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Simple Summary: Cereal grains and their by-products incorporated into non-ruminant animal feeds
contain non-starch polysaccharides and phytate, which are anti-nutritional factors. The animals’
endogenous digestive enzymes do not break down non-starch polysaccharides and phytate. Thus,
exogenous enzymes such as carbohydrases and phytase, are supplemented to increase dietary energy
and nutrient availability, reducing dietary cost and improving growth performance. Nevertheless,
recent studies reveal that the improvement in growth performance goes beyond the release of
indigestible nutrients. The positive impacts extend to the intestinal microbiota, immune system, and
antioxidant status. However, it is unclear whether the benefits of enzyme action can be translated into
better animal growth on commercial farms that face environmental, immunological, and management
challenges. In this review, we observed that the supplementation of carbohydrases and phytase under
poor sanitary conditions aligns with the energy and nutritional valorization matrices. This suggests
that enzymes have properties that promote overall intestinal health, because they expedite post-
sanitary challenge recovery and, at the same time, maintain improved utilization of the nutritional
matrix. Additionally, studies under commercial conditions demonstrate that matrices containing
carbohydrases and phytase sustain the growth and general health of broiler chickens and pigs.
However, future research is needed to determine the extent of energy and nutrient savings at the
commercial farm level.

Abstract: This review aimed to clarify the mechanisms through which exogenous enzymes (car-
bohydrases and phytase) influence intestinal health, as well as their effects on the nutrients and
energy matrix in diets fed to poultry and pigs reared under sanitary challenging conditions. Enzyme
supplementation can positively affect intestinal microbiota, immune system, and enhance antioxidant
status. Although enzymes have been shown to save energy and nutrients, their responses under
sanitary challenging conditions are poorly documented. Immune system activation alters nutrient
partitioning, which can affect the matrix values for exogenous enzymes on commercial farms. No-
tably, the carbohydrases and phytase supplementation under sanitary challenging conditions align
with energy and nutritional valorization matrices. Studies conducted under commercial conditions
have shown that matrices containing carbohydrases and phytase can maintain growth performance
and health in poultry and pigs. However, these studies have predominantly focused on assessing
a single level of reduction in energy and/or available phosphorus and total calcium, limiting our
ability to quantify potential energy and nutrient savings in the diet. Future research should delve
deeper into determining the extent of energy and nutrient savings and understanding the effects of
alone or blended enzymes supplementation to achieve more specific insights.
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1. Introduction

Cereal grains and co-products used in feeds for non-ruminant animals contain non-
starch polysaccharides (NSP) fractions such as arabinoxylans, cellulose, and β-glucans,
which are structurally linked with the cell wall and are not broken down by the endoge-
nous digestive enzymes from the animals [1,2]. Furthermore, phytate, an antinutritional
compound present in cereal grains and co-products, is only partially accessible to non-
ruminant animals due to the limited endogenous phytase activity in their small intestine [3].
Consequently, phytate diminishes the bioavailability of essential minerals (e.g., P, Ca, Zn,
and Na), amino acids, and carbohydrates [3,4]. As a result, the inefficiency in digesting
these antinutritional compounds has led to the development and application of exogenous
feed enzyme technology [5,6].

Historically, application of carbohydrases and phytase has focused on enhancing the
nutritional matrix of energy and P [3,5,7]. Interestingly, regardless of the lack of changes
in nutrient digestibility, non-ruminant animals fed exogenous enzyme complexes showed
better overall performance because exogenous enzymes provide other benefits for intestinal
health [8–10]. Additionally, studies have reported improvements in growth performance
resulting from the supplementation of exogenous enzymes, even in animals fed diets
containing limited available substrates (e.g., corn-soybean based diet compared to wheat
bran, or barley) for enzyme action [8,11,12]. Therefore, these intriguing findings suggest
that the compounds generated by enzyme digestion may have additional beneficial effects
on intestinal microbiota, immune system activation, and antioxidant status, ultimately
enhancing animal growth.

Moreover, it has been reported that the matrix of energy and P of ingredients can
be improved as a result of improved digestibility, and enhanced utilization of previously
inaccessible nutrients upon the inclusion of the exogenous enzymes [3,13–15]. Although
most studies have been conducted under controlled experimental conditions with gen-
erally favorable sanitary management, it is important to note that in commercial farms,
where environmental, immunological, and management challenges are more intense and
frequent, the energy released by enzyme action may not necessarily translate into better
animal growth [16]. This observation could potentially explain the lack of performance
enhancement observed in cases where non-ruminant animals showed greater nutrient
digestibility or improved intestinal health with enzyme supplementation [17–20].

On the other hand, the positive relationship between exogenous enzymes and intesti-
nal benefits have been observed for at least a decade of research [6,21–25]. Thus, as part
of the improvement in growth performance can be attributed to the beneficial effects of
exogenous enzymes on intestinal health, their supplementation in diets of animals un-
der poor sanitary conditions may prove to be superior [26,27]. However, only a limited
number of publications have specifically investigated the effects of exogenous enzyme
supplementation on intestinal health and performance under poor sanitary conditions.
Therefore, this current review aimed to clarify the mechanisms through which exogenous
enzymes (carbohydrases and phytase) influence intestinal health, as well as their potential
effects on the nutrients and energy matrix in diets fed to poultry and pig reared under
sanitary challenge.

2. Exogenous Enzymes and Their Functional Mechanisms of Action

Exogenous enzymes include all enzymes that are supplemented in the diet to break
down the complex structure of cellular components by hydrolysis [12,28]. Xylanase, β-
mannanase, β-glucanase, α-amylase, and phytase account for the majority of enzymes used
nowadays (Figure 1). These enzymes may act on a variety of antinutritional factors such as
non-starch polysaccharides, resistant starch, and phytate.
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2.1. Carbohydrases

Carbohydrases include all enzymes that catalyze a reduction in the molecular weight
of polymeric carbohydrates. Dietary carbohydrate fractions can impact the intestinal
microbiota and absorptive function, and immune response in non-ruminant animals [29].
Cereal fibers contain several NSP components, such as arabinoxylans, cellulose and β-
glucans, and resistant starch (RS), which can have an impact on overall health [2,30].

Soluble NSP (e.g., arabinoxylans and β-glucans) can have undesirable effects, such
as increasing digesta viscosity and intestinal permeability [9,10,12], reducing beneficial
microbiota, and promoting the growth of pathogenic bacteria in the intestine [31]. Conse-
quently, viscous NSP impairs nutrient digestibility (e.g., reducing emulsification of dietary
lipids, and altering short-chain fatty acids production), and causing changes in the nutrient
interaction with the intestinal brush border [32]. Allied to this, the insoluble NSP forms a
protective barrier, which reduces the usage of nutrients from the diet because it acts as a
“cage effect” for cellular content [33].

In addition, NSP can directly interact with components of the immune system. Binding
of NSP to immune cell surface receptors triggers several cellular and molecular pathways,
leading to immune activation [34]. This immune stimulation process can increase the
maintenance energy by 23% because the immune system requires substantial amounts of
nutrients (e.g., amino acids), and energy that otherwise could be used for the animal’s
growth (Figure 2) [35]. Recent studies suggest that the hydrolysis of polysaccharides by en-
zymes into oligosaccharides, acting as “prebiotics”, can beneficially modulate the intestinal
microbiota [21,31]. This modulation results in improved intestinal health by increasing the
production of short-chain fatty acids (SCFA) and reducing immune activation [11,21,36].

In this section, we will describe the functions of key carbohydrases (xylanase, β-
mannanase, β-glucanase, and α-amylase) commonly used in feeds for non-ruminant ani-
mals to improve intestinal health and growth performance.
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Figure 2. Harmful effects of non-starch polysaccharides and the beneficial effects of exogenous
carbohydrases supplementation in non-ruminant diets.

2.1.1. Xylanase

Xylanases belong to six different glycosidic hydrolase (GH) families (GH5, GH7, GH8,
GH10, GH11, and GH43), which exhibit different substrate specificities [34]. They are
produced by several microorganisms (e.g., yeast, fungi, and bacteria), and commercially
available xylanases are mainly derived from bacteria or filamentous fungi [37]. Arabinose
and xylose are found as constituents of arabinoxylans (AX) in dietary ingredients [34]. The
most abundant non-cellulosic polysaccharides in a corn-soybean meal-DDGS diet, and
particularly in cereals, are AX.

Xylanase likely hydrolyzes the β-1,4-glycosidic bonds of the AX main chain into
smaller fragments, such as xylo-oligosaccharides (XOS) or arabinoxylo-oligosaccharides
(AXOS) [28]. Usually, the improved performance observed with exogenous xylanase has
been attributed mainly to reduced viscosity and increased nutrient digestibility [38]. How-
ever, in addition to enhancing nutrient availability, xylanase-mediated AX hydrolysis can
improve intestinal morphology [9,39], enhance intestinal barrier integrity [10,22,40], regu-
late immune function [10,11], and mitigate localized and systemic oxidative stress [9,40].
These mechanisms may help explain the improvements observed in animal growth.

The positive effects of xylanase supplementation on intestinal health result from the
modulation of the microbiota in the ileum [41], cecum [42,43], and colon [44]. The most
plausible mechanism for microbiome modulation is the “prebiotic” or “symbiotic” effect of
XOS and AXOS released through AX hydrolysis [45,46]. These smaller fragments stimulate
the proliferation of microbiota capable of efficiently degrading AX and are generally
recognized as beneficial [41,47,48].

In addition to its ability to reduce pathogenic bacteria colonization in the intestine [31,41,42],
which is associated with immune system activation, xylanase supplementation provides
two additional mechanisms for immune function regulation. Firstly, xylanase can hydrolyze
the polysaccharide AX, which can be recognized by pattern recognition receptors (such as
toll-like receptors; TLR) on immune cell surfaces and can trigger the production of various
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cytokines and chemokines, thus influencing immune responses [34]. Secondly, xylanase
supplementation can increase SCFA production [22,39]. Short-chain fatty acids, particularly
butyrate, play a crucial role in energy supply, cell proliferation, and the regulation of
immune responses [49,50]. Therefore, this increase in SCFA production can contribute to
immune inactivation and overall immune system balance in pigs [10,11], and poultry [42].

The production of free radicals within the body can lead to damage to DNA or cell
structures, thus affecting the stability of intestinal barrier function [51]. Recent studies
have reported that exogenous xylanase improves the antioxidant status in pigs [9,10,40],
and broilers [42,52], in both in vivo and in vitro trials. However, the specific mechanism
by which xylanase decreases oxidative stress and enhances antioxidant capacity remains
unclear. Petry et al. [40] suggested that this potential mechanism could involve the im-
provement of the bioavailability of phenolic compounds present within the AX structure,
which can act as antioxidants.

These improvements in the immune and antioxidant status of non-ruminant ani-
mals fed exogenous xylanase could potentially explain the enhancements observed in the
intestinal morphology and integrity [10,22,39,40,53]. Therefore, the improvement in the per-
formance of animals fed xylanase in the diet goes beyond the utilization of “encapsulated”
nutrients, but rather through the enhancement of overall intestinal health.

2.1.2. β-Mannanase

β-Mannanases are endohydrolase enzymes that cleave randomly within the 1,4-β-d
mannan chain of glucomannans, and galactomannans [54]. Mannan is the second most
abundant hemicellulosic polysaccharide found in cereals and their by-products, following
AX [55]. Similar to other dietary NSP fractions, β-mannans are not adequately degraded
by digestive enzymes in the upper gastrointestinal tract of non-ruminant animals [56].
Thus, soluble β-mannans have been shown to increase the viscosity of intestinal contents,
leading to reduced absorption of nutrients such as glucose and lipids in pigs [15,57], and
poultry [58,59].

In vitro studies have shown that the β-mannanase enzyme hydrolyzes the β-mannan’s
backbone, releasing short β-1,4-mannoligosaccharides (β-1-4-MOS) [60–62]. In addition,
they showed that these shorter β-1-4-MOS promote lactic acid production and exhibit
inhibitory effects on enteropathogenic bacteria (e.g., Escherichia coli and Salmonella spp.)
in both monoculture and co-culture fermentations [60–62]. These findings suggest that
the hydrolysis products of beta-mannans can be selectively used by beneficial intestinal
microorganisms such as Bifidobacteria and Lactobacilli, which are positively associated with
intestinal health [63].

Consistent with these findings, β-mannanase supplementation has been observed to
impact the composition of the intestinal microbiota, increasing the abundance of intestinal-
health-associated microbiota such as Lactobacillus, Ruminococcaceae, and Akkermansia, whereas
reducing bacteria associated with intestinal disorders such as Salmonella spp. and E. coli [64].
In summary, these studies highlight the potential benefits of β-mannanase supplemen-
tation in influencing intestinal microbiota abundance and reducing the prevalence of
enteropathogenic bacteria in non-ruminant animals.

In addition to serving as a fermentative substrate for the growth of pathogenic bacteria
in the gastrointestinal tract, β-mannans share similarities with carbohydrate fractions found
in the cell walls of microorganisms, making them recognizable by cell membrane mannose
receptors [65]. As a result, β-mannans can be identified by the host’s immune system
as pathogen-associated molecular patterns through various mannose receptors on the
gastrointestinal tract’s cell surface [63]. This recognition leads to intestinal inflammation,
oxidative damage, villus atrophy, and poor nutrient utilization [22,23,35].

In this context, a positive correlation has been observed between the concentration
of acute-phase proteins (APP) in the blood and dietary β-mannans [35,65]. Additionally,
native locust bean galactomannan was found to stimulate the production of tumor necro-
sis factor alpha (TNF-α) and β-hexosaminidase secretion in cells [66]. However, these
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effects were reversed when the native locust bean galactomannan was hydrolyzed by
β-mannanase [66].

Therefore, the hydrolysis of intact native β-mannans by β-mannanase results in the
formation of β-1-4-MOS fragments that can no longer be recognized by TLRs. This pre-
vents hyperactivation of the immune system [63,65], which can improve villus integrity
and promote better weight gain and feed efficiency. Consistent with this, pigs fed diets
supplemented with β-mannanase showed reduced serum haptoglobin and IL-1α concentra-
tions [35]. Another study demonstrated that the supplementation of β-mannanase reduced
serum APP in birds challenged with Eimeria [67]. These findings suggest that β-mannanase
has the potential to mitigate the activation of the immune system, allowing greater energy
and nutrient availability for tissue deposition. However, further investigations are required
to achieve a better understanding of the specific conditions under which these benefits are
most pronounced, because no changes were observed in serum APP, such as haptoglobin
and C-reactive protein in nursery pigs fed β-mannanase in their diet [68,69].

In general, the action of β-mannanase can lead to positive modulation of the micro-
biota, decreased activation of the immune system, and increased production of SCFA in
the gastrointestinal tract [22,35,68]. These combined effects contribute to better intestinal
morphology and improved animal growth performance [23,57].

2.1.3. β-Glucanase

Extensive research has been conducted on various aspects of dietary fiber, with partic-
ular attention given to AX. However, β-glucan is another significant cell wall component,
with higher concentration in barley and oats grains, followed by rye and wheat [70]. Com-
pared to poultry research, studies involving pigs have been more extensive, as pigs are
often used as models to assess the potential effects of β-glucan on human health [71,72].

β-Glucans are polymers consisting of D-glucose building blocks linked by β(1→3),
β(1→6), or β(1→4) linkages [73]. They can be found in various feed components, including
cereals, yeast, and mushrooms. Regarding β-glucans from cereals (e.g., oats and barley),
they consist mainly of linear β(1→3) and β(1→4) linked glucose polysaccharides, connected
by two or three consecutive β-(1-4) bonds, and separated by a single β-(1-3) bond [73]. In
addition, the content and structure of β-glucan can vary within a specific cereal grain due
to plant genetic, and environmental factors [56].

Although it is reasonable to consider β-glucanase as a suitable option for mitigating
the negative effects of β-glucan found in barley and oat grain cell walls, most research
studies have focused on evaluating the combined dietary supplementation of β-glucanase
and xylanase. Considering that these grains also contain AX, the xylanase supplementation
can enhance the effectiveness of β-glucanase, thus improving the feeding value of barley
and oats [70]. Combined supplementation of β-glucanase and xylanase has been shown
to improve weight gain and feed efficiency, as well as greater digestibility of energy, dry
matter, and crude protein in poultry and pig, as evidenced by decreased digesta viscosity
and increased NSP digestibility [18,31,74–76].

In addition to increasing the digestibility of energy and crude protein, Duarte et al. [31]
observed that the supplementation of β-glucanase in diets containing xylanase attenuated
the immune response by reducing plasma IL-6 and TNF-α concentrations in piglets. This
reduction led to an increase in jejunal villus height, thus explaining the improved aver-
age daily gain (ADG). In this context, β-glucans can directly affect the immune system
by stimulating dectin-1 [77]. The activation of dectin-1, in turn, stimulates the produc-
tion of pro-inflammatory cytokines, effectively triggering the immune response [77,78].
Therefore, β-glucanase can reduce the activation of the immune system by preventing the
stimulation of dectin-1 through the breakdown of β-glucan into smaller molecules (e.g.,
oligosaccharides), which results in improvements in villus length [23].

Another possible explanation for the attenuation of the inflammatory response is the
modulation of the microbiota caused by the release of these oligosaccharides by β-glucanase.
This modulation stimulates the growth of potential beneficial bacteria (e.g., Faecalibacterium
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prausnitzii) and reduces potential harmful bacteria (e.g., Campylobacteraceae, and Helicobacter
rappini) in the intestine [31]. The hydrolysis of NSP releases oligosaccharides, increasing the
fermentability of the dietary fiber by microbes and production of SCFA along the intestine
which have been shown to inhibit inflammation within the intestine of pigs [45,46].

The same principle could be used to explain the beneficial effects of β-glucanase in
energy metabolism, intestinal cell proliferation, and immune response [23,70]. However,
recent studies have reported that dietary supplementation with β-glucanase reduces SCFA
production in cecal [79] and colonic digesta [18] in poultry and pig, respectively, while still
improving ADG and feed efficiency. Therefore, further research is needed to elucidate the
effect of β-glucanase on SCFA production in the digesta.

In summary, these studies suggest that beneficial modulation of the microbiota appears
to be the main mechanism by which β-glucanase reduces inflammation and improves
intestinal morphology.

2.1.4. α-Amylase

Corn, being the dominant starch source, is widely utilized in pig and poultry diets,
and is provided as the main feed ingredient in quantitative terms to meet energy require-
ments [80]. Starch, a complex carbohydrate, constitutes two main components (amylose
and amylopectin), with distinct structural traits [81]. Amylose is mainly composed of
linear α(1-4)-linked anhydroglucose units, whereas amylopectin is highly branched due to
additional α(1-6)-linkages [81].

Unlike NPS, starch can be digested by endogenous amylase in the animals’ intestines [82].
However, the post-weaning period in piglets and the early days of life in chicks are
marked by a limited production of endogenous amylase, highlighting the importance
of supplementing exogenous amylase in their diets to optimize the efficiency of starch
digestion [80,83]. Furthermore, considering the substantial amount of starch fed to animals
during the finishing phase, ranging from 40% to 60%, the existing endogenous amylase ac-
tivity may be insufficient, further emphasizing the need to supplement exogenous amylase
in their diets [12,84].

In this context, studies have documented the positive results of supplementation
with exogenous α-amylase. These studies have highlighted improvements in nutrient and
energy digestibility, as well as enhanced growth performance in broilers [12,85–87], and in
pigs fed corn-soybean-based diets [88]. An increase in starch digestibility is accompanied by
a greater release of other nutrients for endogenous enzymatic digestion because the starch
granules are incorporated into a matrix that also contains protein and lipids [89]. Thus,
a-amylase supplementation improves nutrient and energy digestibility, as demonstrated in
broilers [90] and pigs [91].

However, studies evaluating the possible use of exogenous α-amylase on intestinal
morphology, immune response, and microbiota are scarce. Nevertheless, Aderibigbe
et al. [12] reported that broiler chickens fed diets containing exogenous α-amylase exhibited
increased jejunal villus height. Similarly, Córdova-Noboa et al. [86] observed that dietary
α-amylase supplementation led to an increase in the relative length of the small intestine in
broilers. These findings indicate that the effects of α-amylase go beyond starch degradation,
potentially contributing to improving intestinal health and subsequently enhancing growth
performance. However, the mechanisms that explain how α-amylase can improve intestinal
development are unclear.

Jiang et al. [92] observed a decline in pancreatic α-amylase activity ranging from 9%
to 33% as exogenous α-amylase levels increased from a 250 mg/kg to a 2250 mg/kg diet.
In fact, exogenous enzymes supplementation can be antagonistic to the secretion of some
endogenous enzymes [90]. By reducing the need for pancreatic amylase synthesis and
reducing intestinal and pancreatic mass [80,93], it is possible to save energy and amino
acids, which can be used for enterocyte cell proliferation or other body functions, explaining
the improvements observed in intestinal morphology.
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Furthermore, the supplementation of exogenous α-amylase modulating the intestinal
microbiota is due to the ability of α-amylase supplementation to act upon undigested starch
fractions, which consist of resistant starch known for its “prebiotic” properties [90,94]. How-
ever, to the best of our knowledge, the impact of exogenous α-amylase on the microbiota in
poultry or pigs has not yet been published.

2.2. Phytase

Phosphorus is an essential mineral for energy metabolism, nucleic acid synthesis, and
the structure of cell membranes. In addition, the most important function of P is bone
formation and mineralization, where it also serves as a reserve to be mobilized to play
roles in almost all metabolic processes [95]. However, the P present in plant feedstuffs,
commonly known as phytic P, has long been considered unavailable for non-ruminants [96].

In most grain-based ingredients used in pigs and poultry diets, phytic acid P can
account for up to 80% of the total P [97]. Phytic acid (myo-inositol-1,2,3,4,5,6-hexakis
[dihydrogen (phosphate)], C6H18P6O24) can form complexes with other minerals within
the gastrointestinal tract of animals, making them unavailable [96,98]. Moreover, it can
bind to amino acids, proteins, and enzymes (e.g., trypsin and α-amylase), inhibiting their
activity and affecting protein and carbohydrate digestibility [99,100].

Phytic P is partially utilized in non-ruminant animals due to low endogenous phytase
activity in the small intestine, which is insufficient to digest phytate and release P for
absorption [101]. Consequently, high levels of inorganic P sources are added to diets to
meet specific nutritional requirements [102,103]. Thus, nutritional strategies have been
evaluated to increase the P bioavailability from phytic P.

Phytases (myo-inositol hexakiphosphate phosphohydrolase) are responsible for cat-
alyzing the hydrolysis and release of P from phytic acid present in plant-based feed-
stuffs [102,104]. In this sense, this enzyme is supplemented in non-ruminant diets to
increase the digestibility of phytic P, leading to less dependence on inorganic P and mini-
mizing the excretion of this mineral into the environment [4,105].

Furthermore, the hydrolysis of phytate molecules increases the availability of other
minerals (e.g., Ca, Na, K, Mg, and Zn), amino acids (e.g., Lys, Cys, Thr, Val, Ile, Leu, Thr,
His, Arg, and Phe), and energy, improving the utilization of dietary nutrients for animal
growth performance (Figure 3) [4,106,107]. The supply of inositol, a product of phytate
degradation, has also received more attention as phytase supplementation becomes more
common [108]. This extra release of nutrients is the “so-called” extra-phosphoric effect of
phytase, which is responsible for a portion of the increase in growth performance associated
with phytase supplementation [103,109,110]. In addition, these nutrients have been found
to positively influence the microbiota, immune response, and antioxidant status in non-
ruminant animals [111–113], which is reflected in improved intestinal morphology and
integrity [114–116]. However, the precise mechanisms by which phytase improves overall
intestinal health are not fully understood.

Reducing undigested phytic acid in the intestine can have significant effects on the
intestinal environment. One notable effect is the reduction of the digesta pH, thus creating a
favorable environment for the growth of beneficial bacteria and inhibiting the proliferation
of harmful ones [116,117]. In addition, phytase can potentially exert a positive impact on
the microbiota through a mechanism that involves inducing intestinal alkaline phosphatase
activity [118]. In addition to its role in dephosphorylating inositol monophosphate, intesti-
nal alkaline phosphatase performs several functions, including dephosphorylating bacterial
lipopolysaccharide (LPS) and preventing bacterial transepithelial passage [118–120].
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In agreement, Moita et al. [116] found that the inclusion of a 2000 FTU/kg diet tended
to decrease harmful bacteria such as Pelomonas, Helicobacter, and Pseudomonas, whereas
increasing beneficial bacteria such as Lactobacillus in broilers. Similarly, Ptak et al. [121] re-
ported an increase in Lactobacillus populations and a decrease in Streptococcus abundance in
the ileum of broiler chickens fed 5000 FTU/kg. In addition, Nari et al. [24] observed reduced
bacterial counts of E. coli and Clostridium spp. in the ileum of broilers fed 500 FTU/kg.

In pigs, Liu et al. [25] observed decreases in Tenericutes and Spirochaetes at the phylum
level in the cecum of pigs fed 500 U/kg. These phyla include a diverse range of species,
which can have harmful effects in animals [122]. Furthermore, Moita and Kim [123] found
a reduced abundance of the Prevotellaceae family in the jejunum of nursery piglets fed
2000 FTU/kg, which aligns with the findings of Liu et al. [25]. The Prevotellaceae family is
known for its diversity, with some members playing a crucial role in the fermentation of
dietary fiber within the intestine [124]. This suggests that phytase supplementation could
potentially have an impact on SCFA production. However, the overall effects of phytase on
the intestinal microbiota, mainly in pigs, remain unclear and need further investigation.

Specific lower phosphorylated inositol phosphates, such as myo-inositol triphosphates
(InsP3) and myo-inositol tetraphosphates (InsP4), have been shown to play a significant role
in cell signal transduction, cell function regulation, cell growth and differentiation [125,126].
The complete hydrolysis of phytate results in the production of myo-inositol, which can
be absorbed and detected in both portal and peripheral blood [127,128]. Myoinositol may
increase insulin sensitivity and also may promote insulin secretion from pancreatic β

cells [128]. Thus, myo-inositol might have an insulin-mimicking effect in the stimulation
of glucose uptake into tissues [126,127], which ultimately leads to improved growth per-
formance. Studies have reported that dietary supplementation with phytase can raise the
blood concentration of myo-inositol in broiler chickens [129,130], and pigs [108,128,131].
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Therefore, this increase in myo-inositol concentrations may contribute to a reduced immune
response and improved antioxidant status in these animals.

In line with this, Zhang et al. [111] demonstrated a decrease in IL-1β and TNF-α con-
centrations in the jejunal mucosa of pigs fed a diet containing 1000 U/kg. In addition, these
animals exhibited higher glutathione peroxidase (GSH-Px) and catalase (CAT) activities
in the duodenum and ileum, respectively. Similarly, Ren et al. [114] reported a reduction
in the plasma malondialdehyde (MDA) concentration in nursery pigs fed 500 FTU/kg.
However, Moita and Kim [123] observed no effects on immune response and antioxidant
status in nursery piglets fed 2000 FTU/kg.

In a study conducted with broiler chickens, Adedokun and Adeola [112] demonstrated
that the supplementation of a 5000 FTU/kg diet resulted in a reduction of IL-6 mRNA
expression in the jejunal mucosa. It also decreased IL-1β mRNA expression in animals
that were not challenged with coccidial vaccines. In a study conducted by Khodambashi
Emami et al. [132], it was found that supplementation with 500 FTU/kg increased the
concentrations of total Ig, IgM, and IgG in broilers on the primary (d21) and secondary
(d28) antibody response against sheep red blood cells. These improvements in the immune
response may contribute to the antioxidant status of broilers, as indicated by Derakhshan
et al. [113], who observed that phytase supplementation increased the antioxidant activities
of GSH-Px, CAT, superoxide dismutase (SOD), and total antioxidant capacity. In addition,
they reported a reduction in serum MDA concentration as a biomarker of oxidative stress.

Considering all the extra-phosphoric effects resulting from phytase supplementation
in non-ruminant animal diets, such as the beneficial modulation of the microbiota, reduced
activation of the immune system, and improved antioxidant status, it is plausible that there
are enhancements in intestinal morphology and barrier function. This has been demon-
strated in studies conducted with broiler chickens [24,115,116,132], and pigs [25,114,131],
which suggests that improvements in growth performance cannot only be attributed to
increased nutrient availability, but also to overall improved intestinal health.

3. The Role of Dietary Exogenous Enzymes in Poultry and Pig under Challenging Conditions

The negative impact of an immune challenge on animal growth has been widely
documented [133,134]. Furthermore, pro-inflammatory cytokines regulate an immune
response characterized by fever, APP production, and leukocyte proliferation, leading
to oxidative stress and apoptosis in intestinal epithelial cells. These processes require
extra energy and amino acids to sustain the immune system’s requirements [135,136].
Consequently, the presence of an immune challenge has the potential to redirect energy
and nutrients from anabolic processes such as muscle growth, causing detrimental effects
on production costs [135,137,138]. Supporting this notion, Huntley et al. [35] revealed
that an innate immune challenge in weaned piglets resulted in a significant increase
in pro-inflammatory cytokine concentrations, leading to a remarkable 23.3% elevation
in metabolizable energy (ME) required for maintenance. Consequently, this metabolic
change correlated with an 18.3% decrease in ADG during the LPS challenge. Similarly,
Dunaway and Adedokun [139] observed a 20.0% reduction in apparent ME corrected for
nitrogen retention (AMEn) in broiler chickens seven days after administration of an oral
coccidia vaccine.

As discussed above, the carbohydrases supplementation such as xylanase, β-mannanase,
β-glucanase, and α-amylase, together with phytase, not only increases the nutrient avail-
ability in the gastrointestinal tract, but also promotes positive effects on intestinal health.
These effects encompass attenuating inflammatory responses, reducing oxidative stress,
and improving intestinal morphology and integrity. However, it is important to note that
most of these studies were conducted under controlled experimental conditions, typically
characterized by favorable sanitary handling.

In contrast, commercial production systems with poor sanitary conditions have a
greater risk of bacterial infection, which can have a negative impact on growth rate and
feed efficiency [26,140]. Consequently, the effectiveness of exogenous enzyme supplemen-
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tation may be affected in circumstances where hygiene conditions are suboptimal and
stress is frequent [26,27]. Over the last year, there has been an increased interest in the
investigation of the effects of carbohydrases and phytase on sanitary-challenged poultry
and pigs (Table 1). Based on the compiled data (Figure 4), when enzyme was supplemented
animals become more efficient at converting energy into weight gain. For non-challenged
or challenged animals, the conversion of ME intake into BW gain showed 1.9% and 3.4%
improvements associated with enzyme supplementation.

Table 1. Studies evaluating the effects of carbohydrases and phytase on performance and/or intestinal
health of broilers and pigs using a sanitary challenge model.

References Species Diet Type Evaluation
Period Enzymes Challenge Type

[112] Broiler Corn/SBM 49 to 55 d Phytase 1000 FTU Coccidial vaccine
[112] Broiler Corn/SBM 49 to 55 d Phytase 5000 FTU Coccidial vaccine
[141] Broiler Wheat/Barley/DDGS 1 to 35 d Xylanase + protease Necrotic enteritis
[142] Broiler Wheat/Corn/Barley/SBM 14 to 21 d Xylanase Coccidiosis vaccine
[142] Broiler Wheat/Corn/Barley/SBM 14 to 21 d Xylanase + β-glucanase Coccidiosis vaccine
[138] Broiler Corn/Wheat/Rye/SBM 1 to 21 d Xylanase + amylase + protease + Bacillus spp. Oral coccidia

[143] Broiler Corn/SBM 1 to 40 d Cellulase + pectinase + xylanase + glucanase +
mannanase + galactanase Necrotic enteritis

[143] Broiler Wheat/SBM 1 to 40 d Cellulase + pectinase + xylanase + glucanase +
mannanase + galactanase Necrotic enteritis

[144] Broiler Wheat/SBM 1 to 21 d Xylanase Necrotic enteritis
[144] Broiler Maize/SBM 1 to 21 d Xylanase Necrotic enteritis
[144] Broiler Wheat/SBM 1 to 21 d β-Mannanase Necrotic enteritis
[144] Broiler Maize/SBM 1 to 21 d β-Mannanase Necrotic enteritis
[145] Broiler Corn/Wheat/SBM 1 to30 d Xylanase + xylo-oligosaccharides Necrotic enteritis
[146] Broiler Corn/SBM 1 to 21 d Xylanase + protease Coccidiosis
[16] Broiler Corn/SBM 1 to 42 d β-Mannanase Coccidiosis
[147] Broiler Wheat/SBM 1 to 35 d Xylanase + β-glucanase + β-Mannanase Necrotic enteritis

[148] Broiler Corn/SBM (adequate
Ca and P) 5 to 15 d Phytase 600 FTU Coccidiosis

[148] Broiler Corn/SBM (lower Ca
and P) 5 to 15 d Phytase 600 FTU Coccidiosis

[149] Broiler Wheat/SBM 1 to 28 d Phytase 5000 FTU Necrotic enteritis
[150] Broiler Wheat/SBM (high Ca) 1 to 42 d Phytase 1500 FTU Necrotic enteritis
[150] Broiler Wheat/SBM (low Ca) 1 to 42 d Phytase 1500 FTU Necrotic enteritis
[151] Pig Barley/Wheat/SBM 21 to 35 d Carbohydrases E. coli (K88)

[26] Pig Wheat/Corn/SBM 21 to 63 d Xylanase + xylo-oligosaccharides Poor sanitary
condition

[45] Pig Corn/SBM/DDGS 21 to 41 d Xylanase + Bacillus sp. E. coli (F18+)
[152] Pig Corn/SBM/DDGS 23 to 37 d Xylanase + β-glucanase + pectinase E. coli (F18+)

[152] Pig Corn/SBM/Sugar beet
pulp 23 to 37 d Xylanase + β-glucanase + pectinase E. coli (F18+)

[153] Pig Corn/SBM 28 to 42 d Xylanase + xylo-oligosaccharides E. coli

[154] Pig Corn/Wheat/SBM 21 to 32 d Cellulase + β-mannanase + galactanase +
xylanase + β-glucanase + amylase + protease E. coli (LPS)

Supporting this hypothesis, Duarte et al. [45] demonstrated that a feed additive based
on xylanase and probiotic was effective in reducing the jejunal mucosa levels of IL-6,
TNF-α, and protein carbonyl regardless of the E. coli challenge. Moreover, challenged
and non-challenged pigs fed with the additive presented improved growth performance
and reduced diarrhea than those without additive. In an experiment conducted in situ,
Kiarie et al. [155] reported that carbohydrase hydrolysis products obtained from a soybean
meal had positive effects against enterotoxigenic E. coli infection in piglets. Cho et al. [26]
demonstrated that the supplementation of a feed additive based on β-1,4-endo-xylanase
and xylo-oligosaccharides had limited effects on the growth performance and intestinal
health of weaned piglets under good sanitary conditions. However, under poor sani-
tary conditions, the additive supplementation could mitigate the immune challenge, as
demonstrated by the improved growth performance and lower inflammatory response.
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Similarly, Song et al. [153] reported that the supplementation with β-1,4-endo-xylanase
and xylo-oligosaccharides exhibited performance-enhancing effects, with a reduction in
the blood concentration of pro-inflammatory cytokines (IL-6 and TNF-α), increased villus
height, and decreased crypt depth in weaned piglets. Notably, these beneficial effects were
particularly pronounced in animals challenged with E. coli. In another study, enzyme blend
(xylanase, β-glucanase, and pectinase) supplementation improved the ADG of piglets
during the pre- and post-F18-ETEC challenge period, which is partly explained by an
increase in intestinal barrier integrity markers (occludin and zonula occludens-1 mRNA)
and a reduction in inflammation markers (TNF-α mRNA and serum haptoglobin) [152].

In a study involving broiler chickens, Dersjant-Li et al. [138] demonstrated that the
supplementation of a feed additive based on an enzyme blend (xylanase, α-amylase, and
protease) and Bacillus spp. resulted in improved growth performance facing a coccidia
challenge. Moreover, the feed additive demonstrated its ability to mitigate the inflam-
matory response induced by the coccidia challenge. This was evident in reduced plasma
APP concentrations (e.g., hemopexin and α-1-acid glycoprotein), a decreased number of
intraepithelial lymphocytes, a thinner lamina propria, and reduced concentrations of in-
flammatory markers such as duodenal IL-6 on day 21 compared to the challenged control
group. Similarly, in a study conducted by Lee et al. [145], it was observed that broiler
chickens challenged with C. perfringens exhibited elevated jejunal and ileal lesion scores,
increased villus atrophy, and higher plasma TNF-α and endotoxin concentrations. How-
ever, xylanase and xylo-oligosaccharides supplementation demonstrated its capability
to mitigate these detrimental effects and restore intestinal health in birds. In addition,
broilers challenged with C. perfringens had improved growth performance when fed diets
containing carbohydrases [143,156].

Regarding phytase supplementation under poor sanitary conditions, Moran et al. [157]
reported a quadratic response in the overall gain-to-feed ratio of weaned piglets fed
increasing doses of phytase, reaching an optimum dose with 2500 FTU/kg. In addition, the
authors observed enhanced feces firmness in piglets fed 2500 FTU/kg compared to those fed
600 FTU/kg, indicating improved intestinal health. Consistent with these findings, Moran
et al. [108] also observed better growth performance in weaned piglets fed 2500 FTU/kg
reared under poor sanitary conditions.
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However, whereas there are studies showing the benefits of these exogenous enzymes
on intestinal health and performance under sanitary challenging conditions, others have
reported little or no effect of enzyme supplementation [16,35,139,146]. In this way, further
studies are needed to elucidate the effects of carbohydrase and phytase in alleviating overall
intestinal damage in non-ruminant animals subjected to sanitary challenges.

Moreover, it is important to highlight that most of the studies discussed so far, which
have investigated enzyme supplementation in pig and poultry diets under various sanitary
challenging conditions, have not involved reducing the energy and/or nutrients density
of the supplemented diets to understand whether, in fact, the nutritional matrix values
should be altered.

In commercial practice, the use of enzymes is commonly associated with the incor-
poration of a nutritional matrix that considers the predicted effects. When a matrix is
accurately applied to a feed enzyme, it can lead to significant savings in diet costs [158].
The main classes of enzymes are associated with specific matrices, including the following:
carbohydrases use energy, amino acids, and protein matrices, whereas phytases employ
matrices of P, Ca, Na, amino acids, protein, energy, and other minerals [158].

Regarding the energy matrix, studies have reported that the supplementation of
carbohydrases (e.g., xylanase, β-mannanase, β-glucanase, and α-amylase) and phytase
provides formulators with the opportunity to reduce the ME content of the diet by around
100 kcal/kg in diets to broiler chickens [159–163], and pigs [13,40,74,164]. Recently, de
França et al. [165] reported that the supplementation of enzymes (xylanase, β-mannanase,
β-glucanase, and phytase) in broiler diets makes it possible to reduce the energy density by
a 200 kcal/kg diet without affecting growth performance and jejunal morphometry.

Although these studies were conducted under experimental conditions and controlled
sanitary management, it is important to note that in commercial production systems,
where activation of the immune system occurs more frequently, the additional energy
released as a result of enzyme activity may not necessarily translate into better growth
performance, since a portion of the energy and nutrients are allocated to support the
immune response [16]. On the other hand, since exogenous enzymes can improve intestinal
health, as already discussed in this review, their incorporation into commercial conditions
has the potential to enhance energy utilization. As a result, there is a possibility that the
energy matrix developed in research facilities may underestimate the true impact of these
enzymes. Consequently, the energy matrix of the enzymes may be altered under poor
sanitary conditions.

In this context, a study conducted by Nusairat and Wang [166] demonstrated that the
supplementation of xylanase in diets with a 130 kcal/kg reduction in ME, at a level of up
to a 15.0 XU/g diet, resulted in improved body weight gain and feed conversion ratio,
enhanced energy digestibility, and reduced intestinal lesion scores in broilers reared under
typical production conditions. Bello et al. [167] also demonstrated that the supplementation
of 2.0 XU/g xylanase in diets formulated with a 75 kcal/kg reduction in ME maintained all
growth performance variables of broilers reared in an environment with a high pathogenic
load, per phase and cumulatively. Similarly, in a study conducted by Ennis et al. [168],
who assessed used litter bedding obtained from commercial broiler houses, observed that
broilers fed ME-reduced diets (−100 kcal/kg) supplemented with β-mannanase or xylanase
exhibited growth performance results similar to those of birds fed a standard diet. Using a
diet (based on corn, soybean meal, and wheat middling) formulated with lower energy and
digestible amino acids compared to breeders’ recommendations, Dersjant-Li et al. [169]
demonstrated that using a combination of multi-enzyme (xylanase, amylase, and protease)
and strains of Bacillus amyloliquefaciens for broilers can result in improved feed efficiency
and ADG, and a lower foot-pad lesion score under commercial environments.

These studies indicate that the energy matrix of carbohydrases can be effectively
applied in broiler production under commercial conditions. However, the extent to which
ME can be saved in such conditions remains unclear. In addition, published research on
the assessment of carbohydrases in pig production at the farm level is limited.
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Phytase allows formulators to reduce available P, total Ca, ME, and other nutrients
in diets without compromising growth performance. This has been supported by studies
which have shown that phytase supplementation in diets containing levels of available
P, total Ca, and ME below the recommendations by approximately 0.15%, 0.16%, and
100 kcal/kg, respectively, can maintain growth performance and intestinal health in broil-
ers [24,163,170,171], and pigs [123,131,164,172].

In the same context as carbohydrases, phytase matrices developed in research facil-
ities can be altered under poor sanitary conditions due to constant immune challenges.
However, recent studies [167,168,173] have indicated that phytase matrices can be success-
fully implemented in non-ruminant production under commercial conditions without any
adverse effects on growth performance.

For instance, Dersjant-Li et al. [173] conducted a study involving broiler chickens, in
which the matrix supply of a Buttiauxella phytase made it possible to reduce the levels of
ME, total Ca, and available P by 67 kcal/kg, 0.17%, and 0.16%, respectively. Despite these
reductions, the broilers maintained tibia ash, growth performance, slaughter yields, and
carcass yields at levels equivalent to those observed in broilers fed a nutritionally adequate
diet when tested in a commercial environment. Similarly, Bello et al. [167] observed that
supplementation of 6-phytase to diets with reduced levels of ME (−75 kcal/kg), total Ca
(−0.15%), and available P (−0.17%) could maintain or even improve the growth perfor-
mance, bone mineralization and breaking strength of broilers compared to a nutritionally
adequate diet. In addition, Ennis et al. [168] reported that the E. coli–derived 6-phytase
supplementation at a level of 1500 FTU/kg to a diet with reduced total Ca and available P
levels of 0.145%, and AME at 100 kcal/kg, clearly improved the broiler growth performance
by a better feed conversion ratio of 4 and 3 points during the 28-day and 44-day periods,
respectively. Phytase super dosing (1500 FTU/kg) also led to improved 45-day processing
yields, increased tender yields relative to carcass weight, and showed a trend towards
reducing fat pad weights.

In the case of pigs housed under commercial conditions, Cambra-López et al. [174]
demonstrated that supplementation of a 1000 FTU/kg diet with total P levels of 13%, 24%,
and 23% below the recommendations for weaned, grower, and finisher pigs, respectively,
has the potential to improve Ca and P digestibility, digestible energy, growth performance,
and bone mineralization. The authors also observed that the effectiveness of 3-phytase
decreased during the finisher phase, suggesting that the importance of this enzyme in
promoting intestinal health, particularly in the susceptible early phases, could amplify its
positive impact on pig growth performance. Similarly, Dersjant-Li et al. [175] observed that
the supplementation of phytase from Buttiauxella sp. (500 or 1000 FTU/kg) in diets without
inorganic phosphate and with reduced Ca (−0.13%) and ME (−35.8 kcal/kg) levels could
maintain the growth performance and carcass traits of commercial pigs from 12 kg BW
until slaughter.

It is important to note that all of these studies were conducted in commercial facilities
or designed to simulate such conditions. Therefore, phytase matrices for energy and
minerals seem to be effective in enhancing the growth performance of broilers reared under
poor sanitary conditions. However, more studies are needed to fully understand the extent
of their effects.

These findings collectively suggest that the energy and nutrient matrix released by
the action of carbohydrases and phytase can be applied for animals on commercial farms,
but the extent to which the matrix can be valued under challenging conditions needs
further investigation.

4. Conclusions and Future Directions

As highlighted in this review, supplementation with exogenous enzymes offers bene-
fits that go beyond the utilization of “encapsulated” nutrients. It positively modulates the
intestinal microbiota, attenuates the activation of the immune system, and improves the
antioxidant status of animals. Despite the demonstrated ability of enzymes to save energy
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and nutrients, their responses under challenging conditions have been poorly documented.
Activation of the immune system alters nutrient and energy partitioning, potentially af-
fecting the value of developed matrices in commercial farms. Interestingly, under sanitary
challenges, supplementation of carbohydrases and phytase can be implemented using the
energy and nutritional valorization matrices. This suggests that enzymes, with their proper-
ties that promote overall intestinal health, expedite the recovery of intestinal function after
sanitary challenges, while maintaining the improved utilization of the nutritional matrix.

Studies conducted under commercial conditions have shown that the use of matrices
containing carbohydrases and phytase can maintain the growth performance and general
health of broiler chickens and pigs. However, these studies predominantly focused on
assessing a single level of reduction in energy and/or available P and total Ca, limiting
our ability to quantify potential energy and nutrient savings in the diet. Therefore, further
studies should be conducted with a specific focus on determining the extent of energy and
nutrients savings, as well as seeking to understand the effects of supplemented enzymes
alone, and in complexes or blends.
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