Hus-
bandry Group Co., Ltd. Luchuan boars (n = 6) were bought from The Animal Husbandry
Research Institute of Guangxi Zhuang Autonomous Region. All pigs had free access to food
and water and were fed under the same feeding conditions until 6 months of age. Dietary
formula is shown in Table 1 [15]. All pigs were slaughtered at 180 days of age. Backfat
adipose tissues were transferred to liquid nitrogen immediately and then stored at —80 °C.

Table 1. The nutritional composition of the diet used in this study.

Nutrition Level Content (%)
Energy (kj/kg) 11.98

Crude protein (%) 16

Crude fiber (%) 6

Crude ash (%) 7

Calcium (%) 0.6-1.2
Total phosphorus (%) 0.4-1.0
NaClI (%) 0.2-0.8
Lysine (%) 0.8

2.2. Hematoxylin and Eosin (HE) Staining

Adipose tissues of Duroc and Luchuan pigs were fixed with a 10% buffered formalde-
hyde solution, followed by paraffin-embedded sections and hematoxylin—eosin staining
according to standard procedures. Histological examination was performed under light
microscope, followed by morphological analysis using image analysis software Image-Pro
Plus 6.0 [9]. At least 20 adipocytes were randomly selected, and the diameter and area of
adipocytes in the collected images were measured.

2.3. Transcriptome Sequencing

In the transcriptome, we selected 3 adipose tissue samples whose backfat thickness
was closest to the mean in each group for high-throughput sequencing. Transcriptome se-
quencing of backfat adipose tissue was performed by Annoroad Gene Technology Co., Ltd.
(Beijing, China). A total of 1.5 ug RNA per sample were individually obtained using TRIzol
reagent. Sample purity of RNA was determined using NanoPhotometer® spectrophotome-
ter (IMPLEN, Westlake Village, CA, USA), the samples with OD260/D0O280 values (ratio)
between 1.8 and 2.0 are considered qualified. The concentration of the samples was tested
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by Qubit®3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Total RNA integrity
and concentration were measured using Agilent 2100 RNA Nano 6000 Assay Kit (Agilent
Technologies, Santa Clara, CA, USA). After the total RNA samples were up to standard,
Oligo (dT) beads were used for purification. The fragmentation buffer was used to fragment
purified mRNA fragments into short fragments. Using the cDNA fragment as a template,
the first strand of cDNA was synthesized with Random Primer 6. The second strand of
cDNA was synthesized by adding buffer solution, ANTPs, RnaseH and DNA Polymerase
I. QIAquick PCR kit was used for purification and eluted with EB buffer. Finally, end
repair, dA-tailing, adapter ligation, and PCR enrichment were performed to complete the
construction of the library.

After library construction, Qubit3.0 was used for preliminary quantification. Then,
diluted to 1 ng/uL. Agilent 2100 was then used to detect the insert size of the library. After
determining the insertion size, Q-PCR was performed using Bio-RAD CFX 96 fluorescence
quantitative PCR and Bio-RAD KIT iQ SYBR GRN. The effective concentration of the library
was quantified accurately (effective concentration > 10 nM). The qualified libraries were
sequenced using the Illumina platform and PE150 sequencing strategy.

2.4. Bioinformatic Analysis

The Illumina high-throughput sequencing results were converted into Raw Reads and
stored in FASTQ file format. The low-quality sequences and connector contamination of
Raw Reads sequenced from the Illumina platform were removed, the Clean Reads were
analyzed. The filter sequencing sequence of each sample was aligned with the reference
genome (Sus scrofa 11.1) to locate it to the genome by an improved BWT algorithm [16]
of HISAT2 software. The number and proportion of genes compared to the genome
were called mapping reads and mapping rate. Gene expression level was measured by
Fragments per Kilobase per Million Mapped Fragments (FPKM) [17], the most commonly
used method for estimating gene expression abundance. DEGSeq [18] was used to analyze
DEGs (|Fold Change | > 2 and p-value < 0.01). The Principal Component Analysis (PCA),
Gene Ontology (GO) term enrichment analysis, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis and GSEA were performed using Omicshare, a real-
time interactive online data analysis platform (p-value < 0.05) (http:/ /www.omicshare.com
(accessed on 18 February 2022)) [19].

2.5. Real-Time qPCR

Total RNA was extracted from adipose tissue of backfat using TRIzol reagent, and
cDNA was synthesized using PCR at 95 °C for 3 min, then 10 s of 40 cycles of 95 °C, 60 °C
for 1 min, and 72 °C for 10 s. With TBP as internal control, gene expression levels were
measured by real-time quantitative PCR using the 2~22Ct method. The design of primers
was developed based on the NCBI Primer-BLAST online tool (https://www.ncbi.nlm.nih.
gov/tools/primer-blast/ (accessed on 25 February 2022)). The primers used in this study
are displayed in Table 2.

Table 2. RT-qPCR primer sequence.

Gene Name Primer Sequence (5' to 3')

TBP_F GAACTGGCGGAAGTGACGTT
TBP_R GCACAGCAAGAAAGAGTGATGC
HSD17B4_F AGGCAGTGGCCAACTATGATTC
HSD17B4_R AGGAAGAGTTTTCCCCCGATG
HACD2_F ACTGGAGCCTTGTTGGAGATTT

HACD2_R ACGCTATGTGTTACTGCCCA
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2.6. Statistics

All results were analyzed by GraphPad Prism 9, and all data were presented as the
means =+ standard deviation (SD). The unpaired two-tailed t-test was used for statistical
analysis. If p-value < 0.05 (*), the differences were considered statistically significant.

3. Results
3.1. Phenotype and Overview of Transcriptomics Data between Duroc and Luchuan Pig
Adipose Tissues

It is well known that the Duroc pig is a lean pig breed and the Luchuan pig is a fatty
pig breed, partly because the diameter and area of adipocytes in the Luchuan pig are larger
than those in the Duroc pig (Figure 1A). In addition, our results show that the backfat
of Duroc is thinner than that of Luchuan pigs (Figure 1B). Therefore, there is a positive
correlation between adipocytes and fat thickness.
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Figure 1. Phenotype and characteristics of RN A-seq data. (A) Adipose tissue sections at 200 x and
400x magnification. Quantification of the diameter and area of adipocytes. (B) Backfat thickness
of Duroc and Luchuan. (C) PCA of samples. (D) The petal Venn diagram of the gene identified by
RNA-seq. (E) Expression abundance correlation analysis between Duroc and Luchuan in RNA-seq.
(F) Distribution of the mRNA abundance. The data are expressed as mean £ SD. **** p < 0.0001.

To unveil the mechanism behind the differences in adipose tissue, RNA-seq was
conducted to investigate the gene expression profiles at the transcriptional level. The RNA-
seq library of Duroc and Luchuan pigs was prepared and sequenced on Illumina platforms,
resulting in 45.1-47.9 million and 43.9-46.3 million clean reads for Duroc and Luchuan pigs
(Table 3). The identification and quantification information of transcriptome was shown in
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Supplementary Table S1. The PCA of RNA-seq data showed a high correlation between the
three biological repeats in Duroc and Luchuan pigs (Figure 1C). The petal Venn diagram
shows that 16,162 genes have been identified in all adipose tissue samples (Figure 1D),
which had a strong correlation between Duroc and Luchuan pigs (R? = 0.9195; Figure 1E).
The abundance distributions of mRNA in Duroc and Luchuan pigs are approximately
lognormal (u = 4; Figure 1F). These results indicate the reliable reproducibility of our data.

Table 3. Transcriptome data statistics.

Raw Clean Clean Reads Mapped Mappin
Sample Reads Reads Rate (%) Q30 Rearc)iz Ratlv.:p 5
Duroc_1 47,456,140 45,889,484  96.7 95.91% 117,943,789  94.28%
Duroc_2 49,962,578 47,937,230  95.95 95.91% 118,682,360 94.68%
Duroc_3 46,846,584 45,082,868  96.23 95.98% 118,441,470 93.54%
Luchuan_1 45,890,832 43,859,842 9557 95.90% 115,923,370  91.04%
Luchuan_2 48,171,536 46,262,262  96.04 95.88% 114,285,253  89.87%
Luchuan_3 47,453,720 45,651,590 96.2 95.88% 116,073,783  92.24%

3.2. Differentially Expressed Genes (DEGs) Identification

Based on RNA-seq data, we can detect the difference in transcriptional mRNA ex-
pression in adipose tissue between Duroc and Luchuan pigs. Subsequently, 859 DEGs
were screened out (|1og, Fold Change| > 1, p-value < 0.01), among which 418 genes were
highly expressed in the Duroc pig and 441 genes were highly expressed in the Luchuan
pig (Figures 2A and 3B). The information of DEGs is shown in Supplementary Table S2.
The DEGs were further distinguished by supervised hierarchical clustering (Figure 2C).
Therefore, we found significantly differentially expressed genes in adipose tissues between
Duroc and Luchuan pigs.
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104
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Figure 2. Identification of DEGs. (A) The statistical analysis of DEGs between Duroc and Luchuan
adipose. (B) The volcano map of DEGs. The gene with p-value < 0.01 and log, Fold Change > 1 is
marked in red; the gene with p-value < 0.01 and logy Fold Change < —1 is marked in blue. (C) Duroc
and Luchuan adipose tissue can be clearly distinguished based on their transcriptome characteristics.
The color key (from blue to red) of abundance value indicated low to high expression levels.
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Figure 3. GO and KEGG analysis of DEGs for Duroc and Luchuan adipose. (A) GO analysis of
DEGs. (B) KEGG summary graph showing the summary of the KEGG pathway. Different colors
represent different KEGG A class categories. (C) Left: distribution of DEGs across chromosomes.
Right: significantly enriched GO terms by DEGs in chromosome 12.
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3.3. GO and KEGG Functional Enrichment Analysis of Duroc and Luchuan Pig Adipose Tissues

GO and KEGG analyses were performed to examine the function of DEGs between
Duroc and Luchuan pigs. As shown in Figure 3A, the GO biological processes classified by
—log1o p-value were mainly enriched in processes related to lipid metabolism, concluding
positive regulation of lipid localization, cellular lipid catabolic process, lipid catabolic pro-
cess and positive regulation of lipid storage. Furthermore, the KEGG enrichment analysis
displayed the pathways that were mainly concentrated in three KEGG A classes, including
metabolism, environmental information processing and organismal systems (Figure 3B,
p-value < 0.05). Among these pathways, 13 pathways, including fatty acid degradation,
alpha-linolenic acid metabolism, linoleic acid metabolism, arachidonic acid metabolism,
etc., were related to metabolism; three pathways were involved in environmental informa-
tion processing and four pathways affected organismal systems. Interestingly, so many
essential fatty acids metabolism pathways were significantly enriched.

By standardizing the number of DEGs carried on chromosomes by the length of
each chromosome, we found significant enrichment on chromosome 12. Therefore, GO
annotation was performed on DEGs on chromosome 12. The results showed that these
genes were mainly related to glycine biosynthetic process, phospholipase activator activity,
lipase activator activity, etc. (Figure 3C). However, the reason why so many DEGs are
enriched on chromosome 12 needs to be further studied.

3.4. Gene Set Enrichment Analysis

To further understand the mechanism of fat accumulation difference between Duroc
and Luchuan pigs, GSEA-KEGG was executed. The results indicated that, compared
with Duroc pigs, the KO01212 fatty acid metabolic pathway decreased in Luchuan pigs
(Figure 4A). This may mean that, compared with Duroc pigs, the down-regulation of
fatty acid metabolic pathway in Luchuan pigs leads to the accumulation of more adipose.
Supplementary Table S3 and Figure 4B present the gene set and expression abundance
of the fatty acid metabolic pathway. To check the reliability of bioinformatics results, the
RT-qPCR of genes involved in fatty acid metabolic pathway was performed. According
to RNA-seq and RT-qPCR data, compared with Duroc pigs, HSD17B4 and HACD2 were
significantly decreased in Luchuan pigs (Figure 4C).
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Figure 4. Functional gene screening and functional verification. (A) GSEA-KEGG analysis of the
transcriptome. A pathway of positive enrichment score is up-regulated, whereas a pathway of
negative enrichment score is down-regulated. (B) Gene expression heatmap of the fatty acid metabolic
pathway. The color key (from blue to red) of abundance value indicated low to high expression
levels. (C) Gene expression levels quantified by RNA-seq and RT-qPCR. HACD?2, 3-hydroxyacyl-CoA
dehydratase 2. HSD17B4, hydroxysteroid 17-beta dehydrogenase 4. The data are expressed as
mean + SD. * p < 0.05.

4. Discussion

In pig breeding, SCF will affect the meat quality and economic value of pork. SCF is
the largest part of fat deposition in animals, in which backfat fat is not only the result of
SCF deposition, but also the intuitive embodiment of fat deposition ability. SCF deposition
is regulated by multiple genes and pathways. In this study, through the comparison of
fat transcriptional maps between lean Duroc pigs and fat Luchuan pigs, it was found that
the difference in flavor between Duroc and Luchuan pork may be due to the difference in
unsaturated fatty acid metabolism. The difference in fat accumulation was caused by the
regulation of the fatty acid metabolism pathway.
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Fatty acids, especially polyunsaturated fatty acids (PUFA), are major flavor precur-
sors of meat [20]. Cameron et al. [21] showed that PUFA (C18:2, C20:4 and C22:6, etc.)
were positively correlated with flavor of meat. The proportion and amount of saturated
fatty acids (SFA) and unsaturated fatty acids (UFA) in food are closely related to human
health [22]. In UFA, there is a class of fatty acids called essential fatty acids (EFA) that have
protective effects on normal body function and health. EFA includes linoleic acid, linolenic
acid and arachidonic acid. Therefore, increasing PUFA content and reducing SFA content
of meat has become a tendency for meat quality improvement [23]. Figure 3B showed
that the metabolic pathways of three EFA, namely alpha-linolenic acid, linoleic acid and
arachidonic acid, were significant different, which may cause the differences in pork flavor
and nutrition between Duroc and Luchuan pigs. Compared to Lantang pig (a Chinese
fat breed) and Landrace pig (a typical lean breed), Yu et al. found that the PUFA of fatty
Lantang pigs was significantly higher than that of lean Landrace pigs. The novel regulatory
role of Stearoyl-CoA desaturase (SCD) in PUFA deposition was also identified [24]. In this
study, fatty acid desaturase 1(FADS1) and fatty acid desaturase 2(FADS2) were included in
the set of genes regulating lipid metabolism that we screened (Figure 4B). We found that
the abundance of FADS1 and FADS2 expression in Luchuan pigs was higher than that in
Duroc pigs. Previous studies have reported that FADS1 and FADS2 are involved in the
biosynthesis of PUFA [24,25]. In conclusion, compared with Duroc pigs, Luchuan pork
has more unsaturated fatty acids, and better flavor and nutrition, which may be due to
regulation of alpha-linolenic acid, linoleic acid and arachidonic acid metabolism pathways
and genes in these pathways.

The imbalance of fat synthesis and consumption is the key factor leading to fat
accumulation [26]. Through GSEA, we discovered that the fatty acid metabolism sig-
naling pathway was more active in Duroc pigs than in Luchuan pigs (Figure 4A). The
gene set of fatty acid metabolism pathway provided key candidate genes, which are re-
ported to regulate fat deposition (Figure 4B). The 17 3-hydroxysteroid dehydrogenase
type 4 (HSD17B4) is a functional enzyme of the fatty acid peroxisomal 3-oxidation path-
way [27]. HSD17B4 can convert active estrogens and androgens into less active forms
and further promoted participation in fatty acid and cholesterol metabolism [28]. Further,
3-hydroxyacyl-CoA dehydratase 2 (HACD?2) participates in the production of various the
very long-chain fatty acids as precursors of membrane lipids and lipid mediators [29].
Therefore, the high expression of the fatty acid metabolism signal pathway decreased sub-
cutaneous fat accumulation in Duroc pigs, and the inhibition of the fatty acid metabolism
signal pathway in Luchuan pigs resulted in increased lipid accumulation.

5. Conclusions

In conclusion, this research reveals that the accumulation of SCF in Luchuan pigs is
related to inhibition of the fatty acid metabolism signal pathway. In addition, the difference
in meat flavor between lean Duroc pigs and fatty Luchuan pigs may be due to the difference
in the metabolism of EFA, such as alpha-linolenic acid, linoleic acid and arachidonic acid.
These results also help to explain the molecular mechanisms of fat deposition between lean
and fat pig breeds.

Supplementary Materials: The following supporting information can be downloaded at:
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metabolism pathway.
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