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Simple Summary: In high-yielding dairy cows, the successful establishment of pregnancy is of great
economic importance. If a new pregnancy does not occur shortly after parturition, this can mean
early culling for the animal. Due to today’s breeding, cattle show higher milk yields, but pregnancy
rates continue to decline. In addition to genetic dispositions, metabolic diseases, such as ketosis,
are particularly relevant here. In this in vitro study, bovine uterine cells were stimulated with the
main ketone body β-Hydroxybutyrate. The influence of β-Hydroxybutyrate on uterine cell function,
inflammatory state and important genes for successful implantation was investigated. These genes
include cell adhesion molecules and prostaglandins. High concentrations of β-Hydroxybutyrate
negatively affected cell function and induced an inflammatory response in the cells. These results
provide a possible explanation for the poor reproductive performance of ketotic dairy cows. Due
to the reduced cell function as well as inflammatory response, the finely regulated feto-maternal
communication during early pregnancy might be disturbed.

Abstract: Ketosis is a metabolic disorder arising from a negative energy balance (NEB). It is char-
acterized by high β-Hydroxybutyrate (BHBA) blood levels and associated with reduced fertility in
dairy cows. To investigate the impact of BHBA on bovine caruncular epithelial cells (BCEC) in vitro,
these cells were stimulated with different concentrations of BHBA. Cell metabolism and motility
were examined using an MTT assay and Live-cell imaging. RT-qPCR was used to examine mRNA
expressions of TNF, IL6, RELA, prostaglandin E2 synthase (PTGES2) and receptor (PTGER2) as well
as integrin subunits ITGAV, ITGA6, ITGB1 and ITGB3. Stimulation with 1.8 and 2.4 mM of BHBA
negatively affected cell metabolism and motility. TNF showed increased mRNA expression related
to rising BHBA concentrations. IL6, RELA, ITGAV, ITGA6, ITGB1 and ITGB3 as well as PTGER2
showed no changes in mRNA expression. Stimulation with 0.6 and 1.2 mM of BHBA significantly
increased the mRNA expression of PTGES2. This does not indicate a negative effect on reproductive
performance because low BHBA concentrations are found in steady-state conditions. However, the
results of the study show negative effects of high BHBA concentrations on the function of BCECs
as well as an inflammatory response. This could negatively affect the feto-maternal communication
during the peri-implantation period in ketotic dairy cows.

Keywords: ketosis; high-yielding dairy cows; β-Hydroxybutyrate; bovine caruncular epithelial cells;
cell culture model; peri-implantation period
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1. Introduction

In high-yielding dairy cows, a negative energy balance (NEB) often appears during the
transition period, spanning from three weeks pre calving until three weeks post calving [1].
Late gestation, parturition, and the onset of lactogenesis require a high amount of energy,
with a simultaneous reduction in feed intake [2,3]. During this time, many metabolic
adaptions are required, and genetic dispositions as well as environmental factors and
infections can lead to a metabolic imbalance [4]. A very common disease resulting from
maladaptation to NEB is ketosis [3,5]. It is characterized by increased blood levels of
ketone bodies, whereas β-Hydroxybutyrate (BHBA) is the most frequent one [6–8]. BHBA
is synthesized from acetyl-CoA in the mitochondria of the liver during high rates of
lipolysis [9]. Depending on the literature, the threshold value of BHBA blood concentration
for ketosis is between >1.2 mM and ≥1.4 mM [7,8,10]. Cattle affected by NEB and elevated
BHBA blood concentrations show an increased prevalence of mastitis, lameness, metritis,
reduced milk yield and poor reproductive performance [11–14].

BHBA is a versatile molecule [15,16]. In the organism, it can be used as an alternative
energy source by many tissues (reviewed by [15,16]). For cells, various effects of BHBA
are described in the literature. On the one hand, BHBA promotes cell viability and cell
metabolism, and on the other hand, it promotes the expression of anti-proliferative and
proapoptotic genes via inhibition of histone deacetylation [16–20]. This mechanism is also
called the “butyrate paradoxon” (reviewed by [21]), which, after Donohoe et al. [20], can
be explained by the “Warburg effect”. In cancer cells that obtain their energy mainly by
aerobic glycolysis and not by oxidative metabolism, BHBA is metabolized inefficiently and
accumulates in the nucleus. This results in an increased inhibition of histone deacetylation
and may inhibit cell proliferation. In contrast, BHBA has a growth-promoting effect
when used as an oxidative energy source in normal cells [20]. Furthermore, in bovine
hepatocytes and endometrial cells, BHBA causes an inflammatory response by inducing
oxidative stress and activation of the nuclear factor-kappa B (NF-κB) signalling pathway
in vitro. The expression of cytokines such as interleukin-6 (IL6) and tumour necrosis factor
α (TNF) is increased in these cells [22,23]. In addition, in vivo studies also observed an
inflammatory response in ketotic cows. Affected animals show elevated blood levels of
proinflammatory factors and increased expression of Toll-like receptors 2 and 4 as well as
increased phosphorylation levels of NF-kb p65 in neutrophil granulocytes [24–27]. At the
same time, the likelihood of pregnancy is significantly reduced in cows diagnosed with
ketosis compared to healthy animals [11].

Although poor reproductive performance in cows suffering from ketosis may affect all
stages of the reproductive cycle, early pregnancy is a well-known critical period [28]. It is
defined as the period until day 28 post insemination and is characterized by embryonic mat-
uration from the blastocyst through the elongation stage up to implantation [28,29]. During
this time, 70–80% of the abortions take place [30], and the main reasons are genetic abnor-
malities, premature luteolysis and asynchronous feto-maternal communication [31–33]. In
cows, the semiplacenta multiplex seu cotyledonaria consists of fetal cotyledons interdigitating
with maternal caruncles. The caruncles are located in the lumen, coated by caruncular
epithelial cells and represent the glandless surface for feto-maternal exchange [34]. For suc-
cessful pregnancy establishment, a precise regulation of gene expression in cells involved in
the implantation process is of great importance. The cytokine Interferon-τ is the pregnancy
recognition signal of the ruminants [35], but also, other cytokines like IL6, IL1 and the
leukemia inhibitory factor (LIF) are involved in the implantation process of mammals and
promote embryonic development [36]. In addition to cytokines, the prostaglandin F2α
(PGF2α) and prostaglandin E2 (PGE2) are important regulators during early pregnancy.
While PGF2α activates luteolysis, PGE2 promotes the secretion of gonadotropins, which
support the formation and maintenance of the corpus luteum [37–39]. Furthermore, PGE2
supports the hatching of the blastocyst from the zona pellucida, and it is involved in ovu-
lation and early implantation [40,41]. Besides playing an important role in reproductive
mechanisms, prostaglandins are also involved in inflammatory processes [42].
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Other key players during implantation are transmembrane proteins called integrins.
Through their cell-to-cell as well as cell-to-extracellular matrix binding, they act as medi-
ators of cell communication and are important for the maintenance of physiological cell
functions [43]. In sheep, which like cattle have a synepitheliochorial placenta, the integrin
αvβ3 plays a crucial role in implantation. Here, the progesterone-mediated extracellular
matrix protein osteopontin acts as a binding partner for the integrin αvβ3 and promotes
the adhesion and migration of the trophoblast to the uterine luminal epithelium [44]. In
other species, the integrin subunits αv and β3 are important requirements for implantation
in the endometrium [45–47]. In cattle, these integrin subunits were also detected at the en-
dometrium [48]. A cycle-dependent and implantation-associated change in the expression
pattern of integrins was also observed in the bovine uterus [49,50]. During the implantation
window, mainly the subunits α1, α3 and α6 are expressed [50]. In a study of trophoblast
giant cell migration, the feto-maternal connection is assumed to be mediated through
laminin and the integrin α6β1 [48]. Another in vitro study on bovine endometrial cells
pointed out that laminin and the integrin α6β1 are expressed in placentomes of cattle [51].

The hypothesis of the present study is that BHBA, as a marker of ketosis, disrupts
bovine caruncular epithelial cell (BCEC) physiology and gene expression patterns, and
thereby, impairs the sensitively regulated peri-implantation period. To test this hypothesis,
BCECs were stimulated with different concentrations of BHBA, and the viability of the cells
was examined by analysing motility and metabolism. Furthermore, the influence of BHBA
on the mRNA expression of inflammatory markers (IL6, TNF and RELA (gene encoding
for NF-κB p65)), the prostaglandin E2 synthase (PTGES2) and receptor (PTGER2) and
different integrin subunits (ITGAV, ITGA6, ITGB1 and ITGB3) was examined. The results
may elucidate pathomechanisms to explain poor reproductive performance associated with
NEB in high-yielding dairy cows.

2. Materials and Methods
2.1. Cell Culture

The established and characterized BCEC line [52] was used in the study. BCECs were
isolated from maternal placentomes of a pregnant cow [52]. Cells were stored in cryotubes
at −150 ◦C at the Institute for Anatomy, University of Veterinary Medicine Hannover,
Foundation, Germany. For cultivation, cells were thawed and seeded into T75 flasks (TPP
Techno Plastic Products AG, Transadingen, Switzerland) filled with Dulbecco’s Modified
Eagle Medium (DMEM)/Ham’s F12 (Sigma-Aldrich® Chemie GmbH, Taufkirchen, Ger-
many). DMEM was supplemented with 10% fetal calf serum (FCS) (Biochrom, Berlin,
Germany), Penicillin (100 µU/mL, PAA, Coelbe, Germany), Streptomycin (2 µg/mL, PAA,
Coelbe, Germany) and L-Glutamine (2 mM, PAA, Coelbe, Germany). This culture medium
will be called full medium (FM) in the following. Cells were cultivated in an incubator
at 5% CO2 and 37 ◦C, and culture medium was replaced every other day. Subculturing
was performed at 90% confluency via trypsinisation for 5 min at 5% CO2 and 37 ◦C using
0.5% Trypsin (Sigma-Aldrich® Chemie GmbH, Taufkirchen, Germany) in PEM (EDTA
2 mM in phosphate-buffered saline (PBS)). For the experiments, cells were prepared indi-
vidually. More detailed information will follow in the respective chapters. Cells between
cell passage 18 and 32 were used in the experiments.

2.2. Stimulation of BCECs with BHBA

Stimulation was started when the cells reached a confluence of about 70%. FM was
replaced by serum-reduced medium (SR), with 1% FCS and the same amount of Penicillin,
Streptomycin and L-Glutamine added to the DMEM, as in FM, and incubated for 3 h before
stimulation with different BHBA concentrations. To prepare a 20 mM BHBA stock solution,
63.045 mg of BHBA powder (Sigma-Aldrich® Chemie GmbH, Taufkirchen, Germany) was
dissolved in 25 mL of distilled water. Subsequently, the stock solution was sterile filtered
and stored at −20 ◦C. For the stimulation experiments, the stock solution was diluted in SR.
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The following concentrations were used: 0.6, 1.2, 1.8 and 2.4 mM of BHBA and stimulations
were carried out for 24 or 36 h (cell metabolism).

2.3. Cell Metabolism (MTT Assay)

Cell metabolism was examined via MTT assay according to Mossman [53]. In this pro-
cess, a water-soluble yellow dye is converted by the cells into violet crystals, the formazan
salt. These crystals cannot pass the cell membrane and stay intracellular. BCECs were
seeded into a 96-well plate (TPP Techno Plastic Products AG, Transadingen, Switzerland) at
a cell number of 1 × 104 cells/well and cultured in FM for 24 h. After stimulation of BCECs
for 24 and 36 h, 5 mg of MTT (3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazoliumbromid;
Carl Roth GmbH, Karlsruhe, Germany)-reagent was dissolved in 5 mL of PBS. This solution
was diluted 1:10 in SR and applied to the cells. After 2.5 h of incubation, MTT-reagent
was removed and Dimethylsulfoxide (DMSO, Carl Roth GmbH, Karlsruhe, Germany) was
added to the BCECs. Subsequently, the optical density was determined using an ELISA-
Reader (Thermo Fisher Scientific, Waltham, MA, USA). The extinction was measured at
550 nm (sample absorbance) and 690 nm (background absorbance). The experiment was
repeated fourteen times, and for each stimulation group, between 177 and 199 values were
captured, whereby values of wells were eradicated if BCECs detached during stimula-
tion. During the MTT run for 36 h, between 181 and 198 values were collected for each
stimulation group.

2.4. Cell Motility (Live-Cell Imaging)

Cell motility was examined via Live-cell imaging. For this purpose, 8 × 104 cells/well
were seeded into a 12-well plate (Sarstedt AG& Co. KG, Nürnbrecht, Germany) and
cultured in FM for 24 h. After cultivation, BHBA was added to the BCECs, and the
cells were transferred to the incubation chamber of a Cell Observer System (Zeiss, Jena,
Germany). A picture of the BCECs was taken every 20 min at two representative areas
of each well during the 24 h of stimulation period. The analysis of the accumulated
distance was carried out through manual tracking of 20 cells per determined area using the
chemotaxis tool of the ImageJ program [54]. The experiment was repeated four times, and
for each stimulation group, 320 distances were determined.

2.5. RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR

For the BHBA stimulation, 5.5 × 105 cells/mL were seeded in 6 mm cell culture dishes
(TPP Techno Plastic Products AG, Transadingen, Switzerland) and grew to a confluence
of 60–70%. After stimulation with BHBA, cells were harvested, and RNA was extracted
using the NucleoSpin® RNA and Protein purification kit (Macherey-Nagel GmbH & Co.,
KG, Düren, Germany) according to the supplier’s manual. The RNA concentration was
analysed by determining the optical density with a spectrophotometer (DeNovix® DS-11
Spectrophotometer, DeNovix Inc., Wilmington, NC, USA) at 260 nm. Additionally, the
purity of the RNA samples was determined by the absorption quotients of 260/280 nm and
260/230 nm. Only samples with an ideal ratio at 2.0–2.2, respectively [55], were used in the
further experiments. For cDNA synthesis, the GoScript™ Reverse Transcriptase System
(Promega GmbH, Mannheim, Germany) was used according to the manufacture’s introduc-
tions. For a cDNA concentration of 50 ng/µL, 1 µg of total RNA in a 20 µL reaction volume
was used. The success of cDNA synthesis was confirmed with a conventional standard
PCR using primers of the reference genes ACTB or GAPDH. Afterwards, the expression
levels of the mRNA were quantified using quantitative Real-Time PCR (RT-qPCR). Primers
were designed with the PrimerBLAST software from the National Center for Biotechnology
Information (NCBI) (accessed on 3 and 19 January 2022) and purchased from Microsynth
AG (Balgach, Switzerland) or are already published in the previous literature. Before use in
RT-qPCR, the most appropriate master mix for each primer pair was chosen. The different
master mix compositions are shown in Table 1. Afterwards, the efficiency of each primer
pair was determined using the standard curve method with seven dilution steps of a 1:2 di-
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lution series. Only primers with an amplification efficiency between 90–110% were used in
the RT-qPCR. Detailed information of the primers is shown in Table 2. For the preparation
of the reaction mix, cDNA was diluted with nuclease-free water to a final concentration
of 5 ng/µL, and 4 µL of the cDNA was mixed with the reaction components containing
SYBR® Green as the fluorescent dye (Applied biosystems, Waltham, MA, USA) (Table 1).
For each primer pair, a negative control was implemented, containing nuclease-free water
instead of cDNA. A Stratagene Mx3000P (Aglient Technologies, Waldbronn, Germany)
RT-qPCR cycler with the following cycling program was used: first, it was heated to 95 ◦C
for polymerase activation; second, there were 40 cycles for amplification, whereby each
cycle consisted of 15 s of 95 ◦C (denaturation) and 60 s of 60 ◦C (annealing and extension),
with fluorescence detection during the annealing and extension step. Subsequently, a
melting curve analysis consisting of 15 s of 95 ◦C, a 60 min temperature increase up to 95 ◦C
in 0.3 ◦C steps and lastly holding for 15 min at 95 ◦C were conducted. Each stimulation
experiment was repeated six times with all samples analysed in duplicates. The ∆∆Ct
method was used for relative mRNA quantification using ACTB and GAPDH as reference
genes and the control group SR as the untreated sample.

Table 1. Master mixes for RT-qPCR.

Master Mix Mix 1 in µL Mix 2 in µL Mix 3 in µL

SYBR Green 10 10 10
Nuclease-free H2O 4 3 0

Primer forward 1.5 1.5 1.5
Primer reverse 0.5 1.5 4.5

cDNA (5 ng/µL) 4 4 4

Total 20 20 20

Table 2. Primers used in RT-qPCR.

Gene
Sequence (5′-3′)

Forward
Reverse

Mix Product Length Accession No. References

ACTB GATCAAGATCATCGCGCCCC
ACAGTCCGCCTAGAAGCATT 1 160 bp NM_173979.3 [56]

GAPDH CAACATCAAGTGGGGTGATG
GGCATTGCTGACAATCTTGA 2 202 bp NM_001034034.2 [57]

TNF GGTTCAAACACTCAGGTCCTCT
CGGAGAGTTGATGTCGGCTA 2 79 bp NM_173966.3 [56]

IL6 AAGCGCATGGTCGACAAAAT
AAGCAAATCGCCTGATTGAACC 3 164 bp NM_173923.2 [56]

PTGES2 CTATCTGGTGTCAGGGCAACC
GGTGTACCAACCAGTCGTCC 2 212 bp NM_001166554.1 PrimerBlast

(NCBI)

PTGER2 CCTTGCCTTTCACGATTTTTGC
CTCAGGATGGCAAAGACCCA 3 127 bp NM_174588.2 PrimerBlast

(NCBI)

ITGA6 TGCCACATATCACAAGGCTGA
CTTACAGCGTGGTATCGGGG 2 151 bp NM_001109981.2 PrimerBlast

(NCBI)

ITGAV AGCGCGTCTTCGATGTTTC
TGTTGCCTGTGGCATCAAAC 3 145 bp NM_174367.1 PrimerBlast

(NCBI)

ITGB3 GAAGCAGAGTGTGTCACGGA
ATGGGTCTTGGCATCAGTGG 2 142 bp NM_001206490 PrimerBlast

(NCBI)

ITGB1 TAGAGACTCCAGAGTGCCCC
CCGTGTCCCATTTGGCATTC 3 180 bp NM_174368.3 PrimerBlast

(NCBI)

RELA (NF-kb p65) TTTCAATGGACCCACCGACC
TGATGGTGCTGAGAGATGGC 1 125 bp NM_001080242.2 PrimerBlast

(NCBI)
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2.6. Statistical Analysis

Statistical analysis was performed using “The R Project for Statistical Computing”
(version 4.2.0). For the statistical analysis, the arithmetic mean values and standard devia-
tions were first determined using descriptive statistics. Subsequently, the Shapiro–Wilk-test
was performed to test whether the data were normally distributed. If the data were not
normally distributed, the non-parametric Kruskall–Wallis test was used. In case of signifi-
cant results, the Dunn test with Bonferroni correction was performed as a post hoc test. For
normally distributed data, a one-way ANOVA was used, followed by Tukey’s HSD test
with Bonferroni correction. In cases of inhomogeneous variance, the Games–Howell test
was used instead. The level of significance was set at 5%.

3. Results
3.1. Effects of BHBA on the Metabolism and Motility of the BCEC

As illustrated in Figure 1a, the 24 h BHBA stimulation period affected the metabolism
of the BCEC significantly. The metabolism was significantly reduced in the 2.4 mM BHBA
stimulation group by an average of 5.82% compared to the control group (p = 0.044).
Extension of the stimulation time up to 36 h significantly reduced cell metabolism by
8.47% in the 2.4 mM BHBA stimulation group compared to the control group (p = 0.024,
Figure 1b).

As shown in Figure 1c, motility in BCEC was significantly reduced by 26.59% during
24 h of stimulation with 2.4 mM of BHBA (p < 0.001). The 24 h stimulation with 1.8 mM of
BHBA also showed a significant decrease in cell motility by 26.85% (p < 0.001).

3.2. Effects of BHBA on the Gene Expression of IL6, RELA and TNF

The data of the mRNA expression of the cytokines are illustrated in Figure 2. The
mRNA expressions of IL6 and RELA were not altered by BHBA stimulation (Figure 2a,b).
In contrast, TNF showed a significant increase in mRNA expression related to higher
BHBA concentrations (Figure 2c). The experimental group stimulated with 0.6 mM of
BHBA showed an increased TNF mRNA expression of 101% compared to the control
group (p = 0.033). The stimulation with 1.2 mM of BHBA increased the mRNA expression
by 382% (p ≤ 0.001), the stimulation with 1.8 mM of BHBA increased the mRNA expression
by 1515% (p = 0.004) and the stimulation with 2.4 mM of BHBA increased the mRNA
expression by 2188% (p ≤ 0.001), compared to the control group.

3.3. Effects of BHBA on the Gene Expression of PTGER2 and PTGES2

As shown in Figure 3a, PTGER2 was not altered by BHBA stimulation. The PTGES2
mRNA expression was significantly increased by 37% (p = 0.013) after stimulation with
0.6 mM of BHBA and by 34% (p = 0.032) after stimulation with 1.2 mM of BHBA, compared
to the control group (Figure 3b).

3.4. Effects of BHBA on the Gene Expression of the Integrin Subunits ITGAV, ITGA6, ITGB1
and ITGB3

The mRNA expression of the integrins is illustrated in Figure 4. The integrin sub-
units ITGAV, ITGA6, ITGB1 and ITGB3 did not show significant alterations following the
stimulation with BHBA compared to the control group.
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of BHBA compared to the SR control group. The experiment was repeated 4 times and per group n 
= 320 distances were analysed. (a–c): The data are presented as boxplots with the box representing 
the interquartile range. The interquartile range describes the range of values between the 75% and 
25% quartile. The horizontal line indicates the median. The ends of the whiskers mark the minimum 
and maximum value. Outliers are shown with dots. The serum reduced control group (SR) is out-
lined in red. Statistical analysis was performed using Kruskall–Wallis test followed by the Dunn test 
with Bonferroni correction. The groups that differ significantly from the SR control group are 
marked with asterisks (* p ≤ 0.05 and *** p ≤ 0.001); BHBA: β-Hydroxybutyrate. 

Figure 1. Cell metabolism and cell motility of BCEC after BHBA stimulation. (a) Cell metabolism
was significantly reduced after 24 h stimulation with 2.4 mM of BHBA compared to the SR control
group. The experiment was repeated 14 times and per group n = 177–199 extinctions were analysed;
(b) cell metabolism was significantly reduced after 36 h stimulation with 2.4 mM of BHBA compared
to SR control group. The experiment was repeated 14 times and per group n = 181–198 extinctions
were analysed; (c) cell motility was significantly reduced after 24 h stimulation with 1.8 and 2.4 mM
of BHBA compared to the SR control group. The experiment was repeated 4 times and per group
n = 320 distances were analysed. (a–c): The data are presented as boxplots with the box representing
the interquartile range. The interquartile range describes the range of values between the 75% and
25% quartile. The horizontal line indicates the median. The ends of the whiskers mark the minimum
and maximum value. Outliers are shown with dots. The serum reduced control group (SR) is outlined
in red. Statistical analysis was performed using Kruskall–Wallis test followed by the Dunn test with
Bonferroni correction. The groups that differ significantly from the SR control group are marked with
asterisks (* p ≤ 0.05 and *** p ≤ 0.001); BHBA: β-Hydroxybutyrate.
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Figure 2. mRNA expression of IL6, RELA and TNF. (a) IL6 mRNA expression was not altered after 24
h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of BHBA compared to the SR control group. Statistical
analysis was performed using ANOVA; (b) RELA (gene encoding for NF-κB p65) mRNA expression
was not altered after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of BHBA compared to the
SR control group. Statistical analysis was performed using Kruskall–Wallis test; (c) TNF mRNA
expression was significantly increased after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM BHBA
compared to the SR control group. Serum reduced media (SR) served as control. Statistical analysis
was performed using ANOVA followed by Games–Howell test. (a–c): The data are presented as
boxplots with the box representing the interquartile range. The interquartile range describes the
range of values between the 75% and 25% quartile. The horizontal line indicates the median. The
ends of the whiskers mark the minimum and maximum value. Outliers are shown with dots. The
experiment was repeated six times. The serum reduced control group (SR) is outlined in red. The
groups that differ significantly from the SR control group are marked with asterisks (* p ≤ 0.05,
** p ≤ 0.01 and *** p ≤ 0.001); BHBA: β-Hydroxybutyrate.
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Figure 3. mRNA expression of PTGER2 and PTGES2. (a) PTGER2 mRNA expression was not altered
after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of BHBA compared to the SR control group.
Statistical analysis was performed using ANOVA; (b) PTGES2 mRNA expression was significantly
increased after 24 h stimulation with 0.6 and 1.2 mM of BHBA compared to SR control group.
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median. The ends of the whiskers mark the minimum and maximum value. Outliers are shown
with dots. The experiment was repeated six times. The serum reduced control group (SR) is outlined
in red. The groups that differ significantly from the SR control group are marked with asterisks
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Figure 4. mRNA expression of integrin subunits ITGAV, ITGA6, ITGB1 and ITGB3. (a) ITGAV mRNA
expression was not altered after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of BHBA compared to
the SR control group; (b) ITGA6 mRNA expression was not altered after 24 h stimulation with 0.6, 1.2,
1.8 and 2.4 mM of BHBA compared to the SR control group; (c) ITGB1 mRNA expression was not
altered after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of BHBA compared to the SR control group;
(d) ITGB3 mRNA expression was not altered after 24 h stimulation with 0.6, 1.2, 1.8 and 2.4 mM of
BHBA compared to the SR control group. (a–d): The data are presented as boxplots with the box
representing the interquartile range. The interquartile range describes the range of values between
the 75% and 25% quartile. The horizontal line indicates the median. The ends of the whiskers mark
the minimum and maximum value. Outliers are shown with dots. The experiment was repeated six
times. The serum reduced control group (SR) is outlined in red. Statistical analysis was performed
using ANOVA. BHBA: β-Hydroxybutyrate.

4. Discussion

To our knowledge, the effects of BHBA as a marker of ketosis on BCECs in vitro were
investigated for the first time. In the present study, BHBA affected the cell viability, the
gene expression of inflammatory markers and prostaglandin synthase, but it did not affect
the integrin gene expression.

Dairy cows frequently suffer from pregnancy losses during early pregnancy [28].
Ketosis is one possible cause and is characterized by high BHBA blood levels [6–8]. In
this context, the impact of high BHBA concentrations on fertility and especially on the
function of placental cells has not yet been clarified. As mentioned before, a NEB with
high levels of BHBA often occurs three weeks before and after calving [1]. And even if
first insemination after calving takes place until well after that period, the damages in the
endometrium caused by BHBA might nevertheless influence the establishment of a new
pregnancy. There are studies about voluntary waiting periods up to 200 days, which might
give the endometrium the possibility of recovering from these damages. However, very
long voluntary waiting periods lead to extended lactation periods, which in turn lead to
other problems like lower milk production, greater body condition score and an increased
risk of metabolic disorders after calving [58].

In the present in vitro study, BCECs, the superficial epithelial layer of maternal pla-
centomes, were stimulated with different BHBA concentrations (0.6, 1.2, 1.8 and 2.4 mM),
according to the BHBA blood concentrations measured in affected animals [7,8,10,11,59,60].
The results indicate that high concentrations of BHBA (1.8 and 2.4 mM of BHBA for 24 and
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36 h) affect cell metabolism and motility negatively. Comparable results have been re-
ported in other studies [22,61–67]. The negative effect of BHBA on cell metabolism was
primarily observed in cancerogenic cells, which are incapable of using BHBA as an energy
source [61–63,68]. BHBA accumulates in these cells and inhibits the histone deacetyla-
tion, whereby pro-apoptotic and anti-proliferative genes are mainly coded [16,20]. In
most non-cancerogenic cells, BHBA can be used as an alternative energy source, promot-
ing proliferation and growth [20,69]. Although the BCEC of the present study are not
cancerogenic, they may have transformed spontaneously during cultivation. Through
a transformation, cells can change their properties and become, for instance, immortal.
This has been described in other cell lines [70–72]. It is possible that cultivated BCECs are
incapable of using BHBA as an energy source, as is observed in cancerogenic cells. How-
ever, a negative impact of BHBA and non-esterified free fatty acids (NEFA), a precursor
of BHBA, on cell viability is also described in non-cancerogenic cells of the kidney, liver
and endometrium [18,22,64,66,67,73]. In bovine hepatocytes and endometrial cells, cell
viability was reduced by BHBA due to increased rates of apoptosis. The latter was induced
by oxidative stress. Oxidative stress activates the NF-κB signalling pathway and induces
an inflammatory response to BHBA, which includes high expression levels of cytokines like
TNF, IL6 and IL1B [22,23,66,74,75]. In the present study, BHBA likely induces an inflam-
matory response of the BCEC, since the cytokine TNF showed increased expression levels
with rising BHBA concentrations. In contrast to the aforementioned studies, IL6 and RELA
(gene encoding for NF-κB p65) were not altered by BHBA stimulation in the BCEC. This
might be explained by the fact that different cells were used for the experiments. Two of
the previously mentioned studies used hepatocytes and not cells of the endometrium, and
even the studies on bovine endometrial cells did not use exclusively caruncular cells of a
pregnant cow like in the present study. It is well known that the immune response changes
in pregnant cows, and therefore the origin of the BCEC from a pregnant animal, may also
have led to the different results [36,76]. However, the assumption that BHBA induces an
inflammatory response in the BCEC is supported by the ability of TNF to induce apoptosis
in cells [77,78]. An increased apoptosis rate might explain the reduced cell metabolism of
the BCEC.

Aside from the induction of apoptosis, increased TNF expression levels can have
various effects on reproductive performance [79–81]. Studies on bovine embryos showed
an inhibiting effect of TNF on blastocyst maturation in vitro [82]. In an in vivo study in
cattle, a high dose of TNF directly infused into the blood circulation increased progesterone
as well as the PGE2 concentration in the peripheral blood and resulted in an extended
maintenance of the corpus luteum [83]. In other studies, TNF could induce the PGF2α
production of stromal endometrial cells [84–86], and this might cause premature regression
of the corpus luteum. Since the corpus luteum controls the oestrus cycle, increased TNF
levels might lead to variable oestrus cycle intervals. Those findings and the reduction in
cell metabolism and motility could explain the poor reproductive performance of dairy
cows suffering from ketosis.

Like TNF, prostaglandins are mediators of the inflammatory response, but they are
important regulators in the reproductive process as well [41,42,87]. In contrast to PGF2α,
PGE2 promotes the maintenance of the corpus luteum [37–39]. In addition, PGE2 is
important for the ovulation, hatching of the blastocyst and implantation [40,41]. Stimulation
with 0.6 mM and 1.2 mM of BHBA increased the mRNA expression of PTGES2 significantly
compared to SR, but higher BHBA concentrations did not alter the PTGES2 expression.
BHBA did not affect the mRNA expression of PTGER2 in the BCEC. A comparable in vitro
study showed an effect of high concentrations of NEFA on prostaglandin synthesis in
bovine endometrial cells with increased mRNA expression of PTGES2 and PTGER2 but
with reduced PGE2 concentration in the cell supernatant. Negative feedback of PGE2 on
the expression of its synthase and receptor is assumed. In contrast to the present study, a
low concentration of NEFA had no effect [73]. This contradictory result might be due to
the different stimulants. Unlike BHBA, fatty acids as part of the lipid metabolism affect
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prostaglandin synthesis by competitive inhibition of the synthesis of prostaglandins from
arachidonic acid [88]. The fact that only low concentrations of BHBA affected the PTGES2
expression does not indicate a negative impact of BHBA on the PGE2 synthesis. Blood
concentrations of 0.6 mM of BHBA are physiological in cows and often show a positive
effect, for instance, in the viability of bovine endometrial cells [11,13,22,60,66]. However,
in some publications, blood concentrations of 1.2 mM of BHBA are the limit value of the
diagnosis of ketosis in dairy cows [8,12], but the fact that higher BHBA concentrations did
not affect PTGES2 expression does not give any indications of a negative influence of BHBA
on PGE2 synthesis. TNF mRNA expression equally increased at low BHBA concentrations
but continued to increase at high BHBA concentrations.

The highest rates of pregnancy loss in high-yielding dairy cows are observed in
early pregnancy [28]. During this time, crucial aspects are the maturation of the embryo
and its implantation, whereby integrins play an important role [29,44,48]. In sheep, the
integrin αvβ3 is the binding partner of osteopontin during implantation and enables
migration and adhesion of the trophoblast to the maternal luminal epithelium [44]. In the
bovine endometrium, the expression patterns of integrins indicate a trophoblast giant cell
migration mediated by the integrin α6β1 and the ligand laminin [48]. In the present study,
stimulation with different concentrations of BHBA over 24 h did not alter mRNA expression
of the integrin subunits ITGAV, ITGA6, ITGB1 and ITGB3. Apart from the present study,
there are only a few studies investigating the influence of BHBA or NEFA on integrin
expression [89,90]. In mononuclear blood cells, the influence of high NEFA concentrations
on gene expression was investigated using a transcriptome analysis in cows during early
lactation. Interestingly, genes involved in cellular adhesion like integrins showed an altered
expression. Animals with high NEFA blood concentrations showed an increased expression
of the integrin subunit ITGA4 but a decreased mRNA expression for integrin subunits
ITGAD and ITGA6 [89]. Besides the impact of integrins’ cell-to-cell binding on reproduction,
they are also important for diapedesis of leukocytes and are thus essential for the immune
defence against pathogens [89]. A study with human monocytes showed increased protein
levels of the integrin lymphocyte function-associated antigen-1 after stimulation with BHBA
concentrations between 0 and 10 mM in vitro. Therefore, it is assumed that hyperketonemia
is involved in the devolvement of cardiovascular diseases [90]. To our knowledge, the
present study is the first one that investigated the influence of BHBA on integrin expression
in bovine endometrial cells. No significant effect of BHBA was observed. This might be
due to methodical or biological reasons. The given experimental conditions might not
be suitable, and the BHBA concentrations or the stimulation period could be modified.
However, it is also possible that the expression pattern of the integrins was changed or
that other integrins are affected by BHBA stimulation without showing changes in the
expression level of the examined integrins itself. So far, it appears that the integrin mRNA
expression of BCECs is not affected by BHBA.

5. Conclusions

The present study demonstrates that high concentrations of BHBA affect the physiol-
ogy of BCECs by decreasing cell motility and metabolism. Additionally, an inflammatory
response to BHBA stimulation was observed in the BCEC. The mRNA expression of TNF
increased concomitantly with rising BHBA concentrations. An explanatory approach for
these results is, on the one hand, an energy deficiency, since the BCEC possibly cannot use
BHBA as an energy source, and on the other hand, the induction of an inflammatory process.
Both might lead to higher apoptosis rates and negatively affect the functionality of maternal
caruncles. This could lead to an impaired feto-maternal communication and explain the
reduced reproductive performance during the peri-implantation period of ketotic cows. In
addition, PTGES2 expression was increased by stimulation with low BHBA concentrations,
whereas high BHBA concentrations had no effect. The lowest BHBA concentration of
0.6 mM induced the strongest increase in PTGES2 expression. This BHBA concentration is
physiological, and therefore, this change is unlikely to have any negative effects.
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