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Simple Summary: Zearalenone is a mycotoxin that can cause reproductive toxicity after long-term
feeding in domestic animals and it affects spermatogenesis in male domestic animals. Ferroptosis is
a newly identified type of programmed cell death, which depends on iron accumulation and lipid
peroxidation. Fer-1 inhibits the process of ferroptosis. However, it is not clear whether ferroptosis
plays a role in zearalenone (ZEA) damage to spermatogenesis. This study establishes a ZEA damage
model of in male mice. After Fer-1 intervention, it was found that Fer-1 improves the antioxidant
system of mice testis, reduces iron levels, restores related factors of Nrf2, SLC7A11, and GPX4 to
normal levels, and accelerates reproductive injury recovery.

Abstract: Male reproductive health is critically worsening around the world. It has been reported that
the mycotoxin ZEA causes reproductive toxicity to domestic animals and affects spermatogenesis,
thereby inhibiting male reproductive function. Ferroptosis is a newly identified type of programmed
cell death that is different from apoptosis and it depends on iron accumulation and lipid peroxidation.
Whether ferroptosis is linked to ZEA’s detrimental effect on spermatogenesis needs to be further
explored. This study clarifies ferroptosis’s involvement in ZEA-induced damage on spermatogenesis.
The reproductive injury model used in this study was induced by gavaging male mice in the ZEA
treatment group with 30 µg/kg of ZEA for five weeks. Results show that ZEA treatment reduced
mouse sperm motility and concentration, destroyed the structure of the seminiferous tubules of the
testis, damaged the antioxidant defense system, and blocked spermatogenesis. Ferrostatin-1 (Fer-1)
inhibition of ferroptosis partially alleviated ZEA-induced oligozoospermia in mice. In addition, ZEA
treatment was found to activate a signaling pathway associated with ferroptosis in mouse testis.
ZEA also downregulated the expression of Nrf2, SLC7A11, and GPX4, and decreased the protein
expression of SLC7A11 and GPX4, resulting in the accumulation of lipid peroxides and an increase
in the level of 4-HNE protein in the testis. Importantly, these changes were accompanied by an
increase in the relative contents of Fe2+ and Fe3+. Iron accumulation and lipid peroxidation are the
causes of ferroptosis in spermatogenic cells, leading to a decrease in sperm motility and concentration.
While the administration of Fer-1 at 0.5 and 1 mg/kg also increased the expression of SLC7A11
and GPX4 proteins by upregulating Nrf2 expression, reducing iron accumulation, and reversing
ZEA-induced ferroptosis, Fer-1 at 1.5 mg/kg had the best repairing effect for all parameters. In
conclusion, ZEA-induced ferroptosis may be mediated by a notable reduction in Nrf2, SLC7A11 and
GPX4 expression levels. Overall, ferroptosis is a novel therapeutic target for mitigating ZEA-induced
reproductive toxicity.
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1. Introduction

Zearalenone (ZEA) is an estrogen-like mycotoxin produced by fusarium fungi, which
is widely distributed in wheat [1], corn [2], soybean [3], and other crops. It affects meat
and dairy products consumed by humans thus posing a serious threat to animal and
human health [4,5]. Previous studies showed that ZEA not only causes cytotoxicity [6],
genetic toxicity [7], and immunotoxicity [8] in domestic animals but also affects the normal
operation of the estrogen signaling pathway leading to animal reproductive toxicity [9].
Previous studies have shown that ZEA exposure can reduce the semen quality of male
mice, increase the rate of spermatogenic cell apoptosis, hinder spermatogenesis, and thus
impair male reproductive function [10,11].

Ferroptosis is an iron-dependent non-apoptotic form of programmed cell death char-
acterized by iron-dependent accumulation of lipid peroxides [12]. Moreover, ferroptosis
is regulated by a variety of cellular metabolic pathways, including redox homeostasis,
iron processing, mitochondrial activity, and the metabolism of amino acids, lipids, and
sugars [13–15].

Glutathione peroxidase 4 (GPX4), a key factor in ferroptosis, is a negative regulator
of ferroptosis [16], and the most important anti-lipid peroxidase in cells. GPX4 converts
lipid peroxides into non-toxic alcohols under the synergistic action of reduced glutathione
(GSH) [17,18]. Therefore, GSH is also an important cofactor of GPX4, and the depletion
of GSH will lead to the inactivation of GPX4 and affect its activity, thereby increasing
intracellular lipid peroxidation and leading to ferroptosis [19]. Importantly, cystine, the
raw material for GSH synthesis, is taken up extracellularly via system Xc−, which is mainly
composed of SLC7A11 [20,21]. Studies have shown that nuclear factor erythroid-2-related
factor 2 (Nrf2) is a key factor regulating antioxidant activity and can regulate the levels
of SLC7A11 [22]. Therefore, inhibitions of system Xc− and GPX4 activity are important
conditions for ferroptosis.

Importantly, Nrf2, SLC7A11, and GPX4 are closely related to spermatogenesis. The
loss of GPX4 in mouse spermatocytes leads to a significant decrease in sperm concentration
and motility [23]. Clinical studies have shown that decreased Nrf2 expression is closely
related to oligozoospermia [24]. In addition, inhibition of the cysteine transporter SLC7A11
in the system Xc− also decreased sperm motility [25]. Therefore, given the importance of
Nrf2, SLC7A11, and GPX4 in ferroptosis and spermatogenesis, we investigated ferroptosis’s
involvement in the spermatogenesis process.

In this study, the effect of ZEA on spermatogenesis and changes in antioxidant indexes
in male mice were explored. At the same time, the relative contents of Fe2+ and Fe3+ as well
as changes in Nrf2, SLC7A11, and GPX4 expression levels were detected in mouse testes
when ferrostatin-1 (Fer-1) was administered with ZEA. Likewise, the correlation between
ferroptosis and ZEA-induced male reproductive injury was further demonstrated.

2. Materials and Methods
2.1. Materials

Routine chemicals and reagents were purchased from Solarbio (Shanghai Solarbio Bio-
science & Technology Co. Ltd., Shanghai, China) or Sigma Chemical Co. (St. Louis, MO, USA).

2.2. Animal Processing

The animal study protocol was approved by the Qingdao Agriculture University
Institutional Animal Care and Use Committee (Ethics Approval Code: QAU202011). Three-
week-old ICR male mice were used in this study and they were divided into vehicle control
and treatment groups. The control group was subjected to daily gavage with saline while
the treatment group was gavaged daily with ZEA for a total of 5 weeks. At four weeks
of age, mice were injected with different concentrations of Fer-1 (0.5, 1, 1.5 mg/kg). In
total, there were five groups (n = 10 per group): (1) Con-sa (dosed with saline); (2) ZEA
(ZEA (30 µg/kg BW of ZEA) plus saline); (3) ZEA + Fer-1 (ZEA plus Fer-1 (0.5 mg/kg)); (4)
ZEA + Fer-1 (ZEA plus Fer-1 (1 mg/kg)); (5) ZEA + Fer-1 (ZEA plus Fer-1 (1.5 mg/kg)).
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Mice were maintained under a light: dark cycle of 12:12 h at a temperature of 23 ◦C and
humidity of 50–70% with free access to food (chow diet) and water [26].

2.3. Animal Weight and Testicular Weight

The body weight of mice in each treatment group was weighed before euthanasia,
then both testicles were dissected and weighed.

2.4. Spermatozoa Motility Determined by a Computer-Assisted Sperm Analysis System

Spermatozoa motility was assessed using a computer-assisted sperm assay (CASA)
method according to World Health Organization guidelines [27]. After euthanasia, sperma-
tozoa were collected from the cauda epididymis of mice and suspended in DMEM/F12
medium with FBS (v:v = 9:1, final concentrations: 10%) and incubated at 37.5 ◦C for 30 min;
5 µL of diluted semen from each treatment group was collected and placed in a pre-warmed
counting chamber (SCA 20-06-01; Goldcyto, Barcelona, Spain), then sperm concentrations
and motility were analyzed by the CASA system. The microscopic sperm class analyzer
(CASA system) was used in this investigation. It was equipped with a 20-fold objective,
a camera adaptor (Eclipse E200, Nikon, Japan), and a camera (acA780-75gc, Basler, Ger-
many). More so, it was operated by an SCA sperm class analyzer (MICROPTIC S.L.).
Then, indexes including sperm concentration, motility, and other parameters were compre-
hensively assessed. The classification of sperm motility was as follows: grade A = linear
velocity > 22 µm/s; grade B = linear velocity < 22 µm/s and curvilinear velocity > 5 µm/s;
grade C = curvilinear velocity < 5 µm/s; and grade D = immotile spermatozoa. Sperm
concentration and motility were evaluated and diluted with 10% FBS medium during the
process of evaluation.

2.5. Hematoxylin and Eosin Staining

Mouse testes were collected and fixed in 4% paraformaldehyde, stored overnight in a
refrigerator at 4 ◦C, and then incubated in different concentrations of dehydrating solutions.
The dehydrated testicular samples were then embedded in paraffin and the resulting
paraffin blocks were sectioned at a thickness of 5 µm according to standard histological
procedures. Testicular sections were stained with hematoxylin and eosin staining.

2.6. Measurement of MDA, T-GSH Contents

The content of MDA and T-GSH in testicular tissue was detected using commercial
kits (A003-1-2; A061-1-1; Nanjing Jiancheng Bioengineering Institute) according to the
manufacturer’s regulations. The testes tissues and saline (1:9) were homogenized and
centrifuged at 10,000× g for 10 min, the precipitate was discarded and the supernatant
was collected. Then, the supernatant was mixed with the assay buffer and substrates, and
measured at 532 nm and 405 nm with a micro-plate reader for MDA and T-GSH levels,
respectively. Analyses were performed in triplicate (n ≥ 3); the cv values are shown in
Supplementary Table S1.

2.7. Evaluation of SOD Activity

The total superoxide dismutase assay kit (A001-3-2; Nanjing Jiancheng Bioengineer-
ing Institute) was used to assess the activity of superoxide dismutase (SOD). Testicular
homogenate was centrifuged at 10,000× g for 10 min at 4 ◦C to collect the supernatant.
The protein concentrations were quantified using the bicinchoninic acid method. Then,
the supernatant was mixed with the assay buffer and the SOD activity was calculated
according to the absorbance at 450 nm. Analyses were performed in triplicate (n ≥ 3); the
cv values are shown in Supplementary Table S1.

2.8. Measurement of Fe3+ and Fe2+ Contents

The content of Fe3+ and Fe2+ in testicular tissues was detected using an iron colori-
metric assay kit (E-BC-K139-S, Elabscience, Wuhan, China) and ferrous iron colorimetric
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assay kit (E-BC-K773-M, Elabscience, Wuhan, China) according to the manufacturer’s
instructions. Testicular tissues were taken and rapidly placed in ice-cold saline to prepare
tissue homogenates, then centrifuged at 12,000× g for 10 min at 4 ◦C. The supernatant
obtained was used to measure various indicators. The relative content level of Fe3+ and
Fe2+ was calculated and normalized to mean control levels. Analyses were performed in
triplicate (n ≥ 3); the cv values are shown in Supplementary Table S1.

2.9. Quantitative Real-Time PCR Assay

Total RNA was extracted from testicular tissues using an RNA extraction kit (Sparkjade
Biotechnology Co., LTD, Shandong, China). Then, 2 µg of RNA was reverse transcribed
using HiScript II1 s Strand cDNA Synthesis Kit (+gDNA wiper) obtained from Vazyme
Biotech Co., Ltd. Briefly, 2 µg of total RNA was used to make the first strand of com-
plementary DNA (cDNA; in 20 µL) using an RT2 First Strand Kit (Cat. No: AT311-03,
Transgen Biotech, Beijing, China) following the manufacturer’s instructions. The generated
first-strand cDNAs (20 µL) were diluted to 150 µL with double-deionized water (ddH2O).
Then, 1 µL was used for one PCR reaction (in a 96-well plate). Each PCR reaction (12 µL)
contained 6 µL of qPCR Master Mix (Roche, Basel, Switzerland), 1 µL of diluted first strand
cDNA, 0.6 µL primers (10 mM), and 4.4 µL of ddH2O. The primers for qPCR analysis were
synthesized by Tsingke. qPCR was conducted by using a Roche LightCycler 480 (Roche,
Basel, Switzerland) with the following program: step 1: 95 ◦C, 10 min; step 2: 40 cycles
of 95 ◦C, 15 s; 60 ◦C, 1 min; step 3: dissociation curve; step 4: cool down; n = 3/group.
Additionally, the relative abundance of mRNA was calculated and normalized to mean
β-actin mRNA levels. The primer sequences used in this study are presented in Table 1.

Table 1. List of primers employed for q-RT-PCR.

Gene Name Primer Sequence

Nrf2 F:5′-ATGACTCTGACTCTGGCATTTC-3′

R:5′-GCACTATCTAGCTCCTCCATTTC-3′

SLC7A11
F:5′-GTGGGAGGCTGGTAGTTAATG-3′

R:5′-CTGCTGTACCGTGGTTATGT-3′

GPX4
F:5′-GCAGGAGCCAGGAAGTAATC-3′

R:5′-CCTTGGGCTGGACTTTCAT-3′

β-actin F:5′-GAAGTGTGACGTTGACATCCG-3′

R:5′-TGCTGATCCACATCTGCTGGA-3′

(Nrf2: Nuclear factor E2-related factor 2; SLC7A11: Solute carrier family 7 member 11; GPX4: Glutathione
peroxidase 4).

2.10. Western Blotting (WB)

WB analysis was carried out as described in our previous report [28]. Proteins from
testes tissue were lysed in RIPA buffer containing a protease inhibitor mixture. A BCA
protein concentration kit was used to determine the concentration of extracted protein,
and the concentration was unified. An equal volume of total protein was separated on
SDS-PAGE gels. The proteins were then transferred onto PVDF membranes (GE Bioscience,
Newark, NJ, USA) and then blocked with 5% BSA (dissolved in TBST) for 1 h and the
membrane was incubated with anti-SYCP3 (ab97672; Abcam, Cambridge, UK), anti-DDX4
(bs-22896R; Bioss Biotech, Beijing, China), anti-SOX9 (ab185966; Abcam, Cambridge, UK),
anti-SLC7A11 (bs-6883R; Bioss Biotech, Beijing, China), anti-GPX4 (bs-3884R; Bioss Biotech,
Beijing, China), anti-4-HNE (ab48506; Abcam), and anti-β-actin (bs-0061R; Bioss Biotech,
Beijing, China) overnight at 4 ◦C. The next day, the PVDF membrane was washed with TBST
and incubated with a secondary antibody (1:1000 in TBST) for 1 h at room temperature.
Finally, the bands were quantified using Image J software. The intensity of specific protein
bands was normalized to β-actin.
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2.11. Statistical Analyses

All data were first tested for normality and variance homogeneity through the Shapiro–
Wilk and Levene tests, respectively. When necessary, data were transformed by arc-sin
square root transformation prior to statistical analysis. All the values are presented as the
mean ± SEM. The data were analyzed by SPSS statistical software (SPSS, Inc., Chicago,
IL, USA) using a one-way analysis of variance (ANOVA) followed by the LSD multiple
comparisons test. Graphs were created using GraphPad Prism 5.20 (GraphPad Software
Inc., La Jolla, CA, USA). All groups were compared with each other for every parameter.
p < 0.05 was considered statistically different from one another.

3. Results
3.1. Fer-1 Protects against ZEA-Induced Reduction of Body Weight and Sperm Motility

As shown in Figure 1, ZEA treatment resulted in a significant reduction in body weight,
testis weight, sperm concentration, and total motility, as well as progressive motility when
compared to the treatment without ZEA or Fer-1 (p < 0.05). In addition, administration
of the ferroptosis inhibitor Fer-1 from 0.5 mg/kg to 1.5 mg/kg significantly increased the
body weight, testis weight, sperm concentration, total motility, and progressive motility
compared to the ZEA treatment (p < 0.05) (Figure 1A–E). When the sperm motility patterns
were analyzed, it was observed that the ZEA treatment decreased the VSL, VCL, VAP, LIN,
STR, and WOB parameters; meanwhile, the addition of Fer-1 from 0.5 mg/kg to 1.5 mg/kg
alleviated the damage induced by ZEA for those parameters (p < 0.05) (Table 2).

Figure 1. ZEA induced a reduction of body weight, testis weight, sperm concentration, and sperm
motility in mice that was alleviated by administration of Fer-1. (A) Body weight of all groups
of mice is presented as a bar graph. (B) Testis weight of all groups of mice is presented as a
bar graph. (C) Epididymal sperm concentrations in experimental mice are presented as a bar
graph. (D) Epididymal progressive sperm motility in experimental mice is presented as a bar graph.
(E) Epididymal total sperm motility in mice is presented as a bar graph. The data are expressed as
means ± SEM, with n > 6 per group; a, b, c, d means not sharing a common superscript are different
(p < 0.05).
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Table 2. Parameters of sperm motility.

Sperm Parameters Control ZEA 30 ZEA 30 + Fer−1(0.5) ZEA 30 + Fer−1(1) ZEA 30 + Fer−1(1.5)

VSL (µm/s) 40.89 ± 2.35 a 17.56 ± 2.00 c 26.99 ± 1.43 b 24.80 ± 1.22 b 25.66 ± 1.61 b

VCL (µm/s) 90.90 ± 3.63 a 45.17 ± 4.83 c 70.60 ± 2.83 b 70.68 ± 2.30 b 70.99 ± 2.77 b

VAP (µm/s) 47.75 ± 2.47 a 23.11 ± 2.22 c 35.79 ± 1.35 b 32.92 ± 1.38 b 35.21 ± 1.44 b

LIN (%) 44.68 ± 2.21 a 32.53 ± 2.51 c 40.17 ± 1.35 b 40.60 ± 1.05 b 42.02 ± 1.74 b

STR (%) 79.58 ± 1.16 a 72.63 ± 2.56 b 75.26 ± 1.64 a 70.34 ± 1.19 b 75.20 ± 0.85 a

WOB (%) 57.15 ± 2.06 a 50.47 ± 2.52 b 51.40 ± 1.14 b 48.23 ± 0.89 b 51.28 ± 1.72 b

(Values are expressed as mean ± SEM. Different letters within column indicate significant differences (p < 0.05).
VSL, straight-line velocity; VCL, curvilinear velocity; VAP, average path velocity; LIN, linearity (VSL/VCL); STR,
straightness (VSL/VAP); WOB, wobble (VAP/VCL); n ≥ 3).

3.2. Fer-1 Can Alleviate ZEA-Induced Pathological Changes in Mouse Testis and Increases the
Expression of Important Genes Involved in Spermatogenesis

The changes in testicular tissue were observed at the end of the five week treatment
with ZEA by HE staining. The results showed that, in the control group, the diameters of
seminiferous tubules were larger (Supplementary Figure S1), and various spermatogenic
cell types in the testicular tissue were complete and orderly (Figure 2A). Meanwhile,
in ZEA group, the conformation of the tubules changed, the diameters of seminiferous
tubules decreased (Supplementary Figure S1), the cells were not closely arranged, and
some vacuoles were observed in the tubules (Figure 2B). In addition, after treatment with
the ferroptosis inhibitor Fer-1 from 0.5 mg/kg to 1.5 mg/kg, the results showed that germ
cells in the spermatogenic tubules were restored to a certain extent, the cells were orderly
arranged, and the testicular structure and germ cells were similar to the blank control group
(Figure 2C–E).

Figure 2. Seminiferous tubule architecture in hematoxylin eosin (H&E) stained sections in the testes
of experimental mice. (Scale bar = 20 µm).

SYCP3, DDX4 and SOX9 are markers of spermatocytes, male germ cells and Sertoli
cells, respectively. It was observed that the ZEA treatment significantly decreased the levels
of SYCP3, DDX4 and SOX9 proteins in the testis, while the levels of those proteins were
increased by the treatment with the ferroptosis inhibitor Fer-1 from 0.5 mg/kg to 1.5 mg/kg
(Figure 3A–D, Supplementary Figure S2).

3.3. Fer-1 Can Affect the Contents of MDA, T-GSH, SOD Activity, Fe3+ and Fe2+ in Mouse Testis

fTo determine whether ZEA exposure causes a change in the oxidation index of
testicular tissue, the content of malondialdehyde (MDA) in the testis was examined. Results
showed that ZEA exposure significantly increased MDA content in the testis (p < 0.05).
Meanwhile, the contents of T-GSH and SOD activity in ZEA treatment group were fewer
than those in the control group (p < 0.05) (Figure 4A–C). After Fer-1 treatment, the MDA, and
T-GSH contents and SOD activity increased gradually with increasing Fer-1 concentrations,
and the rescue effect of Fer-1 was more obvious at a concentration of 1.5 mg/kg (p < 0.05)
(Figure 4A–C). As shown in Figure 4D,E, the relative levels of Fe3+ and Fe2+ in ZEA
treatment group were higher than those in the control group (p < 0.05). After the injection
of Fer-1, the level of the elements was reduced (p < 0.05).
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Figure 3. Expressions of SOX9, SYCP3, and DDX4 in the testis of mice in each group. (A) Western
blot detection of SOX9, SYCP3 and DDX4 protein. (B) Image J analysis showing the grey value of
SOX9. (C) Image J analysis showing the grey value of SYCP3. (D) Image J analysis showing the grey
value of DDX4. The data are expressed as means ± SEM, with n ≥ 3; Different lowercase letters (a, b,
c) indicate significant differences (p < 0.05).

Figure 4. Oxidation indicators and iron detection related to ferroptosis. (A) MDA content. (B) Total
GSH content. (C) SOD content. (D) Relative content level of Fe3+. (E) Relative content level of Fe2+.
The data are expressed as means ± SEM, n ≥ 3; Different lowercase letters (a, b, c) indicate significant
differences (p < 0.05).
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3.4. Fer-1 Can Alter ZEA-Induced Ferroptosis-Related Gene and Protein Levels

As shown in Figure 5A–C, when compared to the control group, the expression of Nrf2,
SLC7A11, and GPX4 were down-regulated in the ZEA group; meanwhile, the addition of
Fer-1 increased the Nrf2, SLC7A11, and GPX4 expression in the testis (p < 0.05) (Figure 5A–
C). Interestingly, SLC7A11 and GPX4 protein expressions were decreased, whereas 4-HNE
protein expression significantly increased in ZEA treatment (p < 0.05) (Figure 5D–G). After
Fer-1 intervention, the expression of SLC7A11 and GPX4-related proteins increased, while
the expression of 4-HNE protein decreased (Figure 5D–G, Supplementary Figure S3).

Figure 5. Expressions of genes, proteins involved in ferroptosis in testis of mice in each group.
(A) Nrf2 mRNA expression. (B) SLC7A11 mRNA expression. (C) GPX4 mRNA expression. (D) West-
ern blot detection of SLC7A11, GPX4, and 4-HNE protein. (E) Image J analysis showing the grey value
of SLC7A11. (F) Image J analysis showing the grey value of GPX4. (G) Image J analysis showing the
grey value of 4-HNE. The data are expressed as means ± SEM, with n ≥ 3; Different lowercase letters
(a, b, c, d) indicate significant differences (p < 0.05).

4. Discussion

Previous studies have reported that zearalenone (ZEA) is one of the mycotoxins that
exist in contaminated food [29]. Zearalenone has been found to impair male reproduction,
reducing semen quality and impeding spermatogenesis [7,30]. The results of this study
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showed that after 5 weeks of ZEA (30 µg/kg) treatment, the ZEA treatment group sig-
nificantly reduced the sperm motility, concentration, and sperm motility parameters of
mice. SOX9 is expressed only in the Sertoli cells of the testis and plays an important role
in testicular development [31,32]. Spermatogenesis is regulated by SYCP3 and DDX4. It
was found that ZEA exposure changed the testicular structure and reduced the expression
of SOX9, SYCP3, and DDX4 proteins in testes, indicating that ZEA hindered testicular
development and spermatogenesis by destroying proteins involved in spermatogenesis.

Environmental toxins can induce oxidative stress to produce reproductive toxicity [33].
Studies have shown that ZEA can induce oxidative damage, which may be one of the main
pathways of ZEA toxicity [34,35]. Our results, which show that ZEA treatment increased
MDA content, decreased T-GSH content and SOD activity in testicular tissue, are consistent
with the results of previous studies [33]. This suggests that ZEA inhibits spermatogenesis
and reduces the antioxidant capacity of testicular tissue by reducing the effects of key
antioxidant enzymes. However, the mechanism by which ZEA affects spermatogenesis
remains unclear and needs to be further studied.

Ferroptosis is a new form of cell death, which plays a role in various diseases, in-
cluding cancer cell death [36], neurodegenerative disease [37], heart ischemia/reperfusion
injury [38], and other life processes. Ferroptosis mainly depends on iron accumulation
and lipid peroxidation [39]. It was confirmed that ZEA could induce lipid peroxidation in
testicular tissue, but surprisingly, the relative content levels of Fe3+ and Fe2+ in testicular
tissue were increased after ZEA treatment compared with the control group, suggesting
that ZEA induces lipid peroxidation and iron accumulation in testicular tissue, which may
cause ferroptosis. Therefore, it was speculated that ZEA may affect the process of male
spermatogenesis through ferroptosis. Interestingly, supplementation of 0.5 to 1.5 mg/kg
Fer-1 alleviated ZEA-induced testicular damage, inhibited iron levels, and increased sperm
motility and sperm concentration, with 1.5 mg/kg being the most effective.

Nrf2 is an important antioxidant transcription factor that regulates the expression
of some cytoprotective genes by binding its reactive elements, which are involved in
detoxification and antioxidant and drug metabolism [40]. Many ferroptosis-related genes
are transcriptionally regulated by Nrf2, which negatively regulates ferroptosis [41]. Notably,
ZEA inhibits the expression of Nrf2 in porcine testicular cells and reduces the antioxidant
capacity of cells [42]. More so, the deletion of Nrf2 gene in male mice causes a decrease in
sperm density and motility rate [43]. In view of the wide applications of Nrf2 in ferroptosis
and reproduction, the mRNA expression level of Nrf2 was detected in this study. It was
found that exposure to ZEA reduced the expression of Nrf2. Interestingly, the mRNA
expression level of Nrf2 increased after different concentrations of Fer-1 was administered,
indicating that Nrf2 is involved in ZEA-induced ferroptosis.

SLC7A11, one of the components of the system Xc−, is a major signaling pathway
associated with ferroptosis, is involved in the extracellular to intracellular uptake of cystine
and determines the synthesis of glutathione (GSH) [44]. Interestingly, studies have shown
that SLC7A11 is a transcriptional target of Nrf2 [45,46]. We explored the relationship be-
tween ZEA exposure and SLC7A11 expression. Results showed that the protein expression
and mRNA content of SLC7A11 in the ZEA treatment group were significantly lower than
those in the control group, and the protein and gene levels of SLC7A11 gradually increased
after 0.5 mg/kg to 1.5 mg/kg of Fer-1 was administered. Therefore, it was speculated
that ZEA inhibited the expression of SLC7A11 in mouse testis and inhibited system Xc−

function, which may be involved in Nrf2-mediated ferroptosis.
GPX4 is considered to be a central regulator of ferroptosis. GPX4 is an enzyme

that reduces lipid hydrogen peroxide to non-toxic lipid alcohols and induces ferroptosis
when its activity is inhibited. Moreover, when the system Xc− function is inhibited, the
inhibition of GSH synthesis also affects the activity and expression of GPX4, thereby
regulating ferroptosis [44]. Interestingly, clinical studies have shown that the failure of
sperm mitochondrial PHGPx expression may be one of the causes of oligoasthenospermia
in infertile men [47]. In addition, when GPX4 was specifically lost in mice, the number of
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sperm cells in the epididymis was reduced, resulting in impaired sperm quality [23]. GPX4
plays an important role in ferroptosis and spermatogenesis. As mentioned in the previous
results, T-GSH content in mouse testis decreased due to ZEA exposure. We also found that
ZEA exposure decreased GPX4 protein and mRNA expression, until the intervention of
0.5 to 1.5 mg/kg of Fer-1. This demonstrates that GPX4 expression decreased when the
expression of GSH decreased, a condition that favors the occurrence of ferroptosis.

One of the characteristics of ferroptosis is lipid peroxidation. In this study, the changes
of 4-HNE protein level were detected at the molecular level. 4-HNE belongs to the advanced
lipid peroxidation end product family [48], which is involved in protein dysfunction,
apoptosis, inflammatory damage, and other cytotoxic processes [49–51]. It can be used as a
biomarker of lipid peroxidation and oxidative stress [48,52]. Our results show that the ZEA
treatment group significantly increased the expression of 4-HNE protein in testicular tissue,
indicating that the lipid peroxides in testicular tissue significantly increased. Intriguingly,
after Fer-1 intervention, the level of 4-HNE protein was restored to normal levels as
observed in the control group.

5. Conclusions

In conclusion, ZEA may inhibit the system Xc− function of downstream proteins SLC7A11
and GPX4 by down-regulating the expression of Nrf2, causing iron accumulation and lipid
peroxidation, and inducing ferroptosis in mice testes. Eventually, ZEA administration resulted
in reduced sperm motility and concentration and hindered spermatogenesis. Overall, our
results suggest that ferroptosis plays an important role in ZEA-induced oligozoospermia.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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tubules in each treatment, Figure S2: Expression changes of SOX9, SYCP3 and DDX4 proteins in testis of
mice in each group, Figure S3: Expression changes of SLC7A11, GPX4 and 4-HNE proteins involved in
ferroptosis in testis of mice in each group.
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