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Simple Summary: The Brazilian merganser, a critically endangered duck species in South America,
was studied using a population genomics approach. This research focused on the genetic diversity of
the mergansers in the four remaining wild populations located in Central Brazil. The results showed
that there is a low genetic diversity and high levels of inbreeding in individuals across all locations,
with a moderate level of genetic differentiation between them. These findings highlight the need for
immediate conservation actions to prevent the decline of the Brazilian merganser population and
genetic erosion. Genetic monitoring can help implement appropriate in situ and ex situ management
strategies to increase the species’ long-term survival in its natural environment.

Abstract: The Brazilian merganser (Mergus octosetaceus) is one of the most endangered bird species
in South America and comprises less than 250 mature individuals in wild environments. This
is a species extremely sensitive to environmental disturbances and restricted to a few “pristine”
freshwater habitats in Brazil, and it has been classified as Critically Endangered on the IUCN Red List
since 1994. Thus, biological conservation studies are vital to promote adequate management strategies
and to avoid the decline of merganser populations. In this context, to understand the evolutionary
dynamics and the current genetic diversity of remaining Brazilian merganser populations, we used
the “Genotyping by Sequencing” approach to genotype 923 SNPs in 30 individuals from all known
areas of occurrence. These populations revealed a low genetic diversity and high inbreeding levels,
likely due to the recent population decline associated with habitat loss. Furthermore, it showed a
moderate level of genetic differentiation between all populations located in four separated areas of
the highly threatened Cerrado biome. The results indicate that urgent actions for the conservation of
the species should be accompanied by careful genetic monitoring to allow appropriate in situ and ex
situ management to increase the long-term species’ survival in its natural environment.

Keywords: anseriformes; conservation genetics; neotropical bird; Brazilian Cerrado; endangered
species; neotropics

1. Introduction

The number of threatened birds has increased by about 30% in the last twenty years,
from 1107 to 1460 species worldwide [1]. The population declines of many bird species were
particularly associated with increasing threats, such as hunting, illegal trade, introduction
of exotic species, and degradation of habitats [1]. Therefore, bird conservation studies are
urgently needed to measure the consequences of population decline and to plan scientific-
based management strategies to prevent eventual extinction [2–4].

The Brazilian merganser, Mergus octosetaceus, Vieillot, 1817, is the only Mergini duck
of the Anseriformes order that is found in the Southern Hemisphere [2]. The conservation
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status of M. octosetaceus is a serious concern because the species has been listed as Critically
Endangered (C2a(i)) on the IUCN (International Union for Conservation of Nature and
Natural Resources) Red List since 1994 [1]. Although the current population size of the
species is not clear, it is known that less than 250 mature individuals live in the wild, and
its population trend is decreasing [5]. In addition, the remaining Brazilian merganser
population is fragmented and heterogeneously distributed in four different locations in
Brazil, with between 140 and 200 mature individuals that are resident in the Serra da
Canastra National Park and its surroundings [1].

The historical distribution of M. octosetaceus comprised three countries—Brazil, Ar-
gentina, and Paraguay—and included the hydrographic basins of the São Francisco,
Paraná/Paraguay, and Tocantins (Amazon basin) rivers, occurring in several disjointed
areas of the Cerrado and Atlantic Forest biomes, always presenting a low population
density [6]. The last records of the species in Argentina and Paraguay date from 1993 and
2002, respectively [7–9]. The lack of records, despite active searches for the species in the
last two decades, indicates that merganser populations in Argentina and Paraguay, and in
the Atlantic Forest areas of Brazil, may be extremely rare or have become locally extinct,
likely associated with intense human pressure in these places. Therefore, it is assumed
that the present distribution of the species is currently limited to Central Brazil, only to
the states of Minas Gerais, Goiás, and Tocantins, where populations are being constantly
monitored by the Brazilian Action Plan of Conservation (PAN pato-mergulhão-ICMBio).

Although M. octosetaceus is mainly found in protected areas (PAs) of the Cerrado biome,
such as Chapada dos Veadeiros National Park (Veadeiros), Jalapão State Park (Jalapão),
and Serra da Canastra National Park (Canastra) [6,10–16], the remaining populations of the
Brazilian merganser are separated by a mosaic of regions with intense anthropic pressure [2].
In addition to the PAs, recent records in the Alto Paranaíba region (Paranaíba) of the Minas
Gerais state revealed a small population occupying unprotected areas of the Cerrado biome
that is surrounded by intense farming and mining activities [2].

Most of the research executed with M. octosetaceus was concerned with the ecology,
reproduction, habitat, and dispersal of the species [11,13,17–19]. Although the Brazilian
merganser was described by Vieillot in 1817, it is rarely found in collections from Brazil
and Argentina, and the first field research performed with the species occurred in the 1950s
at the border of Argentina, Paraguay, and Brazil [20]. Furthermore, intensive ecological
studies have been conducted since the 1990s in Canastra, located in Southeastern Brazil,
where the largest population of the species has been recorded so far [13,14,18,19].

Genetic studies applied to the conservation of endangered species can drive in situ and
ex situ preservation and management strategies (e.g., pairing, reintroduction). However,
no genomic data have been used so far for conservation purposes for the remaining
populations of Brazilian merganser. Our research group published the only four genetic
studies on this species [21–24], showing preliminary data that indicate a low genetic
diversity, which is likely related to a recent bottleneck in the remaining populations. The
development of new molecular techniques using Massive Parallel Sequencing allowed
researchers to obtain a large amount of genetic variation data, covering most of the genome
of the studied species [25,26]. Genomic approaches can be applied to populations of
endangered species to investigate many conservation issues in greater detail, such as the
characterization of inter-population and inter-individual relationships, spatial structure,
inbreeding, kinship, and signs of natural selection along the genome [27,28]. To apply
genomics in population studies (of multiple individuals), methods were developed to
reduce the genomic complexity of data, such as “Genotyping by Sequencing—GBS” [29].
GBS methods have been used to genotype thousands of single-nucleotide polymorphisms
(SNPs) scattered around unknown genomes of many individuals of different plants [30,31]
and animals [32,33].

In this work, we present the first population genomic survey of the Critically Endan-
gered Brazilian merganser using SNP data generated through GBS methodology applied
to all remaining (and known) populations located at Canastra, Paranaíba, Veadeiros, and



Animals 2023, 13, 3759 3 of 16

Jalapão in Brazil. We aim to characterize the genetic diversity between and within popula-
tions and to identify possible barriers to gene flow that may establish distinct population
groupings in the area of occurrence of the species.

2. Material and Methods
2.1. Biological Samples

We used 30 Merganser samples (Table S1, Supporting Information) from all known
areas of current occurrence of the species: four from Jalapão (full siblings), four from Vead-
eiros, seven from Paranaíba (four are full siblings), and fifteen from Canastra (Figure 1).
Among these, 20 samples were derived from individuals previously collected in the nat-
ural areas of occurrence of the species by the collaborators of the Terra Brasilis Institute,
Funatura, Cer Vivo, Projeto Mergus da Chapada dos Veadeiros, Naturatins, and ten blood
samples were from captive individuals (Zooparque de Itatiba, Itatiba, SP) derived from
eggs collected in natural areas by the National Action Plan for Conservation in Brazil (PAN
pato-mergulhão). DNA samples were obtained from several types of tissues [23], such as
eggs (embryos, shell), feathers found in abandoned nests, and blood from captured animals
that were already part of the Tissue Collection of the Centro de Coleções Taxonômicas of
Universidade Federal de Minas Gerais, Brazil.
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(2%) electrophoresis, and the quality of the DNA was checked with Nanodrop 2000. 
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the GBS approach (below), and the final DNA quantification was evaluated in Qubit® 2.0. 

Figure 1. Historical and current population distribution of Mergus octosetaceus. The red area highlights
the historical geographic occurrence of M. octosetaceus across Brazil, Argentina, and Paraguay (left
map). The black dots represent the collection sites of samples from all four remaining populations in
central Brazil (right map in detail): Canastra—Serra da Canastra National Park; Jalapão—Jalapão
State Park; Veadeiros—Chapada dos Veadeiros National Park; Paranaíba—Alto Paranaíba region.

2.2. DNA Extraction

The genomic DNA of these samples were extracted according to the phenol-chloroform
protocol [34]. The integrity of the samples was verified through agarose gel (2%) elec-
trophoresis, and the quality of the DNA was checked with Nanodrop 2000. Genomic
DNA extractions with ratios 260/280 ≥ 1.75 and 260/230 ≥ 1.8 were selected for the GBS
approach (below), and the final DNA quantification was evaluated in Qubit® 2.0. The
access to genetic resources of Brazilian biodiversity from the Ministry of Environment was
registered as a SisGen/Brazil number A324339.
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2.3. GBS Library Construction and Sequencing

The DNA samples were submitted to a genomic library preparation protocol adapted
from Elshire et al. [29] at the Ecomol Genomic Service of the ESALQ-USP (Piracicaba, Brazil).
For the digestion of genomic DNA, the PstI enzyme was chosen because it presented satis-
factory in vitro test results and in library constructions with many animal species [35,36],
including birds [37]. The digestion reaction was performed separately for each sample,
using 10 µL of DNA at a concentration of 10 ng/µL, 3 µL of buffer, 1 µL of PstI enzyme
(20 U/µL) (New England Biolabs, Ipswich, MA, USA), and 16 µL of water. This solution
was incubated at 37 ◦C for 60 min, and digestion was confirmed using agarose gel (2%).
The digested genomic DNA was linked to different barcodes, ranging from 7 to 9 bp, to
identify individual samples after sequencing. The fragmented DNA linked to barcodes
was lyophilized in a vacuum centrifuge (45 ◦C for 120 min) and next resuspended in 19 µL
of water and ligated to adapters according to the protocol of Elshire et al. [29], adding 1 µL
of T4 DNA Ligase enzyme (New England Biolabs) and 5 µL of 10× buffer. This solution
was incubated at 22 ◦C for 120 min, followed by incubation at 65 ◦C for 30 min to inactivate
the enzyme. After ligation, samples were purified with the QIAquick PCR Purification
Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. The purified
products were then amplified by inserting primers with sequences complementary to
the restriction fragments and adapters, which linked the PCR products to the oligonu-
cleotides that covered the flow cell. The PCR conditions were as follows: 1× (72 ◦C—5 min;
98 ◦C—30 s); 18× (98 ◦C—10 s; 65 ◦C—30 s; 72 ◦C—30 s); 1× (72 ◦C—5 min, 4 ◦C—10 min).
Amplification products were checked on agarose gel (2%) and purified with AMPure XP
magnetic beads (Beckman-Coulter, Brea, CA, USA) to remove small DNA fragments. The
library was quantified via real-time quantitative PCR (qPCR) and bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA) and subsequently sequenced in Illumina HiSeq 2000
(single end with 100 bp reads).

2.4. Variant Calling and Filtering

SNPs were called using the Stacks pipeline [38] and then filtered using VCFtools [39].
The following filters were applied to retain variants: (1) being called in all individuals
(--max-missing-count 0), (2) having at least two occurrences of the minor allele over the
sampling (--mac 2), (3) being a single nucleotide substitution (--remove-indels), (4) being
biallelic (--min-alleles 2 –max-alleles 2), and (5) being at Hardy–Weinberg Equilibrium
(--hwe 0.05). In addition, for each pre-selected SNP, we computed the minimal depth
throughout all individuals and retained only SNPs with minimal depth greater than or
equal to 5.

2.5. Genetics Statistical Analyses

VCFtools was also used to: (i) calculate the heterozygosity and inbreeding coefficient
(F) for each individual; (ii) infer the degree of relationship/kinship between individuals,
using the method developed by Manichaikul [40], which calculates the pairwise kinship of
all sampled individuals. In this analysis, kinship values between two individuals greater
than 0.354 indicate that they may be the same individual or monozygotic twins, kinship
values between 0.177 and 0.354 suggest that they are first-degree relatives (full siblings or
parents/children), kinship values between 0.0884 and 0.177 indicate second-degree kinship
(half-brother or grandparents/grandchildren), and kinship values between 0.0442 and
0.0884 are considered third-degree relatives.

In the R program v4.2.3 (R Core Team, 2020), we used the packages “VCFR” [41],
“poppr v2.8.6” [42], “ape” [43], “RcolorBrewer” [44], “ggrepel” [45], “adegenet” [46], “re-
shape2” [47], and “ggplot2” [48] to perform the following: (i) multivariate analyses rep-
resented in two-dimensional graphs using Principal Component Analysis (PCA) to show
inter-individual relationships through genetic distance data between individuals from
different populations; (ii) Discriminative Principal Component Analysis (DAPC) to identify
groups of genetically related individuals; (iii) Compoplot that represents the probability of
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population association for each sample of the predetermined localities in a bar graph; (iv) a
heatmap with pairwise kinship data normalized by Pearson’s correlation matrix, in which
the highest relationship level was assigned a value 1 and the lowest relationship level was
assigned a value −1.

The phylogenetic reconstruction using Bayesian Inference (BI) among individuals was
performed with the Beast program [49] using the SNAPP package [50], which collected the
SNPs for each individual that was designated as a separate OTU. The run was executed
with a chain length of 200 million, convergence was checked with Tracer v1.7 [51], and the
maximum clade credibility tree was calculated using TreeAnnotator v1.10.

The number of possible population groups (k) and their geographic boundaries were
estimated using Geneland v3.2.2 [52], using three independent runs with 30 million iter-
ations each, in a range of 1 to 10 possible clusters, and the uncorrelated allele frequency
model, which assumes that allele frequencies between populations can be different. The
runs were performed with a model of false null alleles and thinning of 300,000, with results
visualized after a burn-in of 100 times, where the convergence of each model was evaluated.
The number of population groups without geographic correlation was estimated through
the STRUCTURE v2.3.4 program [53], using a model that predicts the possibility of gene
flow between populations (admixture model), with 1,000,000 MCMC randomizations and
a burn-in of 250,000. Population number parameters (K) from 1 to 10 were evaluated
with 10 independent runs for each K. The choice of the appropriate K was made with
Structure Harvester [54], and the final graph was generated with Clumpak [55]. Measures
of differentiation between geographic populations were estimated through pairwise FST
analyses, analysis of molecular variance, and Mantel tests that were performed using the
Arlequin 3.5 program [56].

3. Results
3.1. Variant Calling from Sequencing Reads

The sequencing of the GBS library generated 192,590,988 reads, which were initially
filtered with the fastp program [57]. In this initial step, we selected reads that presented
a phred score above 20, with at least 30% complexity and without polyG and polyA tails.
After this initial filtering step, we obtained 190,578,439 reads.

The initial filtered data were submitted to the Stacks pipeline [38] using the “pro-
cess_radtags” algorithm, where samples were demultiplexed and further submitted to
other cleaning filters. Considering the 190,578,439 reads, 2.8% did not show linked barcodes,
0.3% did not show restriction enzyme sites (TGCA), and 1.4% were low-quality reads that
were excluded from the following analyses. After this second sequencing cleanup, we
retrieved 182,176,706 reads.

The Stacks pipeline was performed using a de novo alignment approach [38], as
Mergus octosetaceus has no available reference genome. We found 33,535 SNP variants that
went through Stacks filtering steps. We then applied more stringent filters (minimal depth
≥5—a rule equivalent to 100% call rate—at least two occurrences of the minor allele, only
biallelic SNPs, at Hardy–Weinberg equilibrium), eventually leaving 923 SNPs for analyses.
Filtering on minimal depth (over all individuals) was by far the most stringent rule as it
filtered out ~98.7% of the initial set. The remaining filtered variants were SNPs that deviated
significantly from the Hardy–Weinberg equilibrium. The genotypes of 923 SNPs for all
individuals were submitted to different inter-individual and inter-population analyses.

3.2. Kinship and Inbreeding Estimates

In the pairwise kinship analysis, we observed that individuals from the same popu-
lation displayed a high level of genetic relationship. We identified that individuals (full
siblings) from Jalapão are the most differentiated in comparison to individuals from all other
populations, followed by individuals from Veadeiros and full siblings from Paranaíba. In
contrast, we found that the individual PAR180 has at least a third-degree relationship with
16 of the 30 samples, regardless of location, and the individual CAN018 has a significant
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relationship (second degree) but only with the individual CAN148. We also identified three
full siblings (CAN098-CAN099-CAN100) that were supported by fieldwork information in
Canastra (Table S2, Supporting Information).

When we visualized the kinship data in a heatmap graphic (Figure 2) ordered by
populations, we observed that Canastra and Paranaíba populations showed a closer genetic
relationship, where Paranaíba full siblings PAR206, PAR207, PAR208, and PAR209 are the
most differentiated individuals from all others between both populations. Furthermore,
we can also observe that individuals from Veadeiros and Jalapão present smaller kinship
values when compared to individuals from other areas.
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Figure 2. Heatmap depicting kinship indices, corrected by Pearson’s correlation matrix among
individuals from Canastra (CAN). Paranaíba (PAR), Veadeiros (VEA) and Jalapão (JAL). The values
on the map range from −1 (negative correlation, represented in blue) to 1 (positive correlation,
represented in red).

Analysis of inbreeding coefficients (F) per individual (Figure 3) revealed a high propor-
tion of inbred individuals (F > 0), with PAR206 presenting the highest inbreeding coefficient
(0.36947) (Table S3, Supporting Information). However, some individuals with higher
heterozygosity and lower inbreeding levels were also found. For example, PAR180 pre-
sented the lowest inbreeding coefficient (−0.32184), and the Veadeiros population presented
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the highest number of individuals (VEA066, VEA070, VEA071) with negative inbreeding
coefficient values (Figure 3).
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Figure 3. Inbreeding coefficients of 30 Mergus octosetaceus individuals from the four remaining
populations (CAN—Canastra, PAR—Paranaíba, VEA—Veadeiros, and JAL—Jalapão). Positive
inbreeding coefficients appear in blue (above) and negative ones in brown (below). The samples are
in descending order of inbreeding coefficients.

3.3. Population Structure

As the PCA analysis uses a matrix of genetic differences for a two-dimensional repre-
sentation, full siblings tend to be tightly associated, which may cause a bias in the analysis,
making a group separated further from the others. Thus, we have conducted PCA analysis,
including only one individual from each of the full sibling groups that we identified in the
pairwise kinship analyses and that were confirmed by fieldwork information. Therefore,
we excluded individuals JAL202, JAL203 and JAL204, PAR207, PAR208 and PAR209, and
CAN098 and CAN100. The resulting PCA graphic with “unrelated” individuals shows us
two major clusters, one formed by individuals from Canastra and Paranaíba on the right
side of the graphic and another formed by individuals from Veadeiros and Jalapão on the
left side of the graphic (Figure 4).

DAPC analysis showed similar results to PCA, separating the same clusters, but the
most genetically related individuals are highlighted. We can see that Paranaíba and Canas-
tra individuals form a large group, and they are relatively differentiated from individuals
of Veadeiros and Jalapão (Figure 5).

The Compoplot analysis was used to infer the probability of an individual belonging to
a given population. The results also showed a close genetic relationship between Paranaíba
and Canastra populations, as well as a slight relationship between Veadeiros and Jalapão
populations when compared to the Paranaíba + Canastra group (Figure 6A).

To infer the number of population clusters without geographic assignment, we used
the Structure program with the uncorrelated allelic frequency model. Two clusters were
found, one formed by individuals from Canastra and Paranaíba and another by Jalapão
and Veadeiros individuals (Figure 6B).
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Figure 4. PCA analysis using 923 SNPs for 22 unrelated individuals. Green—individuals from
Canastra (CAN); blue—individuals from the Jalapão (JAL); orange—individuals from the Paranaíba
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To characterize independent population groups distributed in a spatial landscape
(using geographic coordinates of the samples), we used Geneland analysis with an uncor-
related allelic frequency model. Three population groups were identified; the first was
composed of individuals from Jalapão, the second by individuals from Veadeiros, and the
third was composed of individuals from Paranaíba and Canastra (Figure 6C).

The phylogenetic tree reconstructed with Bayesian Inference (Figure 7) reveals two
large clusters, one composed of individuals from Paranaíba and Canastra and another
composed of individuals from Veadeiros and Jalapão. More external to these two large
groups, we have a group composed of three individuals from Canastra. However, this tree
should be considered with caution, as no outgroup was used.
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Figure 6. Population attribution analyses. (A) Graphic representation of the probability of ev-
ery individual to belong to a determined “genetic population” (four assigned populations, k = 4)
using adegenet/compoplot tool. (B) Structure result using the uncorrelated model and k = 2, ex-
cluding 1st-degree related individuals. Red—common alleles in the Canastra/Paranaíba cluster;
Green—common alleles in the group formed by Veadeiros and Jalapão. (C) Geneland graphic
showing the spatial distribution of three genetic clusters formed by Mergus octosetaceus individuals.
Green—population of the Jalapão; White—population of Veadeiros; Yellow—populations of Canastra
and Paranaíba. Geographic coordinates for samples/localities are shown as black dots (see Table S1),
and at right it is shown a graphic with the associated probabilities to the estimated number of clusters.
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The population pairwise FST analysis showed significant values for all comparisons
(p < 0.05) and indicated that the population Jalapão is the most differentiated among them,
and that Canastra and Paranaíba populations are less differentiated between them (Table 1).

Table 1. Pairwise FST analysis of Mergus octosetaceus populations defined a priori based on geographic
locality. All pairwise FST values were significant (p < 0.05).

Canastra Paranaíba Veadeiros Jalapão

Canastra 0.00000
Paranaíba 0.09613 0.00000
Veadeiros 0.13071 0.20049 0.00000

Jalapão 0.20018 0.25022 0.19839 0.00000

To perform the molecular analysis of variance (AMOVA), we tested several population
groupings, using either all sampled individuals or excluding closely related individuals.
The first grouping, as determined by Geneland, included populations of Canastra and
Paranaíba in a single group, and Jalapão and Veadeiros were treated as separate popu-
lations. The second grouping followed the Structure result, where populations Jalapão
and Veadeiros formed one group, while Canastra and Paranaíba formed another. A third
grouping was divided into a group formed by Veadeiros and Jalapão populations, while
Canastra and Paranaíba were treated as independent groups. The results indicated that
most of the genetic variation was observed within populations, and the first grouping
(Canastra + Paranaíba × Veadeiros × Jalapão) is the most likely clustering of populations,
presenting the highest FCT values (0.0962 and 0.0750) and the lowest values of FSC (0.0979
and 0.0627), both with all individuals included and without closely related individuals,
respectively (Table S4, Supporting Information).
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The Mantel test between all population localities did not present a significant result
(p > 0.05), which indicates that the geographic distance alone is not able to explain the
molecular variance.

4. Discussion

A high level of inbreeding was observed in most of the Brazilian Mergansers of the
four remaining areas of occurrence (Figure 3). However, in a single locality (Paranaíba), we
observed the two individuals with the highest (PAR206) and lowest (PAR180) inbreeding
coefficients (F), which indicates an important inter-individual heterogeneity of the wild
Brazilian Merganser population.

The close genetic relationship between individuals of the same localities demonstrated
by the pairwise kinship analyses (Table S2, Supporting Information) is somewhat expected
since the Brazilian Merganser is a non-migratory bird [13,20], and it is known to occur
historically in low population densities and disjunct areas [6]. This pattern may also be
related to a high dependence of the Brazilian Merganser to its territory with “undisturbed”
fast-flowing clear rivers close to water springs [6,13,20].

The very close relationship (first degree) between four individuals (JAL202, JAL203,
JAL204, and JAL205) from Jalapão is expected because they are full siblings (captive
adults derived from eggs collected in the same nest in the Jalapão region). A first-degree
relationship was also evidenced in four individuals (PAR206, PAR207, PAR208, and PAR209)
from Paranaíba, who are also full siblings that are currently captive adults derived from four
eggs collected in a nest monitored yearly in the Paranaíba region (unpublished information
from PAN pato-mergulhão, Brazil).

The average kinship of third degree for the PAR180 individual with 16 of 30 individuals
from different locations cannot be simply explained by large distance gene flow [13,20].
To date, little is known about its dispersal mode [2], but it is unlikely that an individual
can migrate large distances such as between Canastra (Minas Gerais state) and Jalapão
(Tocantins state), which are about 1000 km apart (Figure 1). However, PAR180 also has the
lowest individual inbreeding coefficient (−0.32184), which may inflate the overall kinship
relationships, because this type of analysis is based on the difference between shared
heterozygosity and homozygosity [40]. It may have also influenced the kinship estimates of
CAN018, which has an inbreeding coefficient of 0.31249 and presents a significant kinship
(second degree) only with individual CAN148. However, given the small population size
and low genetic diversity observed within the species, drift and inbreeding may partially
explain these results.

The global view of kinship values between individuals presented in the heatmap
(Figure 2) illustrates the high differentiation of Jalapão and Veadeiros individuals, as
compared to Canastra and Paranaíba. In the heatmap, we observe a closer relationship
between Paranaíba and Canastra individuals, a fact that can be explained by the geographic
proximity of these areas. In our records, the two spatially closest individuals from both
areas (Canastra and Paranaíba) were originally captured at about 50 km in a straight line.
Considering that each Merganser pair has a foraging area of 5 to 12 km of the river [12,20],
and a former study on the dispersion of the Brazilian Merganser in Canastra identified
the displacement of an individual to an area located 25.3 km away from its birthplace [18],
meaning connectivity between Canastra and Paranaíba is very likely. This greater genetic
similarity between individuals of Canastra and Paranaíba was also evidenced in the analy-
ses of PCA (Figure 4) and DAPC (Figure 5), corroborating previous genetic studies with
mitochondrial and microsatellite markers [22,24], which found greater similarity between
Canastra and Paranaíba populations when compared with Veadeiros.

The number of populations and their geographic boundaries inferred by Geneland
(Figure 6C), which showed us that Canastra and Paranaíba populations were grouped into
a single cluster, are also consistent with our previous analyses. This result agrees with the
known ecology of the species, reaffirming the Merganser’s philopatry to its habitat and
area of occurrence, as well as its non-migratory characteristic [6,13,18,20]. This pattern
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was also supported by Structure (Figure 6B) when we analyzed the possible population
groups without geographic bias. However, unlike Geneland, Structure grouped Canastra
and Jalapão populations into a single cluster. This difference found by Geneland may have
been influenced by the geographic distance between the two populations and the small
population size of Jalapão (four full siblings), which together with a low FST may have
overestimated the population inference [58,59]. When we analyzed the probabilities of each
individual belonging to a determined population estimated by Compoplot (Figure 6A),
we identified the same pattern found in the previous analyses, showing Canastra and
Paranaíba with great genetic similarity between them, and Veadeiros and Jalapão with a
slight similarity between them but very different from Canastra and Paranaíba.

The phylogenetic tree (Figure 7) shows us the same pattern of population clustering
that we found in previous analyses, composed of two major groups, Canastra + Paranaíba
and Veadeiros + Jalapão, as indicated in other analyses. However, three Canastra individu-
als (CAN098, CAN099, and CAN100) formed an external cluster related to the two largest
ones. These individuals are likely full siblings because of a high kinship coefficient (0.25)
that was also confirmed by fieldwork data and, consequently, share many alleles, forming
a separate cluster, although in an unrooted BI tree (Figure 7).

The negative values of inbreeding coefficients found in some individuals (Figure 3,
F < 0), including Jalapão individuals JAL204 and JAL205 that make up the captive popula-
tion, suggest an excess of heterozygosity when compared to the population average [60].
Further, these individuals are important founders to increase the genetic viability in the
captive population in further generations.

Using pairwise FST between populations (Table 1), we observed that Canastra and
Paranaíba presented small genetic differentiation (0.09613), indicating a closer relationship.
The most differentiated population is Jalapão, presenting the highest pairwise FST values
(0.19 to 0.25). The significant FST values between all Brazilian Merganser localities suggest
that there is a moderate population structure, even though this result should be taken with
care because of the sampling representation of Jalapão composed of full siblings.

The AMOVA results for the three evaluated population groupings indicated that most
of the genetic variation is between individuals/within populations. The results with and
without related individuals indicated that grouping 1 (Canastra + Paranaíba × Veadeiros ×
Jalapão) is the most likely hierarchical clustering of populations because it has the highest
FCT values (0.0962 and 0.0750) and the lowest FSC values (0.0979 and 0.0627), respectively.
The FST values for the three tested groupings were moderate and significant (between
0.1090 and 0.1847), indicating that there is some level of population structure likely related
to restricted gene flow between the current remaining populations and/or extinction of
intermediate populations.

The overall results indicate a moderate degree of population structure and low ge-
netic variability within populations that are composed of closely related individuals. The
Canastra and Paranaíba populations are genetically and geographically close, even though
individuals from both areas are distributed in separate genetic clusters. The Jalapão and
Veadeiros populations appear to be less related between them, as well as farther apart,
when compared with Canastra and Paranaíba populations. Anyway, Jalapão and Veadeiros
populations are the ones with apparently lower density (and census) of Mergansers and
should be better sampled in the future to allow for more precise estimates. Finally, the
moderate degree of population structure concerning the four remaining areas of occurrence
indicates that Brazilian Mergansers from all sources should be used for in situ and ex situ
management in future translocation and reintroduction strategies.

5. Conclusions

The population genomic analysis of the Brazilian Merganser revealed a moderate
population structure, low genetic diversity, and high inbreeding in the four remaining
populations of this critically endangered species. However, the results should be taken with
caution because of sampling bias, particularly for Jalapão (four full siblings) and Veadeiros,
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who are represented by few individuals. New population genomic studies should include
more unrelated individuals from all areas, analyzing the use of a reference genome of the
species that is under preparation (FRS, personal communication).

The genetic results presented in this study indicate that urgent and effective actions for
Mergus octosetaceus conservation should be taken to avoid population decline. For example,
the mapping of areas where the species can potentially survive, reproduce, and/or occurred
historically may reveal appropriate areas to receive individuals with adequate “genetic
values” to start a pilot reintroduction project. A captivity program has been established for
Brazilian Mergansers in Itatiba Zoopark (São Paulo state) for more than a decade, where
more than 60 captive individuals are currently kept that were derived from founding
individuals of all four known remaining localities. These ex situ individuals are being
genetically monitored by our research group to indicate the best pairings of Mergansers to
maximize genetic diversity and avoid inbreeding. Thus, the data generated in this study
can help in the selection of individuals that may be used in reintroduction projects to
repopulate new areas and/or to increase the genetic variability in current areas where there
is a very low density of Brazilian Mergansers (for example, Jalapão).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13243759/s1, Table S1: List of samples used in this work and
their respective occurrence areas, and geographic coordinates (lat/long). Table S2: Pairwise kinship
between sequenced individuals. Table S3: Individual inbreeding coefficients (F). INDV = individual;
O(HOM) = observed number of SNPs in homozygosity; O(HET) = observed number of SNPs in
heterozygosity. The expected homozygosity was 659.7, the expected heterozygosity was 263.3 and the
number of analyzed SNPs was 923. Table S4: Analysis of Molecular Variance for different groupings
of Mergus octosetaceus populations: Serra da Canastra National Park (Canastra); Jalapão State Park
(Jalapão); Chapada dos Veadeiros National Park (Veadeiros); Alto Paranaíba region (Paranaíba).
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