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Simple Summary: Avoiding feed energy waste and breeding efficient growth ducks have become
the main goals of duck breeders due to the increase in feed costs. The feed efficiency of ducks is
closely related to adipogenesis. The purpose of this study was to explore the effect of the RXRA gene
on duck preadipocytes and provide molecular markers for breeding ducks for feed efficiency. The
results of this study showed that RXRA promoted fat accumulation in duck preadipocytes, and the
mutation site of RXRA was significantly related to duck feed efficiency.

Abstract: Background: The accumulation of fat in ducks is the main cause of low feed efficiency
and metabolic diseases in ducks. Retinoic acid X receptor alpha (RXRA) is a member of the nuclear
receptor superfamily involved in lipid, glucose, energy, and hormone metabolism. The effect of the
RXRA gene on lipid metabolism in duck preadipocytes (DPACs) and the relationship between SNPs
and the feed efficiency traits of ducks are unclear. Methods: qRT-PCR and Western blotting analyses
were used to detect changes in mRNA and protein in cells. Intracellular triglycerides (TGs) were
detected using an ELISA kit. A general linear model analysis was used to determine the association
between RXRA SNPs and feed efficiency. Results: The duck RXRA gene was highly expressed on the
fourth day of DPAC differentiation. The RXRA gene increased the content of fat and TG in DPACs
and promoted the expression of cell differentiation genes; g.5,952,667 correlated with average daily
feed intake (ADFI), residual feed intake (RFI), and feed conversion ratio (FCR). Conclusions: Duck
RXRA can accelerate fat accumulation, and the polymorphism of the RXRA gene is closely related to
feed efficiency, which provides basic data for breeding high feed efficiency ducks.

Keywords: ducks; RXRA; adipogenesis; SNP; feed efficiency

1. Introduction

In the production of meat ducks, feed cost accounts for 50–70% of the final cost [1].
Meat duck production is restricted by human competition for grains, and the feed cost
gradually increases [2]. Residual feed intake (RFI) and feed conversion rate (FCR) are
important indicators for measuring the growth traits of poultry. RFI is independent of
growth performance and does not affect other important economic traits. It was proposed
by Koch et al., and Luiting first used the term in poultry [3,4]. RFI is moderately inherited in
poultry breeding. Research results from Bai et al. show that selecting a low RFI can improve
the feed efficiency of poultry without affecting growth performance [1]. Therefore, it is
necessary to improve feed efficiency in the growth of poultry. Fat metabolism plays a vital
role in the change in feed efficiency [5–8]. The change in feed efficiency is related to lipid
metabolism gene variations [9]. RFI-related genes were enriched in the lipid metabolism
pathway in a whole genome sequencing study of high- and low-RFI groups of Beijing fatty
chickens [10]. Moreover, numerous lipid metabolism genes were differentially expressed in
Xiayan chickens with high- and low-RFIs [11].
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Nuclear receptors (NRs) act as transcriptional regulators and control tissue devel-
opment, homeostasis, and metabolism [12]. Retinoic acid X receptor alpha (RXRA) is a
member of the nuclear receptor superfamily and participates in lipid metabolism, cell
differentiation, and cell death [12–14]. RXRA expression is regulated by multiple factors.
β-Hydroxybutyric acid further inhibits fatty acid oxidation and ketone body production by
inhibiting the RXRA signal [15]. Long noncoding RNA (DANCR) combines with RXRA to
enhance PI3K-AKT signal transduction and increase the occurrence of breast cancer [16].
The inhibition of the differentiation of preadipocytes is due to the inhibition of RXRA gene
expression by miR-27a [17]. Moreover, RXRA as a transcription factor regulates down-
stream gene transcription. RXRA promotes the transcription of the perilipin 1 (PLIN1)
gene to accelerate the differentiation of cells in the process of precursor fat differentiation,
which occurs in a peroxisome proliferator-activated receptor gamma (PPARG)-independent
manner [18].

At present, the effects of the RXRA gene on the adipogenesis and feed efficiency of
ducks are not clear. Duck preadipocytes were cultured in vitro to observe the effect of the
RXRA gene on lipid content. The relationship between growth traits and single nucleotide
mutations of RXRA in the DNA of adult male ducks was analyzed, providing molecular
markers for breeding duck growth traits.

2. Materials and Methods
2.1. Animal Experiments and Ethics Statement

The duck population (n = 500) in this study was provided by Qiangying Duck Breeding
Co., Ltd. (Huangshan, China). The feeding and management methods of Jin et al. were
referenced [7]. The daily food intake and weekly weight of the duck population were
recorded during the experiment (21–42 d). The average daily feed intake (ADFI), average
daily gain (ADG), RFI, and FCR of the ducks were calculated after the experiment. The
animal experiments were conducted in accordance with the Regulations and Guidelines on
Animal Management, and the experiments were approved by the Animal Care and Use
Committee of Anhui Agricultural Capital Institution (no: SYXK 2016-007).

2.2. Cell Isolation, Culture, and Differentiation

In a sterile environment, 42-day-old male Cherry Valley ducks were selected and
killed by venous bleeding. Duck preadipocytes were isolated according to the duck cell
separation and culture method presented by Ding et al. [19]. During the cell culturing, the
medium was replaced every two days.

Cells were reseeded into 96-well and 6-well plates for the experiment after 80% cell
confluence. According to the instructions of the CCK-8 kit (Vazyme, Nanjing, China),
the cell inoculation density was 2000 cells/well (n = 3), and the growth curve of cells
was detected. During the 6-day process of cell differentiation, the differentiation medium
was used for the culture, and the medium was changed and detected every two days.
The differentiation medium consisted of a complete medium, 0.5 mmol/L of 3-isobutyl-
1-methylxanthine (IBMX, Solarbio, Beijing, China), 1 µmol/L of dexamethasone (DEX,
Solarbio, Beijing, China), 10 µg/µL of insulin (Sigma, Shanghai, China), and 300 µM of
oleic acid (Sigma, Shanghai, China). The optimal induction time of duck preadipocytes
was on the fourth day.



Animals 2023, 13, 680 3 of 14

2.3. Plasmid Construction and Transfection

The complete CDS of RXRA (ENSAPLT00000013743.2, Ensembl) was cloned into the NheI
and HindIII sites in the pBI-CMV3 vector (Pharma, Shanghai, China). The specific shRNA (5′-
CCGGGGACAGGTCTTCAGGTAAACACTCGAGTGTTTACCTGAAGACCTGTCCTTTTTG-
3′) of RXRA was designed and synthesized by Tsingke Biotechnology (Beijing, China). Ac-
cording to the manufacturer’s instructions, the vectors were transfected into cells using Ex-
Fect transfection reagent (Vazyme, Nanjing, China). The transfection conditions were ExFect:
vector = 2:1.

2.4. Analysis of Triglyceride (TG) Content

Following the respective manufacturer’s instructions, a TG kit (Applygen, Beijing,
China) was used to measure the TG content of cells, and a microplate reader (Bio-Tek,
Winooski, VT, USA) was used to measure the TG content. In order to adjust different
samples to the same level, a BCA kit (Vazyme, Nanjing, China) was used. According to
the manufacturer’s instructions, the TG content was adjusted according to the amount of
protein in the sample. For plasmid-transfected duck preadipocytes (DPACs), cells were
collected 24 h after transfection.

2.5. Oil Red O-Staining

Oil red O stock solution: oil red O powder (0.2 g, Sigma, Shanghai, China) was
dissolved in 40 mL of isopropanol overnight. Before staining, the stock solution was filtered
with Xinhua™ No. 1 filter paper (Xinhua, Hangzhou, China). Working solution: The stock
solution was diluted with water to a ratio of 6:4 and then filtered (Millipore, Shanghai,
China) after standing for 10 min.

For fat staining and quantification, refer to Pan et al. [20].

2.6. RNA Isolation and Quantitative Real-Time PCR (RT-PCR)

Total RNA was extracted from cells with TRIzol (Thermo, Waltham, MA, USA),
following the supplier’s protocol. Following the respective manufacturer’s instructions,
1 µg of RNA was reverse-transcribed into cDNA using an RT-cDNA synthesis kit (Vazyme,
Nanjing, China). The RT-PCR (ABI7500, Waltham, MA, USA) was performed with a qPCR
mix (Vazyme, Nanjing, China). The reaction system was 95 ◦C for 5 min, 95 ◦C for 30 s, and
60 ◦C for 30 s for 35 cycles. The mRNA level of the gene was detected by RT-PCR testing,
and the GAPDH gene was used as a reference. The 2−∆∆Ct method was used to calculate
the relative expression of the expressed genes. Primer 5 software was used for the primer
design. The primers were listed in Table S1. The primer was synthesized by Shanghai
Sangon Biotechnology Co., Ltd (Shanghai, China).

2.7. Western Blotting

After cell treatment, the cells were suspended in protein lysate (Meilunbio, Dalian, China),
and then stood on ice for 10 min. We collected the supernatant centrifuged at 12,000 rpm
(4 ◦C) for 10 min. A BCA kit (Vazyme, Nanjing, China) was used for the protein quantitative
analysis [21]. The Western blotting experiments referred to the method of Jiang et al. [22]. The
primary antibodies (RXRA, YN0018, GAPDH, YM3215, ImmunoWay, Plano, TX, USA) were
diluted 1000 times by 1% BSA, and the secondary antibody (IgG, 30000-0-AP, Proteintech)
was diluted 2000 times by 1% BSA. The protein was visualized using a highly sensitive ECL
chemiluminescence detection kit (Vazyme, E412-01). ImageJ software (National Institutes of
Health, Bethesda, MD, USA, v1.51) was used for the protein quantification.
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2.8. PCR Amplification, Single Nucleotide Polymorphism (SNP) Detection, and Genotyping

The blood of 243 ducks were randomly selected from a population of 500 ducks. DNA
was extracted from the whole blood of 243 ducks with a blood DNA extraction kit according
to the manufacturer’s protocol (Tiangen, Beijing, China). The SNP primers (Forwards: 5′-
GTCAGACCTGAGGGCACAA-3′; Reverse: 5′-GCTCACCGCAACCATACA-3′) for the
RXRA gene were designed by Primer 5 software and synthesized by Shanghai Sangon
Biotechnology Co., Ltd. The sequence of the duck RXRA gene (g.5,953,498~g.5,952,805)
was amplified by PCR in a 20 µL reaction volume, including 10 µL of Taq PCR Master
Mix (Vazyme, Nanjing, China), 0.4 µL of forwards and reverse primers (10 µM), 1.0 µL
of DNA, and 8.2 µL of nuclease-free H2O. The PCR conditions were as follows: 95 ◦C for
3 min; 30 cycles of 95 ◦C for 30 s, 55.2 ◦C for 30 s, and 72 ◦C for 5 s; and a final 5 min
extension at 72 ◦C. PCR products were detected by 1% agarose gel electrophoresis and sent
to Sangon for sequencing. The target peaks in the sequencing chromatographs obtained
for ducks were labelled and analyzed using DNA star software (DNASTAR, Madison, WI,
USA, v11.1) to screen for mutation sites. One individual was not completely sequenced, so
there were 6 loci that could not be counted.

2.9. Polymorphisms in RXRA and Their Associations with Growth Traits

SPSS 25 software was used to establish a linear model of SNPs (haplotypes) and traits
and correlation analysis.

The mixed linear model that was used is as follows:

Y = u + G + B + e

Y: feed efficiency; u: overall population mean; G: fixed effect of genotype or haplotype;
B: birth weight; and e: random residual error.

2.10. Statistical Analysis

The cell level results in this study are presented as the mean ± SD, and the difference
between the groups was analyzed by a one-way ANOVA test. Pop-gene software (a joint
Project of the Molecular Biology and Biotechnology Centre, University of Alberta and
the Center for International Forestry Research, v1.32, Edmonton, Alberta, Canada) was
used to calculate gene frequency, genotype frequency, genetic heterozygosity, effective
allele number, and polymorphism information content. Haploview software (Daly Lab
at the Broad Institute, v4.2, Cambridge, Cambs, UK) was used to analyze the haplotype
relationship of mutation sites. The population-level results in this study are presented as
the mean ± SEM. The association analysis of duck growth traits was performed using the
Pearson product-moment correlation coefficient. The LSD test was used to analyze the
significance of the associations between traits and SNPs, and p < 0.05 was considered a
significant correlation. The different letters (a,b,c) represent significant differences.

3. Results
3.1. Fat Accumulation and RXRA Expression Pattern in DPACs

To investigate the expression of the duck RXRA gene during the differentiation of
DPACs, duck abdominal preadipocytes were isolated. The generality of DPACs was ex-
plored in this study, and the results showed “S” curve proliferation at 0–6 days (Figure 1A).
In the process of cell differentiation, the intracellular fat content gradually increased every
two days (Figure 1B,C). The TG content on days 4 and 6 of cell differentiation was higher
than that on days 0 and 2 (Figure 1D). The expression of PPARG and C/EBPA genes on
the day 6 was higher than that on days 0, 2, and 4 (Figure 1E,F). The expression of RXRA
mRNA and protein was the highest on the fourth day of cell differentiation (Figure 1G–I).
This evidence drew our attention to the potential role of RXRA in duck fat metabolism.
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Figure 1. The expression pattern of duck RXRA in the duck preadipocytes (DPACs). (A) Multipli-
cation curve of the DPACs. (B) Fat content of the DPACs induced by the differentiation medium at
0, 2, 4, and 6 days. The images were taken under 200×magnification. (C) OD 510/nm: absorbance
at 510 nm. (D) Triglyceride (TG) content at 0, 2, 4, and 6 days of the induced DPACs. (E) The genes
expression changes of the induced DAPCs. (E) The PPARG gene expression of the induced DAPCs.
(F) The C/EBPA gene expression of the induced DAPCs. (G) The RXRA gene expression of the induced
DAPCs. (H,I) Changes in RXRA protein expression in the DPACs induced. The data are reported as
the mean± SD on the basis of n = 3 independent experiments. a,b,c,d Significant differences are shown
in superscript letters, with different letters representing significant differences (p < 0.05). Original
Western blot figures in Figure S1.

3.2. Effect of Duck RXRA on Fat Metabolism of DPACs

The DPACs were transfected with OERXRA, shRNA, and normal control vector,
and a large amount of green fluorescence occurred in the cells; however, no fluorescence
occurred in the cells supplemented with the culture medium (Figure 2A). The RT-PCR
results showed that the expression of RXRA after overexpression was significantly higher
than that of the normal control group, whereas the expression of RXRA after knockdown
was significantly lower than that of the control group (Figure 2B). RXRA protein expression
was consistent with mRNA expression (Figure 2C). The OERXRA group increased the
content of lipid droplets in cells compared with the normal and negative control groups,
and the knockdown of RXRA inhibited the content of lipid droplets in cells compared
with the normal and negative control groups (Figure 2D,E). Compared with the control
group, OERXRA increased TG content, whereas shRXRA decreased TG content (Figure 2F).
OERXRA promoted the mRNA expression of RXRA and C/EBPA genes; in contrast, shRXRA
inhibited the mRNA expression of RXRA and C/EBPA genes in cells (Figure 2G,H).
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Figure 2. Effect of RXRA gene on the lipid metabolism of the DPACs. (A) The transfections of
overexpression RXRA (OERXRA), knockdown RXRA (shRXRA), blank plasmid (Normal control), and
culture medium (negative control) into the DPACs were observed under a fluorescence microscope.
(B) The RXRA gene mRNA expression. (C) The indicated protein levels were detected by a Western
blot analysis, and the relative fold change in RXRA/GAPDH determined by Western blotting was
quantified through a grayscale scan. (D) Intracellular fat content. The images were taken under
200×magnification. (E) OD 510/nm: absorbance at 510 nm. (F) TG content in the DPACs. (G) The
mRNA expression of PPARG gene. (H) The mRNA expression of C/EBPA gene. The data are reported
as the mean ± SD on the basis of n = 3 independent experiments. a,b,c,d Significant differences are
shown in superscript letters, with different letters representing significant differences (p < 0.05).
Original Western blot figures in Figure S2.

3.3. Single Nucleotide Polymorphism Site (SNPs) and Genotyping of the RXRA Gene

According to the Ensembl sequencing results (Ensembl ID: ENSAPLT00000013743.2)
and PCR sequencing map, four SNPs (g.5,952,703 C > T, g.5,952,667 C > T, g.5,952,666 G > A,
and g.5,952,658 C >T (Figure 3A–D)) were identified in the coding region of the RXRA gene
and eight SNPs (g.5,952,604 C > T, g.5,952,543 G > A, g.5,952,400 C > T, g.5,952,353 G > A,
g.5,952,343 C > T, g.5,952,201 T > C, g.5,952,197 C > T, and g.5,952,188 A > T (Figure 3E–L))
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were identified in the noncoding region of the duck population. The 12 SNPs were counted
and calculated for polymorphism, as shown in Table 1. The allele found in the database is
defined as wild-type, and the mutant allele shown by the sequencing results is defined as
mutant-type. In the seven SNPs of g.5,952,666 G > A, g.5,952,658 C >T, g.5,952,604 C > T,
g.5,952,543 G > A, g.5,952,353 G > A, g.5,952,343 C > T, and g.5,952,197 C > T, the frequency
of wild-type alleles was greater than the frequency of mutant alleles. In addition, in the
five SNPs of g.5,952,703 C > T, g.5,952,667 C > T, g.5,952,400 C > T, g.5,952,201 T > C, and
g.5,952,188 A > T, the frequency of wild-type alleles is less than mutant alleles. Genetic
diversity is very important for the genetic potential of a species, and it is also the basis for
breeding excellent varieties. Polymorphic information content (PIC) refers to the value of a
marker that is used to detect polymorphisms in a population. According to the classification
of PIC values (PIC < 0.25, low polymorphism; 0.25 < PIC < 0.5, medium polymorphism;
and PIC > 0.5, high polymorphism), the 12 SNPs in this population ranged from 0.30 to 0.32,
belonging to the medium polymorphism population. According to the Hardy–Weinberg
principle, the 12 SNPs of this population reached a genetic balance of p > 0.05 (Table 1).
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Figure 3. The peak maps of all genotypes of the SNPs. (A): g.5,952,703 C > T; (B) g.5,952,667
C > T. (C) g.5,952,666 G > A. (D) g.5,952,658 C >T. (E) g.5,952,604 C > T. (F) g.5,952,543 G > A.
(G) g.5,952,400 C > T. (H) g.5,952,353 G > A. (I) g.5,952,343 C > T. (J) g.5,952,201 T > C. (K) g.5,952,197
C > T. (L) g.5,952,188 A > T.
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Table 1. Single nucleotide genetic polymorphism analysis of the RXRA gene.

SNPs Genotype Frequency Allele Frequency PIC χ2 p

g.5,952,703 C > T TT (0.5391) TC (0.3868) CC (0.0741) T (0.7325) C (0.2675) 0.3151 0.0544 0.8156
g.5,952,667 C > T TT (0.5391) TC (0.3868) CC (0.0741) T (0.7325) C (0.2675) 0.3151 0.0544 0.8156
g.5,952,666 G > A AA (0.0700) AG (0.3703) GG (0.5597) A (0.2551) G (0.7449) 0.3078 0.1861 0.6662
g.5,952,658 C >T TT (0.0700) TC (0.3745) CC (0.5555) T (0.2572) C (0.7428) 0.3091 0.1861 0.6662
g.5,952,604 C > T TT (0.0741) TC (0.3662) CC (0.5597) T (0.2572) C (0.7428) 0.3091 0.4615 0.4969
g.5,952,543 G > A AA (0.0741) AG (0.3662) GG (0.5597) A (0.2572) G (0.7428) 0.3091 0.4615 0.4969
g.5,952,400 C > T TT (0.5432) TC (0.3817) CC (0.0741) T (0.7346) C (0.2654) 0.3139 0.1036 0.7475
g.5,952,353 G > A AA (0.0700) AG (0.3703) GG (0.5597) A (0.2551) G (0.7449) 0.3078 0.1861 0.6662
g.5,952,343 C > T TT (0.0700) TC (0.3703) CC (0.5597) T (0.2551) C (0.7449) 0.3078 0.1861 0.6662
g.5,952,201 T > C CC (0.5473) CT (0.3827) TT (0.0700) C (0.7387) T (0.2613) 0.3115 0.028 0.8671
g.5,952,197 C > T TT (0.0700) TC (0.3703) CC (0.5597) T (0.2551) C (0.7449) 0.3078 0.1861 0.6662
g.5,952,188 A > T AA (0.0782) AT (0.3827) TT (0.5391) T (0.7305) A (0.2695) 0.3162 0.2216 0.6378

3.4. Analysis of Amino Acids in the Coding Region of the RXRA Gene

Through sequence alignment, single nucleotide mutations were found to cause amino
acid changes in the duck population, where g.5,952,703 C > T causes the missense mutation
of proline at position 28 to leucine (Figure 4A) and g.5,952,667 C > T causes an alanine mis-
sense mutation at position 40 to valine (Figure 4B); g.5,952,666 G > A and g.5,952,658 C > T
are synonymous mutations (Figure 4C,D).
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3.5. Correlation Analysis of Duck Feed Efficiency Traits

The growth and feed efficiency traits were measured from the n = 243 population that
were used in the genotype association analysis. To study the correlation among initial body
weight (IBW, 21 d, 1456.90 ± 5.80 g), final body weight (FBW, 42 d, 4000.70 ± 19.62 g),
total feed intake (FI, 4636.57 ± 29.48 g), ADFI, ADG, RFI, and FCR, Pearson’s correlation
coefficient was calculated. As shown in Table 2, the IBW was correlated with the FBW, FI,
ADFI, ADG, RFI, and FCR (p < 0.05). The FBW was correlated with the FI, ADFI, ADG,
and FCR (p < 0.05). The FI was correlated with the ADFI, ADG, RFI, and FCR (p < 0.05).
The ADFI was correlated with the ADG, RFI, and FCR (p < 0.05). The ADG was negatively
correlated with the FCR (p < 0.01). The RFI correlated with the FCR (p < 0.01).
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Table 2. Correlation coefficients (r) between feed efficiency.

IBW FBW FI ADFI ADG RFI FCR

IBW 1 0.463 ** 0.296 ** 0.296 ** 0.185 ** 0.198 ** 0.135 *
FBW 0.463 ** 1 0.795 ** 0.795 ** 0.957 ** −0.026 −0.397 **

FI 0.296 ** 0.795 ** 1 1.000 ** 0.785 ** 0.536 ** 0.150 *
ADFI 0.296 ** 0.795 ** 1.000 ** 1 0.785 ** 0.536 ** 0.150 *
ADG 0.185 ** 0.957 ** 0.785 ** 0.785 ** 1 −0.094 −0.484 **
RFI 0.198 ** −0.026 0.536 ** 0.536 ** −0.094 1 0.866 **
FCR 0.135 ** −0.397 ** 0.150 * 0.150 * −0.484 ** 0.866 ** 1

Note: IBW: initial body weight, FBW: final body weight, ADFI: average daily feed intake, ADG: average daily
gain, RFI: residual feed intake, FCR: feed conversion rate. * Indicates a significant correlation at the level of 0.05
(two-tailed), and ** indicates a significant correlation at the level of 0.01 (two-tailed).

A relationship between SNPs and growth traits was discovered following the mixed
linear model analysis. The SNPs that were significantly associated with a trait or that
differed between phenotypes are listed in Table 3. All SNPs were significantly related to the
RFI. g.5,952,667 C > T, g.5,952,666 G > A, g.5,952,658 C >T, and g.5,952,201 T > C were signifi-
cantly related to the FCR. Except for g.5,952,604 G > A, g.5,952,543 G > A, g.5,952,353 G > A,
g.5,952,343 C > T, and g.5,952,197 C > T, ADFI was related with the remaining 7 SNPs, with
all being at significant levels. None of the SNPs were associated with the IBW, FBW, FI, and
ADG. Favorite among all SNPs, the TT genotype of g.5,952,667 C > T had the lowest ADFI,
RFI, and FCR, whereas the CC genotype had the highest ADFI. The highest RFI belonged
to the AA genotype of g.5,952,666 G > A. The CC genotype of g.5,952,658 C >T and the AA
genotype with g.5,952,666 G > A had the highest FCR.

Table 3. Association analysis of RXRA SNPs with feed efficiency traits (mean ± SEM).

SNPs Genotype
Frequency/n IBW FBW FI ADFI ADG RFI FCR

g.5,952,703 C > T
TT (131) 1455.41 ± 8.27 3985.26 ± 25.01 4594.92 ± 37.83 217.74 ± 1.91 b 120.62 ± 1.16 −1.96 ± 1.24 c 1.81 ± 0.01
CT (94) 1454.23 ± 8.84 4033.00 ± 31.46 4692.52 ± 47.25 223.96 ± 2.19 a 122.49 ± 1.27 1.67 ± 1.24 b 1.83 ± 0.01
CC (18) 1484.08 ± 20.1 3951.31 ± 104.34 4647.50 ± 147.64 226.40 ± 5.53 a 117.83 ± 3.79 10.20 ± 3.74 a 1.94 ± 0.05

g.5,952,667 C > T
TT (131) 1455.93 ± 8.29 3985.37 ± 25.02 4590.36 ± 38.33 217.24 ± 1.92 b 120.66 ± 1.16 −2.53 ± 1.23 c 1.81 ± 0.01 b

CT (94) 1454.24 ± 8.84 4033.01 ±31.46 4692.52 ± 47.25 223.96 ± 2.19 a 122.49 ± 1.27 1.67 ± 1.24 b 1.83 ± 0.01 b

CC (18) 1480.31 ± 20.1 3950.53 ± 104.32 1680.67 ± 139.33 230.10 ± 4.85 a 117.52 ± 3.80 14.33 ± 2.93 a 1.98 ± 0.05 a

g.5,952,666 G > A
AA (18) 1483.5 ± 21.07 3965.74 ± 109.47 4700.37 ± 146.29 231.47 ± 4.93 a 118.09 ± 3.98 14.81 ± 3.07 a 1.98 ± 0.05 a

AG (89) 1455.78 ± 8.94 4025.10 ± 32.76 4683.27 ± 48.78 223.54 ± 2.26 a 122.03 ± 1.31 1.91 ± 1.27 b 1.84 ± 0.01 b

GG (136) 1454.65 ± 8.13 3989.79 ± 24.34 4597.69 ± 37.44 217.63 ± 1.87 b 120.92 ± 1.13 −2.50 ± 1.20 c 1.81 ± 0.01 b

g.5,952,658 C >T
CC (18) 1483.5 ± 21.07 3965.74 ± 107.47 4700.38 ± 146.29 229.99 ± 4.88 a 117.91 ± 3.76 13.69 ± 3.11 a 1.97 ± 0.05 a

CT (91) 1454.44 ± 8.94 4024.36 ± 32.40 4684.12 ± 48.25 223.57 ± 2.23 a 122.06 ± 1.30 1.90 ± 1.25 b 1.84 ± 0.01 b

TT (134) 1455.54 ± 8.14 3990.02 ± 24.52 4596.49 ± 37.70 217.66 ± 1.90 b 120.94 ± 1.14 −2.50 ± 1.21 c 1.81 ± 0.01 c

g.5,952,604 C > T
TT (18) 1484.08 ± 20.10 3951.31 ± 104.34 4678.50 ± 147.64 226.4 ± 5.53 117.83 ± 3.79 10.20 ± 3.74 a 1.94 ± 0.05
CT (89) 1456.12 ± 9.04 4028.88 ± 32.91 4687.06 ± 49.18 223.73 ± 2.28 122.19 ± 1.32 1.86 ± 1.28 b 1.84 ± 0.01

CC (136) 1454.15 ± 8.12 3989.68 ± 24.34 4602.57 ± 29.48 218.12 ± 1.86 120.89 ± 1.13 −1.95 ± 1.21 c 1.81 ± 0.01

g.5,952,543 G > A
AA (18) 1484.08 ± 20.10 3951.31 ± 104.34 4647.50 ± 147.64 226.4 ± 5.53 117.83 ± 3.79 10.20 ± 3.74 a 1.94 ± 0.05
AG (89) 1456.12 ± 9.04 4028.88 ± 32.91 4687.06 ± 49.18 223.73 ± 2.28 122.19 ± 1.32 1.86 ± 1.28 b 1.84 ± 0.01
GG (136) 1454.15 ± 8.12 3989.69 ± 24.34 4602.08 ± 36.96 218.12 ± 1.86 120.89 ± 1.13 −1.95 ± 1.21 c 1.81 ± 0.01

g.5,952,400 C > T
TT (132) 1456.79 ± 8.22 3990.55 ± 25.01 4595.69 ± 37.64 217.79 ± 1.90 b 120.80 ± 1.16 −2.19 ± 1.22 c 1.81 ± 0.01
CT (92) 1452.25 ± 8.92 4025.94 ± 31.62 4695.66 ± 48.04 224.12 ± 2.22 a 122.28 ± 1.29 2.13 ± 1.27 b 1.94 ± 0.01
CC (18) 1484.08 ± 20.10 3951.31 ± 104.34 4647.50 ± 147.64 226.40 ± 5.53 a 117.83 ± 3.79 10.20 ± 3.74 a 1.94 ± 0.05

g.5,952,353 G > A
AA (17) 1487.50 ± 21.01 3966.56 ± 109.48 4665.26 ± 155.46 227.54 ± 5.73 118.41 ± 3.97 10.44 ± 3.96 a 1.94 ± 0.05
AG (89) 1455.78 ± 8.94 4025.10 ± 32.76 4686.46 ± 49.22 223.70 ± 2.28 122.06 ± 1.33 2.00 ± 1.28 b 1.84 ± 0.01
GG (136) 1454.15 ± 8.12 3989.69 ± 24.34 4602.07 ± 36.96 218.12 ± 1.86 120.88 ± 1.12 −1.95 ± 1.21 c 1.81 ± 0.01

g.5,952,343 C > T
TT (17) 1487.5 ± 21.01 3966.56 ± 109.48 4665.26 ± 155.46 227.54 ± 5.73 118.41 ± 3.97 10.44 ± 3.96 a 1.94 ± 0.05
CT (89) 1455.78 ± 8.94 4025.10 ± 32.76 4686.46 ± 464.38 223.70 ± 2.28 122.06 ± 1.33 2.00 ± 1.28 b 1.84 ± 0.01

CC (136) 1454.15 ± 8.12 3989.69 ± 24.34 4602.08 ± 36.96 218.12 ± 1.86 120.88 ± 1.12 −1.95 ± 1.21 c 1.81 ± 0.01

g.5,952,201 T > C
CC (133) 1487.06 ± 21.09 3937.88 ± 109.75 4597.42 ± 37.37 217.89 ± 1.88 b 120.63 ± 3.75 −1.87 ± 1.24 b 1.81 ± 0.01 b

CT (92) 1454.00 ± 8.83 4026.83 ± 31.61 4692.78 ± 48.09 223.98 ± 2.22 a 122.24 ± 1.29 2.06 ± 1.27 a 1.84 ± 0.01 b

TT (17) 1455.40 ± 8.21 3991.35 ± 24.86 4652.59 ± 156.51 226.84 ± 5.84 a 119.19 ± 1.88 8.80 ± 3.68 a 1.92 ± 0.05 a

g.5,952,197 C > T
TT (17) 1487.50 ± 21.01 3966.56 ± 109.48 4665.26 ± 155.46 227.54 ± 5.73 118.41 ± 3.97 10.44 ± 3.96 a 1.94 ± 0.05
CT (89) 1454.34 ± 8.94 4016.68 ± 32.35 4683.16 ± 49.05 223.70 ± 2.28 122.06 ± 1.33 2.00 ± 1.28 b 1.84 ± 0.01

CC (136) 1455.10 ± 8.12 3995.19 ± 24.62 4604.24 ± 37.10 218.12 ± 1.86 120.88 ± 1.12 −1.95 ± 1.21 c 1.81 ± 0.01

g.5,952,188 A > T
TT (131) 1457.05 ± 8.28 3991.35 ± 25.21 4598.86 ± 37.92 217.93 ± 5.28 b 120.83 ± 1.17 −2.10 ± 1.23 c 1.81 ± 0.01
AT (92) 1452.27 ± 8.92 4025.30 ± 31.61 4692.76 ± 48.09 223.98 ± 2.23 a 122.25 ± 1.29 2.04 ± 1.27 b 1.84 ± 0.01
AA (19) 1480.71 ± 19.31 3950.95 ± 98.70 4636.92 ± 140.06 225.63 ± 5.28 a 117.95 ± 3.58 9.33 ± 3.65 a 1.93 ± 0.05

Note: IBW: initial body weight, FBW: final body weight, ADFI: average daily feed intake, ADG: average daily
gain, RFI: residual feed intake, FCR: feed conversion rate. a,b,c Significant differences are shown in superscript
letters, with different letters representing significant differences (p < 0.05).
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3.6. Linkage Disequilibrium Analysis and Haplotype Analysis of SNPs of the RXRA Gene

The results of the linkage disequilibrium analysis for the RXRA SNPs are shown in
Figure 5. The LD map shows the SNPs of the RXRA gene, and vital LD regions were
detected. There are two haploids in this block. The frequencies of H1 (TCCCGTGCCGTT)
and H2 (ATTTACATTACC) were 0.717 and 0.240, respectively. The relationship between
haplotype and growth traits was analyzed. The analysis results are shown in Table 4. The
ADFI, RFI, and FCR of the H1H1 haplotype combination were lower than those parameters
of the H1H2 and H2H2 groups and had no correlation with the ADG.
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Table 4. Association analysis between haplotype and feed efficiency traits.

Traits Haplotype (Mean ± SE)

H1H1 (128) H1H2 (85) H2H2 (16)
IBW 1456.25 ± 8.45 1454.45 ± 9.30 1490.87 ± 22.08
FBW 3987.18 ± 25.56 4021.97 ± 33.54 3953.25 ± 115.69

FI 4596.63 ± 38.63 4687.40 ± 51.15 4671.78 ± 165.36
ADFI 217.50 ± 1.94 b 223.19 ± 2.34 a 228.09 ± 6.08 a

ADG 120.83 ± 1.19 121.97 ± 1.36 119.89 ± 3.92
RFI −2.40 ± 1.22 b 2.22 ± 1.32 a 8.97 ± 3.92 a

FCR 1.81 ±0.01 b 1.83 ± 0.01 b 1.92 ± 0.05 a

Note: a,b Significant differences are shown in superscript letters, with different letters representing significant
differences (p < 0.05).

4. Discussion

RXRA, a member of the nuclear hormone receptor superfamily, is involved in reg-
ulating lipid, glucose, and energy metabolism [23–25]. Fat metabolism is an important
factor affecting the growth traits of meat ducks. Therefore, we explored the role of RXRA
lipid metabolism in vitro. In the process of inducing poultry preadipocytes to mature
adipocytes in vitro, oleic acid has excellent differentiation efficiency [19,26,27]. The duck
preadipocytes isolated in this study showed similar results; the optimal induction time of
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duck preadipocytes was the fourth day. RXRA and C/EBPA genes have been reported to be
crucial in adipocyte differentiation [19,28,29]. Interestingly, the expression pattern of RXRA
was the same as the expression pattern of RXRA and C/EBPA in the first four days of cell
lipid accumulation. At present, RXRA may play a key role in duck fat accumulation.

RXRA can bind PPAR response elements of RXRA to form dimers, which activate the
transcription of downstream genes to regulate lipid metabolism [30]. The expression of
C/EBPA was regulated by RXRA and RXRA polymer; then, C/EBPA combined with RXRA
stimulated adipocyte differentiation [31]. In this study, RXRA promoted the expression of
RXRA and C/EBPA and promoted the accumulation of intracellular lipids. Noteworthily,
RXRA may promote intracellular fat accumulation in duck preadipocytes through the
RXRA-C/EBPA pathway. RXRA can regulate cell differentiation by binding cytokines, and
it also has important functions on lipid metabolism. In obese mouse models, RXR agonists
can reduce food intake and weight gain to maintain the balance of blood glucose and
insulin sensitivity [32]. However, feeding RXRA knockout mice a high-fat diet can cause
dyslipidemia [33]. The study of the influence of RXRA on TG is difficult to explain. LG268
is an agonist of RXRA, which can reduce TG in plasma [34]. When an RXRA agonist was
fed to different animals, the serum triglyceride content changed [35,36].

The duck RXRA gene is located on chromosome 18 between 6.20 and 6.34 Mb [37].
The RXRA gene of cattle is located in 105.98–106.01 Mb of chromosome 1, and its QTLs are
related to growth performance and meat quality [23]. The RXRA gene of pigs is located
at 288.83–288.86 Mb on chromosome 1, and its QTLs are correlated with abdominal fat,
back fat, body weight, daily gain, and meat quality [38–40]. The RXRA gene of chickens
is located at 7.27–7.35 Mb on chromosome 17, and its QTLs are related to abdominal fat
and body weight [41]. The function and location of RXRA are not standard, but its function
is similar to that of mammals and chickens and is related to fat metabolism. RXRA can
be used as a candidate gene related to meat duck production and related to production
traits. As an effective means of measuring the feed efficiency of ducks, the residual feed
intake usually changes during the individual life cycle, and the heritable components of
the variation may also show individual genetic variation.

In this study, there were 12 mutation sites in the RXRA gene sequence in the duck
population (n = 243), and the PIC belonged to moderate polymorphism. In addition,
the SNPs are in Hardy–Weinberg equilibrium and can be used as genetic markers in the
population. Surprisingly, g.5,952,703 C > T changed the 28th amino acid (proline) of
RXRA to leucine. The mutation of the base in the coding region may lead to abnormal
transcription, translation, and gene function changes [42]. Although the SNPs in the
intron could not cause amino acid sequence changes, synonymous mutations may regulate
gene expression due to affecting gene transcription by changing the DNA sequence of
transcriptional regulatory sites [43]. Proline has excellent performance in maintaining
blood glucose levels and improving tolerance [44]. Leucine can inhibit food intake and fat
transport [45]. Feed intake is well-known to be a key factor of feed efficiency. When proline
is changed to leucine, leucine may reduce the feed weight ratio of ducks by inhibiting feed
intake and balancing the fat energy supply. In addition, g.5,952,667 C > T causes the 40th
amino acid (alanine) of the RXRA gene sequence to change to valine. Ala improves glucose
metabolism to increase body energy [23]. Valine can promote PPARA-dependent fatty acid
oxidation and the de novo synthesis of Pr-CoA fatty acids [45]. In this study, homozygous
valine individuals (TT) had the lowest RFI and FCR values. This result may be due to RXRA
participating in regulating the fat metabolism of meat ducks and its specific mechanism still
being unclear. Although the amino acids of g.5,952,666 G > A and g.5,952,658 C > T did not
change, the transcription speed might change, leading to changes in growth traits. SNPs in
noncoding regions also significantly affect transcriptional efficiency, gene expression, and
splicing dysregulation [46,47]. Noteworthily, these 12 mutation sites have a strong linkage
relationship. The haplotype of H1H1 account for half of the population, and their feed
efficiency is more popular.
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5. Conclusions

In conclusion, the duck RXRA gene facilitates preadipocyte fat accumulation and
preadipocyte differentiation via the RXRA-C/EBPA signal. In addition, the SNP of RXRA is
correlated with the duck ADFI, RFI, and FCR, therefore suggesting a potential molecular
marker of RXRA in duck feed efficiency traits.
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