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Simple Summary: Detailed studies of bird microsatellite distribution patterns are scarce compared
to other eukaryotes. Hence, we performed a comprehensive comparative analysis of microsatellite
distribution patterns for 53 birds from 16 orders. We also explored the function of genes contained
in microsatellites. Our results revealed that the distribution patterns of microsatellites were subject
to weak phylogenetic constraints. The comprehensive analysis of microsatellites indicated that the
abundance and diversity of perfect microsatellites were affected by their lengths. Finally, we found
that perfect microsatellites were enriched at the ends of genes, and these genes were associated with
signal transduction and cellular process.

Abstract: Microsatellites (SSRs) are widely distributed in the genomes of organisms and are an
important genetic basis for genome evolution and phenotypic adaptation. Although the distribution
patterns of microsatellites have been investigated in many phylogenetic lineages, they remain unclear
within the morphologically and physiologically diverse avian clades. Here, based on high-quality
chromosome-level genomes, we examined the microsatellite distribution patterns for 53 birds from
16 orders. The results demonstrated that each type of SSR had the same ratio between taxa. For
example, the frequency of imperfect SSRs (I-SSRs) was 69.90–84.61%, while perfect SSRs (P-SSRs) were
14.86–28.13% and compound SSRs (C-SSRs) were 0.39–2.24%. Mononucleotide SSRs were dominant
for perfect SSRs (32.66–76.48%) in most bird species (98.11%), and A(n) was the most abundant repeat
motifs of P-SSRs in all birds (5.42–68.22%). Our study further confirmed that the abundance and
diversity of microsatellites were less effected by evolutionary history but its length. The number of
P-SSRs decreased with increasing repeat times, and longer P-SSRs motifs had a higher variability
coefficient of the repeat copy number and lower diversity, indicating that longer motifs tended to
have more stable preferences in avian genomes. We also found that P-SSRs were mainly distributed at
the gene ends, and the functional annotation for these genes demonstrated that they were related to
signal transduction and cellular process. In conclusion, our research provided avian SSR distribution
patterns, which will help to explore the genetic basis for phenotypic diversity in birds.

Keywords: birds; chromosome-level genome; microsatellite; distribution pattern; functional annotation

1. Introduction

Microsatellites (simple sequence repeats, SSRs) are short tandem repeats of 1–6 nu-
cleotide DNA motifs [1], which are functionally important for chromatin organization,
recombination, gene transcription, translation, and DNA replication [2]. Microsatellites are
widely distributed in both coding and noncoding regions of eukaryotic and prokaryotic
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genomes [3] but display a non-random distribution in the different genomic regions [4,5].
Due to their high levels of polymorphism [2], SSRs have become an important source of
genetic divergence that can lead to a variety of phenotypic differences and provide a basis
for adaptation to different environments [6,7]. For example, the accumulation of repetitive
DNA sequences, including microsatellites, has been linked to the enlargement of the W
chromosome [8–11] and Z chromosome [12], which may have led to the differentiation of
sex chromosomes [13] and evolution of a karyotype [14,15]. Therefore, a comprehensive
analysis of microsatellites across the evolutionary landscape can help identify functionally
relevant SSRs [16] and determine their roles in the adaptive evolution of organisms [4].

Comparative analyses of microsatellite distribution patterns have mostly been limited
by the quality of the SSRs datasets [17]. The SSRs identification and inferences are mainly
affected by the accuracy of genome assembly and the completeness of sequence informa-
tion [16]. Fortunately, advances in chromosome level assembly technology have improved
the accuracy of identification for microsatellites within the whole genome. Furthermore,
microsatellite studies based on high-quality chromosome-level genomes may contribute to
understanding the connection between chromosome length and SSR number, abundance,
density and GC content [18]. In fact, microsatellite recognition based on chromosome-level
genomes have been applied to a variety of vertebrates, including Rhesus monkeys [19] and
bovid species [18].

Birds (Aves) represent a monophyletic vertebrate clade that contains >10,000 species,
and flight has allowed many birds to span the world and evolve considerable morphologi-
cal and physiological diversity [20]. Despite the vast phenotypic diversity of birds, birds
have an extremely compact genome with a small amount of repetitive DNA (4–10%) [21].
Compared to other vertebrates, birds have the lowest average SSR density with very lit-
tle variance [16]. These genome characteristics are thought to be related to the selective
pressure from flight adaption that required a high rate of oxidative metabolism [22,23].
However, comparative analyses of genome-wide microsatellite distribution within birds are
scarce [24,25]. The distribution patterns of microsatellites between orders or classification
groups remain unclear and require further exploration. Therefore, studying the microsatel-
lite distribution patterns of birds can provide important information to understand avian
genetic structure and evolutionary history. However, published chromosome-level bird
genomes are relatively rare, and large-scale comparative analyses of microsatellite distribu-
tion patterns among avian taxa have been poorly investigated.

With the development of DNA sequencing technology, high-quality chromosome-level
genomes have been assembled for a wide range of birds, which provides an opportunity to
evaluate and compare the microsatellite distribution patterns in birds. Here, we conducted a
comparative analysis of SSRs for 53 avian taxa from 16 orders. We examined the distribution
patterns of SSRs among different avian branches and analyzed the variation characteristics
of perfect SSRs in different genomic regions (coding sequences (CDSs), exons, introns,
and intergenic regions). Further, the functional annotation of genes whose coding regions
contained SSRs were explored based on Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses. This study will increase our understanding
about the biological significance of SSRs for birds and the underlying genetic basis of
phenotypic variation.

2. Materials and Methods
2.1. Sources of Genomic Dataset

The high-quality chromosome-level genome sequences of 53 birds were obtained
from NCBI (https://www.ncbi.nlm.nih.gov/ accessed on 30 May 2022). These 53 avian
species represented 16 of the extant 41 orders of birds, and the detailed information is
listed in Table S1. We also downloaded the phylogenetic tree of 53 birds from the Timetree
platform [26], which could provide evolutionary background information and help to
compare the SSRs’ distribution patterns among different avian taxa.

https://www.ncbi.nlm.nih.gov/
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2.2. SSRs Identification and Characterization

We used Krait v1.0.3 [27] to identify P-SSRs, C-SSRs, and I-SSRs, and localized their
relative positions in exons, introns, and CDSs from the annotation files. Meanwhile, we used
Python script to identify P-SSRs scattered in intergenic regions [28]. According to previous
detection standards [19,28], the minimum repeat unit of mononucleotide, dinucleotide,
trinucleotide, tetranucleotide, pentanucleotide, and hexanucleotide P-SSRs were defined
as 12, 7, 5, 4, 4, and 4, respectively. The repetitive sequences with circular permutations
and/or reverse complementarity were grouped together as the same type of microsatellites.

To evaluate the abundance of genomic SSRs, we used Python script to calculate the
loci/Mb for 53 species. Subsequently, we analyzed the repeat motif preferences for six types
of P-SSRs. Furthermore, we conducted the phylogenetically informed Principal Component
Analysis (PCA) through the phylo.pca function in phytools to compare the repeat motif
preferences among avian lineages [29]. The first two principal components (PC1 and PC2)
were the main factors affecting the variation of P-SSRs motif types. To further identify the
differentiation level for P-SSR motifs among avian linages [25], we demonstrated the heat
maps of loci/Mb frequencies and average bp/Mb for each motif in di- and trinucleotide
P-SSRs, and the 25 most common motifs in tetra-, penta-, and hexanucleotide P-SSRs.

2.3. Variation Analysis of P-SSRs

Studies on repeat copy number (RCN) of P-SSRs have been thought to help under-
stand the processes of mutation and selection [30]. Therefore, we selected five widely
studied model bird species, the red junglefowl (Gallus gallus), mallard (Anas platyrhynchos),
budgerigar (Melopsittacus undulatus), zebra finch (Taeniopygia guttata), and golden eagle
(Aquila chrysaetos), to examine the relationship between P-SSRs numbers and repeat times.
Since GC content is associated with the stability of genomic structure [18], we used the
Python script to analyze the GC content and the coefficient of variability (CV) of RCN for
six types of P-SSRs and compared the difference between the six orders that contained
greater than two species [5].

2.4. Functional Analysis

To describe the distribution patterns of P-SSRs in genes, we counted the number of
SSRs in the top 30 exons/introns at both ends of each gene, based on the genomes of the
five commonly studied birds (i.e., G. gallus, A. platyrhynchos, M. undulatus, T. guttata, and A.
chrysaetos) (Figure 9). We then undertook functional annotation based on Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for genes contained P-SSRs
in coding regions to further understand the biological role of microsatellites (Figure 10).

3. Result
3.1. Characteristics of Avian SSRs

I-SSRs were the most frequent SSR (69.90–84.61%) of the three types of SSRs in birds,
followed by P-SSRs (14.86–28.13%) and C-SSRs (0.39–2.24%) (Figure 1a and Table S3).
Among the avian taxa we studied, Anseriformes contained the highest proportion of
P-SSRs (25.63–28.13%) in their genomes, while Rhegmatorhina hoffmannsi had the lowest
proportion of P-SSRs (14.86%) (Table S3). For six types of P-SSRs, mononucleotide P-SSRs
were dominant (32.66–76.48%) in most bird species (98.11%), followed by tetranucleotide
P-SSRs (6.21–19.33%), and the proportion of hexanucleotide P-SSRs was the smallest
(0.56–3.45%) (Figure 1b). However, Colaptes auratus did not adhere to these patterns, whose
pentanucleotide P-SSRs were dominant (36.77%). Abundance distribution patterns for
mono-, di-, tri-, and tetranucleotide P-SSRs were similar to total P-SSRs among the 53 bird
species, but penta- and hexanucleotide P-SSRs were not (Figure 2). The proportion of four
types of short P-SSRs (mono-, di-, tri-, and tetranucleotide) among Anseriformes species
was relatively consistent but varied in other species. There was a relatively weak significant
phylogenetic constraint on the proportion of the six types of perfect microsatellites in
bird genomes.
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We identified the most abundant repeat motifs of P-SSRs (Figure 3). (A)n was the most
common repeat motif of P-SSRs in all birds (25.42–68.22%), and the other type of P-SSRs
were highly varied among different birds. It is worth noting that poly(A)-rich repeats were
relatively common in every type of P-SSRs. Overall, the repeat motif preferences for P-SSRs
varied among avian species.

To identify the P-SSR repeat motif preferences across the evolutionary landscape,
we conducted a phylogenetic PCA for di-, tri-, tetra-, penta-, and hexanucleotide P-SSR
motifs (Figures 4 and 5). The results of the phylogenetic PCA showed a weak phylogenetic
signal that the variation of P-SSR motif types could not be explained by the phylogenetic
relationship among the taxa we studied. Based on the corresponding heat maps, the
distribution of loci/Mb frequencies and average bp/Mb for five motifs in different species
were relatively consistent. We found that each PC1 was driven largely by variation in the
frequency of (AT)n, (AAT)n, (AAAC)n, (AAAAC)n, and (AAAAAG)n, consistent with
the relatively high abundance and length of these motifs. These results indicated that
poly (A)-rich motifs were ubiquitous in avian genomes. It is worth noting that these high
frequency motifs were mainly found in Galliformes and Anseriformes species. We also
found that the diversity of motifs decreased as the motif length increased, where longer
P-SSR motifs tended to have more stable preferences in avian genomes.
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3.2. The Variability of Repeat Copy Number

The statistical results showed the number of each type of P-SSRs significantly de-
creased as the repeat times increased, except the trinucleotide P-SSRs had a double peak in
A. platyrhynchos (Figure 6). The second peak of trinucleotide P-SSR number appeared at
10 repeat times and then gradually decreased. Furthermore, we analyzed the CV of RCN
for P-SSRs in different genomic regions (Figure 7) and found that the variation trend from
mononucleotide to hexanucleotide P-SSRs varied between avian lineages and genomic
regions. The CV of RCN for P-SSRs in all species showed an upward trend from mononu-
cleotide to hexanucleotide throughout the whole genome, and similar patterns had been
observed in exons and intergenic regions. However, the trend of the CV of RCN for P-SSRs
in CDSs and intron regions was unimodal (Figure 7a) with the peak occurring in penta-
and tetranucleotide P-SSRs, respectively. Longer motifs of P-SSRs were more likely to have
a higher CV of RCN. Similar patterns occurred in the genomes of Anseriformes (Figure 7b)
and Falconiformes (Figure 7d). However, few similarities could be found among Apodi-
formes (Figure 7c), Galliformes (Figure 7e), Passeriformes (Figure 7f), and Psittaciformes
(Figure 7g), which indicated that the CV of RCN for P-SSRs varied between bird orders.
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3.3. GC Content, and Functional Analysis

We calculated the GC content of P-SSRs in different genomic regions (Figure 8). The
results demonstrated similar patterns in GC content of P-SSRs throughout the genome and
in different regions of the genome, where penta- and hexanucleotide P-SSRs contained
the highest GC content while the GC content of mono- and dinucleotide P-SSRs was low.
We observed similar trends across bird taxa. These results suggested that the GC content
of longer motifs is more likely to be higher than shorter motifs in both whole genome
and different genomic regions. We also found that the GC content of P-SSRs was the
highest in the CDS region (Figure 8b), indicating that P-SSRs were more conserved in the
coding region. Subsequently, we counted P-SSR numbers in exons and introns for each
gene and found that exons/introns near the ends of genes contained relatively greater
SSRs, indicating that P-SSRs were abundant at both ends of genes (Figure 9). Further, we
analyzed the function of genes that contained P-SSRs in the coding region. The results
of KEGG pathway analysis showed (Figure 10a) that these genes were involved in 44
channels and mainly distributed in the pathway of environmental information processing,
cellular processes, organismal systems, and human disease. Specifically, a large number of
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genes containing microsatellites were involved in the signal transduction of environmental
information processing. The results of GO analysis demonstrated that these genes were
involved in 31 pathways and mainly found in biological processes, including cellular
processes of biological processes.
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4. Discussion
4.1. Abundance of SSRs in Avian Genomes

In present study, we identified and analyzed microsatellite distribution patterns based
on chromosome-level genomes of 53 birds. The results showed that I-SSRs were the most
abundant SSR in avian genomes, followed by P-SSRs and C-SSRs. The higher abundance
of I-SSRs is common in the genomes of different lineages, including beetles [4] and Euar-
chontoglires [31]. Imperfect SSRs were caused by substitutions, insertions, and deletions of
perfect SSRs [32], and the high density of imperfect SSRs in the human genome is the result
of disrupting mutation accumulation [33]. Indeed, imperfect SSRs were thought to play
an important role in regulating transcription and replication or modifying the structure of
proteins [34]. For example, I-SSRs in the coding region have been demonstrated to prevent
coding region frameshifts caused by microsatellite instability [35] and affect mismatch
repair activity [36]. The I-SSRs concentrated at certain locus in potyvirus genomes may
provide genetic variation through recombination and drive host adaptation to variable
environments [37]. Therefore, the prevalence of I-SSRs in avian genomes may reflect
that imperfect SSRs were an important genetic variation resource for the vast phenotypic
diversity of birds.

Our study found that mononucleotide P-SSRs were the most abundant SSR in avian
species we studied, which was consistent with previous studies in eukaryotic genomes,
especially in birds and mammals [3,16,18,38]. (A)n was the most common repeat motif
of P-SSRs in all birds (25.42–68.22%) (Figure 3), which indicated that birds indeed harbor
highly abundant poly(A)-rich repeats with a low GC content [16,24]. The high frequency of
poly (A) may be the result of insertion of processed genes into the genome from mRNA with
a long poly(A) tail, which was necessary for the universal retrotransposon in eukaryotic
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genomes [39]. The low GC content of SSRs is the character of eukaryotic genomes, especially
in birds [3], that can be explained on the basis of genomic GC content [16] and the relative
difficulty of strand separation for GC compared to AT [40]. However, it is worth noting
that all types of P-SSRs had the highest GC content in the coding region (Figure 8b),
which was similar to bovid genomes [30]. The relatively high GC content of P-SSRs in
the coding regions may affect the genome structure [18], methylation pattern [41], and
gene expression [42]. Therefore, considering the conservatism of the GC base pair, it is
reasonable to speculate that a GC-rich sequence may promote the normal gene expression
by reducing the diversity of SSRs.

4.2. Distribution of SSRs across Avian Lineages

Different distribution patterns of P-SSRs among taxonomic vertebrate clades have
been found in previous studies [16,25,43], while differences among taxa within avian
lineages remains unclear [24]. The results of the statistical analysis and the phylogenetic
PCA showed a weak phylogenetic correlation between the variation of P-SSRs and the
evolutionary history of birds. The distribution of P-SSRs in different avian taxa was varied
except in Anseriformes species (Figure 1), which was consistent with a previous study [24].
FISH analysis based on microsatellite probes had demonstrated that the accumulation
of microsatellites was species-specific and might occur independently in reptiles and
birds [13,14]. We also found that the distribution of penta- and hexanucleotide P-SSR motifs
were more irregular than shorter P-SSRs motifs. A possible explanation is that longer
microsatellites may have experienced different selection pressures [43,44] and produced
inconsistent patterns with shorter P-SSRs. For microsatellites with the same length, the
repeat unit of shorter motifs was more than longer motifs. More repeat units result in more
opportunities for replication slippage and might be a major influence in different selection
forces between short and long motifs [43].

We found that P-SSRs were abundant at both ends of genes regardless of being in
exons or introns (Figure 9). This may be the result of the biophysical constraints of protein
structure, which limits the distribution of microsatellites in the middle of the protein [45].
Microsatellites located in genes were thought to provide a molecular basis for species to
rapidly adapt through modifying genes and affecting the evolution of protein structure and
function [2,6,46]. However, we caution attributing phenotype variation to microsatellites,
because the number of microsatellites in each genes was limited [28]. On the whole, the
distribution of P-SSRs in organism genomes was subject to multiple selective pressures,
including length constraints and protein structure, and these effects together promote the
adaptive evolution of organisms.

4.3. Length Variation of P-SSRs

Microsatellites are composed of tandemly repeated units of DNA [1], which means
the length of microsatellites increase with increasing repeat times or RCN. The variation
of RCN for microsatellites was an important source of genetic variation that can provide
phenotypic difference and help organisms to adapt to the environment [2,6,7]. Generally,
the abundance of microsatellites decreases as RCN increases in eukaryotes [1,5,31,47]. As
expected, our analysis of microsatellite RCN in birds demonstrated a similar pattern; the
number of perfect microsatellites significantly decreased as the repeat times increased. A
persuasive model of microsatellite evolution suggests that the genome-wide distribution of
microsatellite repeat length is the result of the balance between length mutation and point
mutation [48,49]. The mutation rate of microsatellites generally increases with increasing
repeat counts [43,50], whereas point mutations break long repeat arrays into smaller units.
These complex interactions set an upper boundary for the growth of microsatellite length,
and reaching the threshold would lead to large deletions or reparation [51]. Previous
studies showed that longer SSRs may be more polymorphic [52] and unstable [36] than
shorter SSRs. For example, replication errors at (G)16 repeat were 30-fold higher than
(G)10 in human colorectal cells [36]. Furthermore, the RCN of P-SSRs has been shown to
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influence gene expression [53,54]. Therefore, it can be inferred that length constraints were
the result of a protective mechanism, which could reduce the diversity and instability of
SSRs and ensure the normal gene expression.

We found that the diversity of P-SSRs was not only associated with the total length, but
also the length of motifs. The CV analysis of RCN for genomic P-SSRs showed an upward
trend from mono- to hexanucleotide in most birds, which has not been reported in previous
studies [4,31]. This trend might be attributed to the functional differences in different types
of P-SSRs. For example, the mutation of trifolds, including tri- and hexanucleotide motifs,
did not lead to frameshift mutations and caused a slight effect on gene expression [55].
While the mutation of non-trifold motifs would cause changes in gene expression and pro-
tein structure, it might also undergo stronger selective constraints and be more conserved
in RCN variation [44]. Meanwhile, the results of the phylogenetic PCA demonstrated that
the diversity of motifs decreased as the motif length increased, which means longer motifs
tended to have specific motifs in avian genomes. The accumulation of specific motifs for
different microsatellite types might be the result of selective constraints [43]. Because the
preference of specific motifs may have specific effects on genome function [52], it affects the
structure and function of proteins via higher frequencies of transcription [56]. In brief, the
variation of total sequence and repeat motif lengths was the main driver of microsatellite
diversity that may prevent the genome from being too redundant. Length constraints may
help to retain more valuable genes in finite length sequences, reduce the energy cost of
transcription and splicing, and improve the efficiency of gene expression. Therefore, organ-
isms can quickly adapt to the changeable environment, especially in widely distributed
bird species that span the world’s varied habitats.

5. Conclusions

Our results demonstrated that the genome-wide distribution of microsatellites was
subject to weak phylogenetic constraints. The distribution patterns may be associated
with the species-specific accumulation of microsatellites and indicate that the evolution of
microsatellites are closely related to each species’ living environment. Meanwhile, our study
confirms that length constraints were an important evolutionary force for microsatellites,
as shown in the abundance and diversity of microsatellites decreasing with the increasing
length. Finally, the identification and characterization of SSRs across avian evolutionary
landscapes needs further exploration because it provides an opportunity to investigate the
diversity of microsatellites in response to selection pressures from variable environments.
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