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Simple Summary: The growth and development of skeletal muscle is strictly regulated by complex
gene networks. In order to explore the genes involved in regulating the differentiation of skeletal
muscle satellite cells (MuSCs) in goats, RNA sequencing was used to characterize gene expression
profiles during the MuSC differentiation, and to identify differentially expressed genes (DEGs)
among the different stages. A total of 2551 DEGs were found. Functional enrichment analysis
revealed genes involved in muscle development-related GO terms and pathways, such as muscle
structure development, muscle contraction, muscle cell development, muscle cell differentiation, and
the MAPK signaling pathway. This study will be useful for future studies on muscle growth and
development in goats.

Abstract: Skeletal myogenesis is a complicated biological event that involves a succession of tightly
controlled gene expressions. In order to identify novel regulators of this process, we performed
mRNA-Seq studies of goat skeletal muscle satellite cells (MuSCs) cultured under proliferation (GM)
and differentiation (DM1/DM5) conditions. A total of 19,871 goat genes were expressed during these
stages, 198 of which represented novel transcripts. Notably, in pairwise comparisons at the different
stages, 2551 differentially expressed genes (DEGs) were identified (p < 0.05), including 1560 in GM
vs. DM1, 1597 in GM vs. DM5, and 959 in DM1 vs. DM5 DEGs. The time-series expression profile
analysis clustered the DEGs into eight gene groups, three of which had significantly upregulated and
downregulated patterns (p < 0.05). Functional enrichment analysis showed that DEGs were enriched
for essential biological processes such as muscle structure development, muscle contraction, muscle
cell development, striated muscle cell differentiation, and myofibril assembly, and were involved in
pathways such as the MAPK, Wnt and PPAR signaling pathways. Moreover, the expression of eight
DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1, and PRDX1) was validated. These findings
offer novel insights into the transcriptional regulation of skeletal myogenesis in goats.

Keywords: muscle differentiation; transcriptome analysis; mRNAs; goat

1. Introduction

Skeletal muscle tissue accounts for approximately 40–60% of the entire body weight of
adult ruminants, which not only serves as the determining factor for the performance of
meat production but also has critical influences on the meat quality [1]. Skeletal muscle
primarily comprises thousands of multinucleated contractile myofibers originating from
myoblasts. Myogenesis refers to the formation of functional myofibers [2], and during the
course of myogenesis, a population of myogenic cells become quiescent and are located
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surrounding muscle fibers in mature muscle, which are termed satellite cells [3]. The
proliferation and fusion of satellite cells with the existed muscle fiber are vital for postnatal
muscle fiber hypertrophy [4]. As a result, having a larger number of muscle fibers and
satellite cells is beneficial for meat production purposes.

Myogenesis, a complex biological process, involves a variety of gene regulatory net-
works, including myogenic regulatory factors (MRFs), myocyte enhancer factor 2 (MEF2),
paired box 3 (Pax3) and Pax7 [5]. The ordered and coordinated expression of these genes
eventually promotes skeletal muscle growth. The MRF family is a class of transcription
factors containing helix-loop-helix (BASIC helix-loop-helix) structures, which are mainly
composed of four members: MyoD (Myogenic Differentiation), Myf5 (Myogenic Factor 5),
Myf6 (Myogenic Factor 5) and MyoG (Myogenin) [6]. These four genes are critical in early
skeletal muscle development, in which they are sequentially expressed. In addition, the
transforming growth factor β (TGF-β), insulin-like growth factor (IGF), and fibroblast
growth factor (FGF) families have the most significance for muscle development [7]. In
addition to these commonly known genes, the others that may have an impact onmyo-
genesis remain unidentified and/or uncharacterized. Many gene expression profiling
studies in agriculturally significant animals have been carried out since the introduction of
high-throughput sequencing tools, and many genes or factors associated to skeletal muscle
development have been found [8–11]. However, in most studies, tissue samples have been
used to explore critical regulators involved in muscle growth and development. Because
tissue samples contain a variety of cell types that might affect identification accuracy, the
use of cell samples to identify important regulators of myogenesis is a useful method.

Domestic goats (Capra hircus) are one of the world’s earliest domesticated livestock
species, with their meat, milk, hair, and skins being used all over the world. Goat meat
production is crucial for a variety of industries, particularly in the livestock business of
developing countries. Nevertheless, the way in which goat muscle fibers are formed and
the underlying mechanisms remain elusive. We proposed that key genes and signaling
pathways that control myogenic differentiation in goats have yet to be identified and
characterized. To this end, we analysed the transcriptomic changes in goat skeletal muscle
satellite cells (MuSCs) cultured under proliferation and differentiation conditions, and
identified several candidates. Our findings are expected to pave the way for future research
into goat skeletal muscle development.

2. Materials and Methods
2.1. MuSC Culture and Differentiation

The Animal Care and Use Committee of the College of Animal Science and Technology,
Sichuan Agricultural University, Sichuan, China, approved all of the animal care, slaughter,
and experimental procedures in accordance with the Regulations for the Administration
of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China)
[SAU201418]. Primary MuSCs were isolated and cultured from fetal goat (Chengdu Ma
goat, female, n = 1)-derived longissimus muscle, as previously described [12,13]. The MuSCs
were seeded in 6-well plates (at a density of ~2× 104 cells/well) and cultured in Dulbecco’s
Modified Eagle Medium in a 5% CO2 incubator at 37 ◦C. Next, 10% fetal bovine serum
(Gibco, Invitrogen, Carlsbad, CA, USA) and 2% penicillin and streptomycin (Invitrogen)
solution were supplemented to the growth medium (GM). When the MuSCs reached
80–90% confluence, the growth medium was replaced with differentiation medium (DM)
containing DMEM, 2% horse serum (Gibco) and 2% penicillin and streptomycin in order
to induce MuSC myogenic differentiation. The medium was replaced with fresh medium
every 48 h. Proliferating MuSCs were labelled GM samples, while MuSCs differentiated for
1 and 5 days were labelled as DM1 and DM5 samples (biological triplicates were included
for all of the conditions). All of the samples were kept at −80 ◦C before RNA extraction.
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2.2. RNA Extraction and Sequencing

The total RNA was extracted using a TRIzol reagent kit according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA). The RNA quality was assessed on
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and checked
using RNase-free agarose gel electrophoresis. After removing the rRNAs, the enriched
RNAs were fragmented into short fragments and reverse-transcribed into cDNAs. Next,
the cDNA fragments were purified with a Qiagen Quick PCR extraction kit (Qiagen, Hilden,
Germany), end repaired, base added, and ligated to the sequencing adapters. Then, uracil-
N-glycosylase (UNG) was used to digest the second-strand cDNA. The digested products
were size-selected by gel electrophoresis before PCR amplification, and were sequenced
using an Illumina HiSeqTM 4000 by Gene Denovo Biotechnology Co. (Guangzhou, China).

2.3. Differentially Expressed Gene Analysis

The fragments per kilobase of transcript per the million mapped reads (FPKM) value was
calculated in order to quantify its expression abundance and variations using StringTie [14]
software (v1.3.1). Differential expression analysis was performed using DESeq2 [15] software
between two different groups. A false discovery rate (FDR) < 0.05 and |log2(Fold Change)| > 1
were used as cut-offs to calculate the differentially expressed genes.

2.4. Expression Trend Analysis

In order to examine the expression pattern of DEGs, the expression data of each
sample were normalized to 0, log2(v1/v0), log2(v2/v0), and then clustered using Short
Time-series Expression Miner software (STEM, v1.3.13) [16]. Then, analysis with these
parameters showed that the maximum unit change in the model profiles between time
points was 1, the maximum output profile number was 20 (similar profiles were merged),
and the minimum ratio of fold change of DEGs was no less than 2.0. The clustered profiles
with p-values ≤ 0.05 were considered statistically significant.

2.5. GO and KEGG Pathway Analysis

All of the DEGs were mapped to GO terms in the Gene Ontology database (http:
//www.geneontology.org/ (accessed on 5 January 2022)). Significantly enriched GO terms
were defined by a hypergeometric test (FDR ≤ 0.05). Pathway enrichment analysis iden-
tified significantly enriched metabolic pathways or signal transduction pathways in the
DEGs. The calculation formula was the same as that used in the GO analysis. After
multiple test correction, pathways with a Q value less than 0.05 were defined as being
significantly enriched.

2.6. Validation of the Sequencing Results by qRT-PCR

The qRT-PCR primers for DEGs and internal control genes were designed using Primer-
BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 10 November 2021)),
and are listed in Table 1. For quantification, the GAPDH gene was employed as an internal
standard. Each sample had 3 biological replicates. The PCR system (10 µL) consisted of
2 ×M5 HiPer SYBR Permix EsTaq 5 µL, 0.4 µL of forward and reverse primers (10 µmol),
1 µL template cDNA, and ddH2O. The optimal reaction programs included denaturation
at 95 ◦C for 30 s, followed by 39 cycles of 95 ◦C for 10 s and 30 s at the Tm indicated in
Table 1. The melting curves were analysed between 65 and 95 ◦C with increments of 0.5 ◦C.
The relative expression levels of the genes were calculated by the 2−∆∆Ct method [17] and
normalized to the controls.

2.7. Statistical Analysis

One-way analysis of variance (ANOVA) was performed by IBM SPSS Statistics 27.0.0.
The least significant difference (LSD) method was used to test the difference significance.
GraphPad Prism 8 (GraphPad, San Diego, CA, USA) was used to prepare the figures and
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diagrams. Comparisons with p values less than 0.05 were considered statistically significant,
and those with p values less than 0.01 were considered extremely significant.

Table 1. Primer sequences for qRT-PCR validation.

Gene Primer Sequence(5′-3′) Tm/◦C Product Size/bp

MYL2 F: GGAGTGCTCAAGGCTGATTATG
R: GGCGAACATCTGCTCAATCTC 63.3 87

DES F: GCCGGATCAACCTCCCTATC
R: ATGGACCTCAGAACCCCTCT 63.3 83

MYOG F: GGACCCTACAGATGCCCACAA
R: TTGGTATGGTTTCATCTGGG 59.0 101

FAP F: CGACCTTACAAACGGGGAGT
R: TTTACTCCCAACAGGCGACC 65.0 85

PLK2 F: TTCAGTGGGTCACGAAGTGG
R: TTGTTCAGGGGCATCTGTGG 55.7 191

ADAM F: TCCAGTTGCACAAAGGTGGT
R: GGCAGTGAATCTGGTCTGGT 55.0 135

WWC1 F: CGGATGCTGTGTCTGCTCTGTT
R: GGTCTGCGTGCTGCTCCTTT 63.3 80

PRDX1 F: AGCCTAGCTGACTACAAAGGAA
R: GTGTTGATCCATGCCAGGT 59.0 182

GAPDH F: GCAAGTTCCACGGCACAG
R: GGTTCACGCCCATCACAA 59.0 249

3. Results
3.1. MuSC Differentiation Program

Quiescent MuSCs were converted to myoblasts and allowed to proliferate in growth
medium (GM) until they achieved 80% confluence (Figure 1A). This was deemed the pro-
liferation phase. The myoblasts were then differentiated into myotubes in differentiation
medium (DM). The cells differentiated to elongated myocytes one day after the replace-
ment of GM with DM (Figure 1B). The myocytes then fused to form long, multinucleated
myotubes on the fifth day (Figure 1C). Samples were collected during the proliferation
phase (GM), and one day (DM1) and five days (DM5) after DM replacement for further
transcriptomic analysis.
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Figure 1. MuSC differentiation program; phase-contrast micrographs depicting cultures of goat
MuSCs in proliferating conditions (growth medium (GM)) (A), in early myogenesis after 24 h in
differentiation medium (Myocytes, DM1) (B), and in late myogenesis, including myotubes, after
5 days in DM (Myotubes, DM5) (C).



Animals 2022, 12, 1048 5 of 13

3.2. Temporally Regulated Transcription during Skeletal Myogenesis

In order to identify prospective genes that regulate skeletal myogenesis in goats, we
performed mRNA-seq to characterize gene transcription profiles in MuSCs at different
phases (GM, DM1 and DM5). We were able to recover over 77,705,900 clean reads (>99.72%
of raw data) in each sample processed, and the uniquely-mapped reads were more than
89.61%. The GC content and read distribution from all of the samples were highly reliable
and sufficient for downstream computational analysis. Specifically, the mean GC content
was 50.29%, and the Q30s of all of the samples were >93.74% (Table 2). Our mRNA-
seq results recovered 19,871 mRNA transcripts in total, 198 of which were novel and
previously unidentified. Figure 2A summarizes the abundance of mRNA from these
samples as fragments per kilobase per million (FPKM) values. Figure 2B depicts the
expression of different samples. The complicated sample composition was represented by
the two parameters on both the x- and y-axes, which helped to determine and visualize
the variation between the samples. Remarkably, all of the samples were nicely separated
into three sections coinciding with their phases, suggesting high reproducibility between
biological replicates (Figure 2C). Next, we conducted clustering analysis based on sample
similarities (Figure 2D). Our analysis again showed a reliable clustering between samples
at each time point.

Table 2. Summary of the RNA-Seq data in MuSCs.

Samples Raw Reads Clean Reads (%) Unique-Mapped Reads GC Content Q30 Value

GM-1 79,898,070 79,694,066 (99.74%) 77,518,765 (90.59%) 49.96% 93.74%
GM-2 82,449,876 82,218,204 (99.72%) 70,235,626 (90.44%) 50.41% 94.15%
GM-3 78,770,454 78,549,636 (99.72%) 70,114,545 (89.61%) 49.92% 93.90%

DM1-1 85,834,132 85,610,188 (99.74%) 71,993,906 (90.73%) 50.31% 94.18%
DM1-2 77,919,438 77,705,900 (99.73%) 71,317,809 (90.66%) 50.49% 94.27%
DM1-3 78,474,104 78,271,608 (99.74%) 72,775,979 (91.04%) 50.82% 94.06%
DM5-1 79,580,920 79,392,054 (99.76%) 72,103,450 (90.51%) 49.86% 94.20%
DM5-2 78,868,496 78,701,026 (99.79%) 74,380,716 (90.51%) 51.30% 94.01%
DM5-3 80,154,802 79,979,248 (99.78%) 71,321,563 (90.84%) 49.57% 93.85%

3.3. Differentially Expressed Genes (DEGs) Analysis

Based on our differential analysis, DEGs were defined as genes that were differentially
expressed between stages using FDR < 0.05 and Fold change > 2 as cut-offs. Noticeably, we
observed more upregulated DEGs than downregulated DEGs during MuSC differentiation
(Figure 3A and Supplementary Table S1). A total of 12,756 differentially expressed genes
were identified, and 1560 DEGs were identified when comparing the GM and DM1 groups,
among which 813 showed increased expression and 747 showed decreased expression.
Moreover, the number of DEGs detected from the GM and DM5 comparison groups was
1597, the number of upregulated genes was 1097, and the number of downregulated genes
was 500. In addition, 959 DEGs were identified in the DM1 and DM5 comparison groups,
and 722 DEGs were upregulated and 237 DEGs were downregulated. We next performed
unsupervised clustering analysis according to the temporal gene expression profile in
order to reveal the similarities between various temporal phases (Figure 3B–D). The Venn
diagram in Figure 3E depicts the common and distinct DEGs expressed in different phases
(Figure 3E). We observed 202 shared genes in the intersection, the expression levels of
which are summarized in Supplementary Table S2.
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3.4. Expression Trend Analysis

A total of 2551 DEGs were clustered according to the expression trend among the three
stages. There were eight temporal expression patterns identified, of which three expression
profiles were significantly enriched, including two upregulated patterns (profiles 7 and 6)
and one downregulated pattern (profile 1). Specifically, profiles 7, 6 and 1 contained
468, 559, and 387 DEGs, respectively (Figure 4B). Therefore, 1027 upregulated DEGs
and 387 downregulated DEGs were enriched in these three expression profiles. These
results revealed the temporal gene expression changes in MuSCs during proliferation and
differentiation, providing a reliable dataset for future candidate gene screening.

Animals 2022, 12, x  8 of 15 
 

 
Figure 4. STEM analysis of the DEGs’ expression profiles. (A) Trend analysis of the different expres-
sion genes; color intensity denotes enrichment. (B) Three significant clusters of DEG profiles across 
all three stages. 

Figure 4. STEM analysis of the DEGs’ expression profiles. (A) Trend analysis of the different
expression genes; color intensity denotes enrichment. (B) Three significant clusters of DEG profiles
across all three stages.
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3.5. GO Enrichment Analysis

In order to gain further insights into how these DEGs regulated myogenesis, we took
advantage of the OmicShare tools (http://omicshare.com/tools (accessed on 10 January
2022)). GO terms were assigned to a total of 2551 DEGs. We found that the DEGs from GM
vs. DM1, GM vs. DM5, and DM1 vs. DM5 were significantly enriched for 640 GO terms
(Q value < 0.05, 505 biological process GO terms, 80 cellular component GO terms, and
55 molecular function GO terms) (Supplementary Table S3), 825 GO terms (610 biological
process GO terms, 128 cellular component GO terms, and 87 molecular function GO terms)
(Supplementary Table S4), and 406 GO terms (322 biological process GO terms, 55 cellular
component GO terms, and 29 molecular function GO terms), respectively (Supplementary
Table S5). Among all of the differentially expressed genes, we focused on the comparison
between DM1 and DM5. The top 20 enriched GO terms are shown in Figure 5. Intriguingly,
we found several biological process terms related to muscle development, including the
muscle system process, muscle structure development, muscle cell development, striated
muscle contraction, and striated muscle cell development. In terms of the cellular compo-
nent GO terms, the top hits were contractile fiber, the actin cytoskeleton, and contractile
fiber. Within the molecular function category, the most enriched GO terms were related to
protein binding and structural constituents of muscle. GM vs. DM1 and GM vs. DM5 were
also analysed, and the results are shown in Supplementary Tables S3 and S4.
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3.6. KEGG Enrichment Analysis

We also performed KEGG enrichment analysis of the DEGs in order to further explore
the signaling pathways through which DEGs could regulate muscle differentiation. For
the three comparison groups GM vs. DM1, GM vs. DM5, and DM1 vs. DM5, the DEGs
were enriched in 21, 41, and 21 pathways, respectively. Figure 6 summarizes the top 20
pathways identified in each comparison (Figure 6A–C). Interestingly, we were able to find
many pathways that were previously known to be involved in myogenesis, including the
Wnt, MAPK, Hippo, p53 and PPAR signaling pathways (Supplementary Table S6).

3.7. Validation of the DEGs

In order to validate the high-throughput RNA-seq results, we selected and examined
the expression levels of eight DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1,
PRDX1) by qRT-PCR. The results showed that the expression patterns of these eight genes
nicely replicated the expression trends calculated from the RNA-seq data, which confirmed
the reliability of the sequencing data (Figure 7).
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4. Discussion

Skeletal muscle development relies on myoblast differentiation and proliferation, and
is a crucial factor influencing growth rate, meat quality and yield, as well as other important
economic traits of livestock [18]. Myogenesis is tightly modulated, with multiple critical
genes involved, such as the MRF (myogenic regulatory factor) [19,20] and MEF2 (myocyte
enhancer factor-2) [21,22] families, MSTN (Myostatin) [23,24], and IGFs (Insulin-like growth
factors) [25,26]. However, apart from these widely known genes, many other genes influ-
encing myogenesis remain unidentified and/or uncharacterized. Although progress has
been made in understanding how genes work during myogenesis in pigs [8,10], cattle [27],
goats [11,28], and sheep [9], our understanding of the genes involved in goat skeletal
muscle development is still limited and incomplete. Our work systematically characterized



Animals 2022, 12, 1048 10 of 13

temporal gene expression during goat MuSC myogenic differentiation. We discovered
that 2551 mRNAs were differentially expressed, and more importantly, 202 mRNAs were
found to be differentially expressed across all of the comparisons, suggesting their critical
roles in muscle differentiation. Similarly, Zhang et al. found 4820 differentially expressed
genes during the proliferation and myogenic differentiation phases of buffalo MuSCs, and
identified a number of functionally important genes [29]. Remarkably, all of the eight
randomly selected DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1, PRDX1) were
validated using qRT-PCR, suggesting that our identification of DEGs through the high-
throughput RNA-seq approach was highly reliable and reproducible. MYOG is a member
of the muscle regulatory factor (MRF) family, and is involved mainly in the fusion and
differentiation of myoblasts [5]. MYL2 belongs to the myosin light chain (MYL) family,
and plays a vital role in muscle growth and contraction [30]. In addition, the ADAM (A
Disintegrin And Metalloprotease) gene family encodes a diverse group of transmembrane
cell-surface proteins with adhesion and proteolytic functions, and is involved in a broad
range of biological processes, such as cell fusion, spermatogenesis, and development [31].
We used STEM software, which is commonly used to research dynamic biological pro-
cesses [16,32], to identify relevant temporal expression profiles and the genes associated
with these profiles because our data were obtained at multiple time points. Then, the most
important profiles were saved and aggregated to form clusters for subsequent study [33].
We identified three significant expression profiles, including two upregulated patterns
(profiles 7 and 6) and one downregulated pattern (profile 1). Moreover, 1027 upregulated
DEGs and 387 downregulated DEGs were enriched in these expression profiles, suggesting
that genes involved in myogenesis are dynamically regulated at differentiation stages.

We then performed enrichment analysis to further dive into the molecular mecha-
nisms by which the DEGs could regulate myogenesis. In this study, DEGs from GM versus
DM1, GM versus DM5, and DM1 versus DM5 were significantly enriched for 640 GO
terms, 825 GO terms and 406 GO terms, respectively. Among them, we indeed identified
many terms related to muscle development, such as muscle structure development, muscle
tissue development, muscle contraction, muscle cell development, and muscle cell differ-
entiation. These findings suggest that other candidate genes are likely to regulate MuSC
proliferation and differentiation. For example, Muscle LIM protein (MLP), a member of
the cysteine-rich protein (CRP) family that is produced primarily in skeletal muscle and
myocardium, is encoded by cysteine and glycine rich protein 3 (CSRP3) [34,35]. MLP has
been demonstrated to stimulate myogenic differentiation by binding to transcription factors
such as MyoD and Myogenin in the nucleus [36]. In addition, myopalladin (MYPN) is
an immunoglobulin-containing protein that is specifically expressed in striated muscle
tissues. Subcellularly, MYPN is found in the Z−line and I−band of the sarcomere, as
well as the nucleus. MYPN promotes skeletal muscle growth by activating the serum
response factor (SRF) pathway in muscle [37]. Moreover, the ACTA1 and TNNT1 genes are
involved in muscle fiber formation. [38]. Despite the limitations of enrichment analysis,
these annotations provide useful hints and directions for the downstream characterization
of the regulatory mechanisms involved in myogenesis.

It is unsurprising to see that genes involved in the same pathway are synergistically
regulated. Pathway-based analysis can further assist us in understanding biological func-
tions [39]. We therefore examined the possible roles of DEGs through pathway enrichment
analysis. Fifty-one pathways stood out as being significantly enriched among the three com-
parison groups. Among them, we were vindicated to find many pathways that reportedly
control muscle growth and development, including but not limited to the MAPK, Wnt, and
PPAR signaling pathways and cell cycle regulators. The MAPK family plays crucial roles in
complex cellular processes, such as proliferation, differentiation, and development, by reg-
ulating the cell cycle and other cell proliferation-associated proteins [40]. Previous studies
have shown that the JNK/MAPK and P38/MAPK signaling pathways play essential roles
in myogenesis [41]. In addition, a tightly regulated cell cycle is indispensable for muscle
development. For example, the timing of muscle cell cycle entry and exit are known to be
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crucial for optimal muscle fiber structures. Meanwhile, the Wnt signaling pathway—with
its active roles in embryonic myogenesis—was noticeable in our profile as well. A previous
study on Wnt revealed that lacking several vital Wnt effectors could lead to substantial
tissue damages, while poor muscle development could cause death in mice, indicating
the critical role of the Wnt pathway in prenatal myogenic development [42]. Furthermore,
the Wnt pathway also participates in the proliferation of signaling satellite cells in skeletal
muscle during muscle cell regeneration [43,44]. Finally, the PPAR signaling pathway was
also highlighted. It has been well established that both adipocytes and skeletal muscle
cells derive from mesenchymal pluripotent cells [45,46]. During near mid-gestation, fe-
tal skeletal muscle contains a great number of pluripotent cells, which differentiate into
either adipogenic or myogenic cells [47,48]. Altogether, the pathways highlighted in the
enrichment analysis underscore the significance of coordinated regulation in accurate and
complete myogenic differentiation.

5. Conclusions

Our work not only phenotypically characterized the different phases underlying goat
MuSC differentiation but also examined the temporal changes in transcriptional expression.
We identified 202 that were differentially expressed across all of the comparisons between
the proliferation and myogenic differentiation phases of MuSCs, which likely contain key
and novel regulators. In addition, we further verified selected DEGs (MYL2, DES, MYOG,
FAP, PLK2, ADAM, WWC1, and PRDX1). These findings offer novel insights into the
transcriptional regulation of skeletal myogenesis, and provide a reference target for the
further study of skeletal muscle development in goats.
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enriched GO terms for DM1 vs. DM5. Table S6: Significantly enriched KEGG pathways for DEGs.
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