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Abstract: Verification results for the LOGOS software package as applied to numerical simulations
of tsunami waves are reported. The module of the LOGOS software package that is used for
tsunami simulations is based on the numerical solution of three-dimensional Navier–Stokes equations.
The verification included two steps. The first step involved the verification of LOGOS free-surface
flow simulations on the test cases of a collapsing water column and gravity water sloshing in a
tank and the known test cases of wave generation by objects falling into water or lifted out of it.
The verification of LOGOS specifically for tsunami simulations was performed using a reference set
of international benchmarks including the propagation and run-up of a single wave onto a flat slope
and a vertical wall, the sliding of a wedge-shaped body down a slope, flow around an island and
wave run-up over an obstacle. The results of the verification simulations demonstrate that LOGOS
provides sufficient accuracy in numerical simulations of tsunami waves, namely, their generation,
propagation and run-up.

Keywords: Navier–Stokes equations; VOF method; numerical simulation; free surface; tsunami
waves; LOGOS software package

1. Introduction

The adequate description of the generation, propagation and run-up of tsunami waves is one
of the most critical issues in the problem of marine natural disasters [1–8]. The immediate cause of
most tsunami waves is a change in the bottom configuration as a result of an earthquake leading to
large slumps, gaps, etc. Other causes of tsunami waves include landslides, volcanic eruptions and
meteorological sources, rockslides into water and falls of celestial bodies [9–11].

Present-day methods of tsunami studies are most often based on the shallow-water theory and its
disperse extensions. An overview of the existing analytical solutions within this theory is provided
in [9,12]. The numerical implementation of the non-linear shallow-water equations [13,14] enabled
simulations of tsunamis in numerous historical events and delivered reasonable assessments [8,15].
In all these cases, two-dimensional partial differential equations were solved.

Despite the progress achieved, calculations of tsunami characteristics are rather challenging,
because tsunami waves tend to be severely non-linear and highly dispersive. For seismic and volcanic
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tsunamis, these processes are particularly important in the run-up phase, while for tsunamis generated
by falling celestial bodies, they also need to be taken into account near the source of tsunami.

Three-dimensional Navier–Stokes equations [16], which are now at an early stage of their use for
tsunami simulations [7,10,17–19], represent the most exhaustive set of equations that capture tsunami
details in all tsunami phases, from outbreak through to run-up.

Before conducting a numerical experiment, one should identify the range of validity, where a
computational physics model is able to simulate a physical phenomenon under its natural conditions.
The validity of a computational physics model designed to describe one process or another can
be established by measuring the error and uncertainty it introduces relative to a real experiment.
The quantification of the uncertainty and error of a computational physics model can be performed
by testing (validation). Validation involves the testing of model outputs by their comparison with
experimental data to establish whether the numerical simulation results comply with real physics.
The basic validation and verification principles for Computational Fluid Dynamics (CFD) methods are
described in [20,21].

There is an international set of tsunami simulation benchmarks called NTHMP (National Tsunami
Hazard Mitigation Program) [22]. These benchmarks include the propagation and run-up of a single
wave in a constant-depth tank, propagation and run-up of a single wave in a varied-depth tank,
sliding of a wedge-shape body down a slope, and flow around an island. This set of benchmarks offers
data to test whether the computational physics model can correctly describe the process of tsunami
propagation and run-up. It contains wave gage data, based on which one can quantify the error in
mathematical simulation relative to an experiment. Benchmarks from this set and an additional test
case of a wave running up over an obstacle [23] were used to verify our software package LOGOS.
Simulations of cosmogenic tsunamis by LOGOS were verified on internationally recognized test cases,
such as waves generated by a body falling into water [24] or waves induced by lifting a body out of
water [25].

This paper presents verification results for LOGOS simulations of free-surface problems in
general and tsunami waves in particular [26–28]. LOGOS is a three-dimensional multi-physics code
for convective heat and mass transfer and aerodynamic and hydrodynamic simulations on parallel
computers that is already used for tsunami simulations [7,10,18,19]. To assess how accurate LOGOS
simulations are, below, we present LOGOS verification results for free-surface problems, including the
collapse of a liquid column, gravity water sloshing in a tank, the known problems of wave generation by
bodies falling into water or lifted out of water, and tsunami simulations using the NTHMP benchmark
problems [22] with an additional test case of wave run-up over an obstacle. We show that the results
calculated by the LOGOS software package closely match both analytical and experimental data and
results obtained by other authors.

2. Governing Equations and Computational Method

Let us consider a system of air and water as a set of two interfaced incompressible media. We use
the one-velocity approximation, in which water and air have the same continuity and momentum
equations solved for the resulting medium whose properties are linearly dependent on the volume
fraction [29]. This approach is quite common and provides good results in calculations of free-surface
problems [30,31], including those of tsunami waves [7,10,17]. The dynamics of this system are described
by incompressible Navier–Stokes equations, including a continuity equation, a momentum equation,
and an equation for volume fractions of the phases [16,19,29]:
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Here,
→
u is the three-dimensional velocity vector, ρ(k) is the density of phase k, α(k) is its volume

fraction (
∑
k
α(k) = 1), p is the pressure, µ(k) is the molecular viscosity of phase k, and

→
g is the acceleration

due to gravity. This system is solved without using the Reynolds averaging and subsequent closure
of turbulence moment equations, i.e., turbulence is resolved by Direct Numerical Simulations (DNS).
This allows resolving turbulent structures as small as the mesh size. Note that resolving only large
eddies relaxes the fairly strict requirements for the scheme viscosity and dissipation of the numerical
schemes to be used for the modeling of turbulent flows [27].

Equation (1) is discretized by finite volumes on an arbitrary structured mesh and solved numerically
by a fully implicit method [21,32,33] based on the known SIMPLE algorithm. Free-surface flow modeling
involves certain modifications of the SIMPLE algorithm, which are described in detail in [19,32–34].

To describe the finite-volume discretization procedure, let us consider a transfer equation for a
scalar quantity. The equation has the form

∂ρφ

∂t
+

∂
∂x j

(
ρφu j

)
=

∂
∂x j

τi j (2)

Here, ϕ is a scalar quantity and τij is a stress tensor.
The finite-volume method provides for a transition from differentials to algebraic expressions

with respect to mesh cells. Consider two adjacent cells of an unstructured mesh as shown in Figure 1.Geosciences 2020, 10, x FOR PEER REVIEW 4 of 29 
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Figure 1. Two neighbor cells of a computational mesh.

The points i and m are the centers of the adjacent cells; k is a set of all faces of the i-th cell comprised
of a set of its interior faces kint and a set of its exterior faces ks. The vector from the center of the i-th cell
to the center of the m-th cell along the face kint is denoted by di,kint = ri − rm. The vector from the center
of the i-th cell to the center of face ks is denoted by di,ks = rks − ri, where ri is the radius vector.

The time derivative in Equation (2) is approximated by the second-order scheme∮
Vi

∂φ

∂t
dVi ≈

3φn+1
i − 4φn

i + φn−1
i

2∆t
Vi (3)

where the superscript n denotes the time step number, the subscript i denotes the i-th cell, and Vi is the
volume of the i-th cell.

The space discretization of the derivatives in Equation (1) includes their integration over the cell
volume Vi and transition using the Gauss–Ostrogradsky formula to surface integrals, which are then
represented as a sum of volume fluxes across the faces:

∂
∂x j

(
ρu jφ

)
=

∫
Vi

∇(ρuiφ)dVi =

∫
S j

ρφu jdS j ≈
∑

k

ρkφku j,kS j.k =
∑

k

ρkφkFk (4)
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where Sj,k is the surface area of the face k and Fk is the volume flux across the face k of the i-th cell.
The value of the quantity ϕk is determined by the numerical scheme being used.

The discretization of the diffusion term in Equation (2) is performed using the over-relaxed
approach [35], which serves for non-orthogonal mesh discretization. As a result of the discretization,
the diffusion term takes the form∑

k

(
µmumS∗k

)
−

∑
k

(
µiuiS∗k

)
+

∑
k

(
µk〈∇u〉kSαk,i

)
+

+
∑
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(
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(
∂u j
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n j

)
k
Sk

)
+ 2

3
∑
k

(
µi

(
∂uk
∂xk

n j
)
k
δi jSk

)
,

(5)

where dk,j is the distance from the cell center to the face k; S∗k =
Sk,iSk,i
dk, jSk, j

; Sαk,i = Sk,i − S∗k.
This set of equations must be supplemented by boundary conditions. For an incompressible flow,

if the boundary of the computational domain consists of solid walls, all the velocity components at
the boundary must be taken as equal to their corresponding velocity components of the solid surface;
i.e., the fluid can neither slip along the fluid/solid interface nor move normally to it. The velocity and
shear stresses at the fluid/fluid interface must be continuous. Air at the upper boundary has zero static
pressure. The discretized equations above incorporate the following physical boundary conditions:

– Inlet—incoming-flow boundary:
→
u =

→
u inl,

∂p
∂n = 0;

– Pressure—given-pressure boundary: p = ppress, ∂
→
u
∂n = 0;

– Wall—rigid boundary:
→
u = 0, ∂p

∂n = 0;

– Symmetry—symmetry plane: ∂p
∂n = 0, ∂

→
u
∂n = 0.

Thus, in its discretized form, the equation of continuity is written as

∑
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which, considering the equality ρξ,i =
∂ρξ
∂p pi and the boundary conditions, takes the final form
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The convective term on the left side of momentum Equation (1), considering the boundary
conditions, is expressed as
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The diffusion term Equation (5) in Equation (1) takes the form

∑
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The final form of the discretized momentum equation is the following:
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Here, the coefficient D denotes expression Equation (7).
The volume fraction transfer Equation (3), after discretization, takes the form
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(9)

where the symbol G denotes the right side of expression Equation (3).
The approximation we use reduces the scalar quantity transfer Equation (2) to a system of linear

algebraic equations formulated with respect to computational cells:

Aiφi +
∑
kint

Am,kintφm,kint = Ri (10)

where Ai is the diagonal matrix coefficient, kint are the interior cell faces, Am,kint are the off-diagonal
matrix coefficients, and Ri is right-side vector component.

The discretized equivalents of Equation (1) reduced to the system of linear algebraic Equation (10)
can be solved by the SIMPLE algorithm [19,32–34], one of the most common algorithms in computational
fluid dynamics.

At the predictor step, in order to obtain the first approximation of the sought velocity field,
a discrete equivalent of the momentum equation with respect to velocity is constructed without
expanding the pressure gradient term. For the i-th cell, the equation takes the form

Aiui +
∑
kint

Am,kint um,kint = R j
i −

(
∂p
∂xi

)
i
Vi (11)

where ui is the velocity component in the i-th cell and um,kint is the velocity component in the
near-boundary cell m at the face kint.
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The matrix coefficients and the right-side members of the system of linear algebraic Equation (11)
have the form

A j
i =

3Vi
2τ

N∑
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ρ
j+1
ξ,i α

j+1
ξ,i −

∑
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∑
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∑
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4u j
i Vi

2τ

N∑
ξ=1

ρ
j+1
ξ,i α

j+1
ξ,i −

u j−1
i Vi

2τ j+1

N∑
ξ=1

ρ
j+1
ξ,i α

j+1
ξ,i +

∑
kinl

µkinl
un+1

kinl
S∗kinl
−

∑
kinl

(
u j+1

kinl
F j+1

kinl

N∑
ξ=1

ρξ,kinl
αξ,kinl

)
+

+
∑
kint

µkint
〈∇u〉nkint

Sαkint
+

∑
kint

µkint

(
∂u j
∂xi

n j
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+ 2

3
∑
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For the corrector step, an expression for velocity in the i-th cell must be derived from Equation (11):

ui =
1
Ai

R j
i −

∑
kint

Am,kintum,kint

− 1
Ai

(
∂p
∂xi

)
i
Vi = Hi −

Vi
Ai

(
∂p
∂xi

)
i

(12)

where Hi =
1

Ai

R j
i −

∑
kint

Am,kint um,kint

.

Interpolating velocity Equation (12) from the cells to the exterior faces using the geometric
weighting factor λk:

Hi,k −
Vi,k

Ak

(
∂p
∂xi

)
k
= λHi + (1− λ)Hm −

λVi
Ai

(
∂p
∂xi

)
i
− (1− λ)

Vm

Am

(
∂p
∂xi

)
m

(13)

and inserting Equation (13) into continuity Equation (1) gives

∂
∂xi

(
λkHi + (1− λk)Hm −

λkVi

Ai

(
∂p
∂xi

)
i
− (1− λk)

Vm

Am

(
∂p
∂xi

)
m

)
= −

∑
ξ

(
αξ
ρξ

dρξ
dt

)
(14)

In practice, the weight λk can be determined in different ways—for example, basing it on the
cell geometric center-to-face distances or the values of the diagonal coefficients Ai and Am, or letting
λk = 0.5.

Equation (14) must also be discretized with respect to pressure; then, by analogy with Equation (10),
it can be re-written for the i-th cell:

B j
i p

n+1
i +

∑
kint

Bm,kint p
n+1
m,kint

= M j
i (15)

where B j
i is the diagonal equation coefficient, Bm,kint are the off-diagonal coefficients, and M j

i is a
right-side vector component.
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The members in the system of linear algebraic Equation (15) are as follows:

B j
i = −

∑
kint

[
λVi
Ai

+
(1−λ)Vm

Am

]
Skint
|dim |
−

∑
kpress

Vi
Ai

Skpresst

|dgran|
−

αξ
τρξ

∂ρξ
∂p Vi +

αξ
ρξ

∂ρξ
∂p

∑
k

Fk+

+
αξ
ρξ

∂ρξ
∂p i

∑
k−int

Fk−int
+

αξ
ρξ

∂ρξ
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∑
kpress

Fkpress ,

Bm,kint =

[
λVi
Ai

+
(1− λ)Vm

Am

]
Skint

|dim|
−
αξ
ρξ

∂ρξ
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M j
i = −

∑
kpress

Vi
Ai
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|dgran|
Skpress +

∑
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〈
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Solving Equation (15) allows us to find the pressure field, which is used to calculate the mass flux
fields with the formula

Fk =

(
Hi,k −

Vi,k

Ak

(
∂p
∂xi

)
k

)
Si,k (16)

Then, the predictor-corrector procedure is repeated with the updated velocity, pressure and mass
flux fields until the desired accuracy is achieved.

Next, the volume fraction transfer Equation (9) is solved, which also needs to be formulated as a
system of linear algebraic equations for the i-th cell:

A j
iαξ,i +

∑
kint

A j
m,kint

αξ,m,kint = R j
i

Here, the matrix coefficients and the right-side members of the system of linear algebraic equations
are equal to

A j
i =

3Vi
2τ

+
∑
k−int

Fk−int
+

∑
kout

Fkout

A j
m,kint

= Fk−int

R j
i = α

j
ξ,i

2Vi
τ
− α

j−1
ξ,i

Vi
2τ
−

∑
kinl

αξ,inlFkinl
−

αn
ξ,i

ρn
ξ

3ρn+1
ξ
− 4ρn

ξ
+ ρn−1

ξ

2τ
Vi + un+1

i

∑
k

ρn+1
k Si,k


where kout = kinlet ∪ kpress denotes the outgoing-flow boundary condition. This algorithm can be extended
by an original method by taking into account the gravity term for free-surface flow simulations [36].

Thus, using this algorithm, Equation (1) can be solved numerically. This algorithm has been
implemented in LOGOS and adapted for massively parallel computations on multiprocessor
computers [19,26].

Simulations of moving bodies employ an approach based on superimposed multi-domain
(Chimera) meshes [37]. In this case, the main computational domain is mapped onto a background
mesh, while a separate mesh surrounding the solid body is moving atop (Figure 2). The resulting
geometric models are combined into a single mesh representing the initial problem. Interaction
between the background mesh and the mesh atop is implemented using an interpolation template
intended to ensure correct interaction between the topologically disjoint regions.

The new interfaces generated as a result of constructing the template and tagging the cells of the
combined mesh enable communication between the coupled regions and produce the required initial
data for the interpolation template [36]. One of the advantages of this approach is that it allows using
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rather large computational domains. The mesh can be coarse in the regions far from the solid body
and fine in its vicinity. Boundary tracking is performed automatically.
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3. Verification Results for the LOGOS Software Package

The quantitative assessment of simulation results must be performed based on the error in
calculated and experimental data at given points. Changes in the sea level caused by tsunami
propagation are detected by wave gages—instruments that perform measurements and continuous
computerized recording of variations in the sea level at a given accuracy. The instrumental error
of wave gages can range from several millimeters to several centimeters [38]. Therefore, in wave
simulations, it is reasonable to introduce a mean error and calculate it as a sum of the relative errors
at each point in space or time divided by the number of such points. In some tests, we compare a
wave profile relative to the experimental data, while in other cases, we evaluate the maximum value of
the waveform.

Before we proceed to the verification of the tsunami simulations, let us present some results
of LOGOS verification against free-surface test problems, including the collapse of a liquid column,
gravity water sloshing in a tank, the fall of a sphere into a liquid, the fall of a parallelepiped into a
liquid and wave flows induced by lifting a rectangular beam out of water. The verification results
allow us to assess the accuracy of the predicted changes in the sea level in confined space.

3.1. Collapse of a Liquid Column

This problem considers a column of liquid (water) collapsing onto a tank bottom. The experimental
results for the collapsing water column are reported in [30]. The parameters of the experimental setup
and initial location of the water/air interface are shown in Figure 3.

The problem was solved using a block-structured mesh model, a mesh of uniform hexahedral
cells, consisting of 8400 cells: 120 cells in the horizontal direction and 70 cells in the vertical direction;
thus, ∆x = 0.033a and ∆y = 0.0286a. No-slip boundary conditions were applied to the left, right and
bottom walls; the front and the back walls were slip boundaries; the top boundary had a static pressure
held fixed at 0 MPa. The problem was run in single mode on an Intel Core i5 series CPU; the total
computational time was approximately 10 min.

Figure 4a shows the results of the numerical modeling. The solid line represents the air/water
interface, and the black dashes are the velocity vectors. The results are plotted for different time
points: 0.2, 0.6 and 1.0 s. The results are presented in dimensional form as presented by Ubbink [30].
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Figure 4b shows the numerical modeling results obtained in [30]. Figure 4c shows the experimental
photographs [30]. By t = 0.6 s, the wave has reached the right boundary of the model (experimental)
domain, and its hydraulic impact on the wall generates a wave. The time t = 0.6 s corresponds to the
most active phase of collapse with the highest wave. The calculated results demonstrate an air pocket
forming at the left boundary of the domain; its shape is similar in both computations. It can also be
identified in the experimental photograph. At time 1.0 s, the fluid hits the left wall.
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The results indicate that the calculated data qualitatively agree with the experiment in both
unsteady characteristics (wave formation and collapse time) and the shape of the free surface. Figure 5
shows the time evolution of the column height along the left wall of the tank, and Figure 6 is the
position of the leading edge of the liquid along the tank bottom as a function of time. The column
height along the left tank wall, the position of the leading edge along the tank bottom (measured from
the bottom left angle) and the time are dimensionless quantities. The solid black line represents the
curves calculated in this work, the dashed line shows the results calculated in [30], and the markers
represent the experimental data [30]. The mean square deviation in the calculated column height
relative to the experimental data does not exceed 1%. The maximum deviation in the calculated
position of the leading edge relative to the experimental data does not exceed 10%. One can see that
the numerical results agree well with the experiment and the numerical solution reported in [30] both
qualitatively and quantitatively.
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3.2. Gravity Sloshing of Water in a Tank

The problem considers the sloshing of water in a tank under the influence of gravity. The parameters
of the numerical scheme and initial interface location (water/air) are shown in Figure 7 [30].
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Figure 7. Schematic representation of the experimental setup.

The problem was solved using a block-structured mesh model having a size of 0.1 × 0.065 × 0.01 m
and consisting of 33,600 cells, 210 cells in the horizontal direction and 160 cells in the vertical direction,
resulting in ∆x = 4.762·10−4 m and ∆y = 4.0625·10−4 m. No-slip boundary conditions were applied to
the left, right and bottom walls; the front and the back walls were slip boundaries; the top boundary
had a static pressure held fixed at 0 MPa. The problem was run in single mode; the total computational
time was approximately 15 min.

The numerical results for the gravity sloshing of water are presented in Figure 8. The solid
line represents the water/air interface, gray shows the liquid phase, and the black dashes are the
velocity vectors. The results are given for different points in time; T is the theoretical period of cosine
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oscillations, which is 0.3739 s in our case [30]. Panels “a” show the results obtained in [30], and panels
“b”, the results calculated by LOGOS.
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Figure 8. Gravity sloshing: (a) numerical results obtained in [30]; (b) results calculated by LOGOS.

Initially, the interface has a cosine shape. The interface is then released and begins to slosh under
the influence of gravity and liquid inertia. At t = T/4, the interface becomes horizontal, and then,
at t = T/2, it recovers its cosine shape. The process is repeated in time. Figure 9 shows the time
evolution of the sea level along the left wall of the tank.Geosciences 2020, 10, x FOR PEER REVIEW 12 of 29 
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Table 1 shows the time errors in the numerical results relative to the theoretical cosine oscillations.
The time error is calculated as

ts − tt

tt
·100%

where ts is the calculated period of oscillations and tt is the theoretical period T [30].

Table 1. Error in numerical results.

Time
Relative Time Error, %

Numerical Results [30] LOGOS Numerical Results

2T 0.00 0.70
4T −0.75 0.76
6T 0.04 0.03

One can see that the numerical results are in close qualitative and quantitative agreement with the
theory and the numerical solution presented in [30].

3.3. Fall of a Sphere into a Liquid

The problem simulates a fall of a solid sphere into water with low initial velocity. The experiment
was conducted with spheres from different materials and reported in [39]. The problem schematic is
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shown in Figure 10. A sphere having a radius r = 1.27 cm and velocity V = 2.17 m/s hits the surface
of water. The initial sea level h is 0.2 m. The domain is a cylinder of radius R = 0.25 m and height
H = 0.2254 m.
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Figure 10. Schematic representation of the problem.

Two computational cases were considered: in the first, the sphere was made from polypropylene,
and its density was 0.86 of water’s density; in the second, the sphere was made from steel of 7.86 times
water’s density.

The problem domain was discretized with a block-structured mesh model refined around the
solid body and composed of 800,000 cells (see Figure 11). The cell size near the cylinder is equal to 5%
of the cylinder radius. No-slip boundary conditions were applied to the wall inside a cylinder; the top
boundary had a static pressure held fixed at 0 MPa. The problem was run in parallel mode on 120
standard CPUs; the total computational time was approximately 40 min.
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Figure 11. Discrete model: (a) General view; (b) Mesh refinement around the solid body.

Figure 12 illustrates the descent dynamics of the steel sphere: (a) experimental photographs [39];
(b) numerical results obtained for corresponding time points. Gray represents the liquid phase, the solid
black line is the interface, and the sphere is shown in black. At t = 5.9 ms, the sphere is fully submerged.
At t = 54.9 ms, a cavity starts forming above the sphere. The cavity is observed to stop growing at
t = 68.9 ms, both numerically and experimentally.

The numerical and the experimental results are in good qualitative agreement.
Figure 13 shows the depth of sphere descent in water as a function of time. Results are provided

for the two computational cases. Theoretical results are presented in [39].
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3.4. Fall of a Parallelepiped into a Liquid

The verification of the algorithm described above as applied to the description of waves traveling
across a free surface can be performed by the numerical modeling of an experiment described in [24].
In the experiment, a rectangular parallelepiped of height H1 and length l falls freely from height H
into water along the end wall of a tank. The tank is rectangular, with a horizontal bottom, filled with
water to h < H1. In the real experiment, the tank was 4.3 m long and 0.2 m wide. In the unperturbed
condition, water is quiescent. The problem geometry is shown in Figure 14.
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A number of problem configurations were considered with different body dimensions, heights of
fall, and water depths in the tank. These parameters have the following dimensionless form [24]:

H0 = H/h, H0
1 = H1/h, l0 = l/h, ρ0 = (ρ1 − ρ)/ρ, x0 = x/h,

where ρ1 and ρ are the density of the solid body and the liquid, respectively. The values of h, H0, H0
1, l0,

ρ0 and x0 vary depending on the configuration.
In the first configuration, the following values were used: h = 8 cm, H0 = 3.75, H0

1 = 2.26, l0 = 1.15,
and ρ0 = 0.215. For the second computational configuration, h = 8 cm, H0 = 2.90, H0

1 = 2.26, l0 = 0.575,
and ρ0 = 0.215. A wave gage, which detects changes in the sea level, was placed at x0 = 16.

In the third configuration, h = 4 cm, H0 = 4.75, H0
1 = 4.5, l0 = 1.15, and ρ0 = 0.215, and the wave

gage was placed at x0 = 31.5. To model the fall of a parallelepiped into water, the 4.3 × 0.4 × 0.5 m
domain was discretized with a block-structured mesh of about 20,000 cells. The mesh was refined
in the regions of the fall and the wave gage. No-slip boundary conditions were applied to the left,
right and bottom walls; the top boundary had zero static pressure. The experiment was run in parallel
mode on 32 CPUs; the total computational time was approximately 15 min.

Figure 15 shows the waves produced by a falling parallelepiped in the first problem configuration.
The black line is the outline of the parallelepiped. Gray represents the liquid phase. At t = 0.25 s,
we observe an early phase in the development of a cavity and a splash. At t = 0.3 s, the splash continues
to develop. By 0.4 s, the tank bottom becomes clear of water, and the rate of splash formation slows
down. The late phase in the evolution of the cavity (its collapse) and the splash is shown at t = 0.75 s.
Note that the photography time points are not specified in [24], so our numerical results were obtained
for the time points chosen at our discretion.
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Figure 15. Waves induced by a falling parallelepiped in the first configuration: (a) Numerical results
for the time points 0.25, 0.3, 0.4 and 0.75 s; (b) Experimental data.

Figures 16 and 17 are the amplitudes of water sloshing in the tank as a function of time for the
second and the third configurations, respectively. The dots in the plot represent the experimental data
measured by a fixed wave gage [24]. The solid black line shows the amplitude of water sloshing in the
tank obtained in the calculations.
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(- —calculation; •—experiment).

Comparison of the gage readings demonstrates close agreement for the first incoming wave.
For the second configuration, the difference between the calculated and the experimental amplitudes of
the first wave is 4%, and for the third configuration, 5%. The calculated amplitude of the second wave
(“negative”) also closely matches the experimental data, but a difference is observed in subsequent
surface oscillations of millimeter amplitude.

3.5. Wave Flows Induced by Lifting a Beam Partially Immersed into Shallow Water

This problem considers the lifting of a solid body from the surface of a liquid and associated wave
flows [25]. The problem geometry (Figure 18) is a horizontal-bottom rectangular prismatic channel
with a beam partially immersed into shallow water. The modeling was performed without friction and
the surface tension of water, whose viscosity was taken as equal to 10−6.
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Figure 18. Problem geometry.

The rectangular channel is filled with an incompressible liquid, into which a beam is partially
immersed. The beam has length 2L, where L = 1 m, and the same width as the channel. The channel
depth is h0 = 20 cm, and the depth under the beam is h1 = 5 cm. Both the liquid and the beam are
initially at rest. The beam is lifted out of water at a constant velocity of 7.5 cm/s.

The beam motion is simulated using an approach based on superimposed multi-domain (Chimera)
meshes. According to this technique, the mesh is divided into a background mesh, covering all
the computation domain, and an overset mesh, representing the domain of a moving body [37].
The problem domain was discretized with an unstructured computational mesh consisting of truncated
polyhedrons (Figure 19). Highlighted in Figure 19 is the superimposed mesh. The mesh had
~30,000 cells, and its basic size was 0.02 m. Next to the liquid surface, an additional refined block
was constructed with a mesh size of ∆y = 0.005 m. The experiment was carried in parallel mode on
16 CPUs; the total computational time was approximately 20–30 min.
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Figure 20 shows the pictures of wave propagation as a result of lifting the beam at different
time points.Geosciences 2020, 10, x FOR PEER REVIEW 17 of 29 
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Figure 20. Wave propagation.

Figure 21 shows the wave profiles at different time points. The results calculated by LOGOS
are compared with data obtained in [25]. The mean square deviation with respect to the reference
numerical data for this test case does not exceed 7%.
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Figure 21. Wave profiles (—-LOGOS; •—calculations [25]).

The diagrams demonstrate that the results are in close agreement. When the bottom of the
beam is fully under water, depression waves are propagating across the region beyond the beam.
Then, when the beam is lifted, the sea level under it increases, producing a flow directed towards the
beam center. Once the beam is detached from water, two diverging waves are produced.

3.6. Propagation and Run-Up of a Single Wave over a Flat Slope

This problem simulates a single wave of height H propagating in a tank of constant depth
d = 1 m [22] and then running up over a slope of angle β = 2.88◦. The schematic representation of the
tank configuration is shown in Figure 22. This problem was proposed in [22] as a benchmark.
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Figure 22. Tank configuration.

The study [22] considers several problem configurations with different H/d ratios. In the first case,
H/d = 0.0185, and in the second, H/d = 0.3. The initial waveform of the wave is defined by

η(x, 0) = Hsec h2(γ(x−Xs)) (17)

where γ =
√

3H
4d . The initial velocity of the wave is u(x, 0) =

√
g
dη(x, 0), which, in the framework of

the linear shallow-water theory, ensures that the wave is propagating to the right.
The problem was simulated on a mesh composed of 200,000 cells (Figure 23). The technology

of mesh model construction for tsunami simulations is described in detail in [19]. The mesh is
refined near the wave run-up over the slope and toward the interface to resolve the details of wave
propagation. The problem was run in parallel mode on 64 standard CPUs; the total computational
time was approximately 20 min.
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Figure 23. Mesh fragment (blue represents the air phase, red is the water phase, and black represents
mesh cells).

The parameters of both the water and air phases are given in Table 2.

Table 2. Phase properties.

Phase Molecular Viscosity (kg/(m·s)) Density (kg/m3)

Water 0.001 1000
Air 1.85 × 10−5 1.205

Figure 24 shows the positions of the free surface at dimensionless time points t = τ
√

d/g for the
first problem configuration, where τ is an actual physical time.
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Figure 24. Positions of the free surface: (a) τ = 35; (b) τ = 55; (c) τ = 70 (blue represents air;
red represents water).

The light color shows the mixed cells containing both air and water. This layer is thin.
The waveforms of the wave calculated by LOGOS were compared with the analytical data [22].

Figure 25 shows the comparisons for the first configuration (H/d = 0.0185) at different time points
t = τ

√
d/g.
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solution).

Figure 26 shows positions of the free surface at different time points t = τ
√

d/g for the second
configuration. Figure 27 shows data comparisons for the second configuration (H/d = 0.3) at different
time points.
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The numerical results demonstrate close agreement with the analytical data: The single wave
moves while preserving its amplitude until it reaches the slope, runs up onto the slope and washes
back. The results calculated by LOGOS consistently describe both the propagation of the wave and its
run-up over the slope.

3.7. Propagation and Run-Up of a Single Wave in a Varied-Depth Basin

The problem simulates a single wave propagating in a basin of varied depth [22]. The configuration
and the dimensions of the basin are shown in Figure 28.
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In the reference, three problem configurations are considered with different ratios of wave height
H to basin depth d. In the first case, H/d = 0.038 and L = 2.4 m; in the second case, H/d = 0.259 and
L = 0.98 m; in the third case, H/d = 0.681 and L = 0.64 m. The spacing between wave gages G1 and G2
is 2.4, 0.98 and 0.64 m in the first, second and third cases, respectively. The initial waveform of the
wave is given by Equation (17).

The problem was simulated on a computational mesh of 160,000 cells. The mesh was refined
towards the interface to provide more accurate simulation. The cell height was chosen such that there
were at least 10 cells along the wave height and at least 20 cells along the wavelength. The parameters
of both the water and air phases are given in Table 2.

The calculated quantitative characteristics of the wave pattern in the basin can be evaluated
based on the wave gage data. LOGOS calculations were performed for all the problem configurations.
To demonstrate that the problem solution is correct, let us compare the numerical results with
the analytical data for the first problem configuration (Figure 29). The results for the two other
configurations look similar.

Figure 29 shows that the numerical results, both qualitatively and quantitatively, closely match
the analytical data. Both the wave incident on the wave gage and the reflected wave are described
well. The wave propagates with the same velocity as in the experiment. The maximum deviation in
the calculated amplitudes does not exceed 4% for the incoming wave and 13% for the reflected wave at
wave gage G6. This error is satisfactory for tsunami simulations.

3.8. Single Wave Flowing around a Conical Island

This problem serves for numerically modeling an experiment described in [22,40]. In this
experiment, a single wave was produced by a wave maker in a basin of length 25 m and width 30 m
filled with water to 0.32 m. The wave flowed around an island of a regular truncated conical shape
having a height of 0.625 m, a bottom base diameter of 7.2 m and a top base diameter of 2.2 m. The basin
walls were lined with an absorbing material to minimize wave reflection. Changes in the sea level
were recorded by means of gages. The problem geometry and locations of the reference gages are
shown in Figure 30.
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Figure 30. Problem geometry and gage locations.

Two problem configurations with different wave heights were considered. For the first case,
H = 0.016 m; for the second case, H = 0.032 m. The initial waveform of the wave is given by Equation (17).

The problem was solved using a computational mesh refined at the interface and composed of
1.4 million cells. The base cell size is equal to 0.08 m; the vertical cell size near the interface is equal to
0.005 m. The basin walls in the discrete model were non-reflecting boundaries, through which waves
could leave the domain without reflection; the bottom and the island were no-slip boundaries; and the
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top boundary had fixed zero static pressure. The experiment was run in parallel mode on 128 CPUs;
the total computational time was about 60 min.

Figure 31 shows the calculated results for a wave flowing around an island at individual time points.

Geosciences 2020, 10, x FOR PEER REVIEW 22 of 29 

 

 
Figure 30. Problem geometry and gage locations. 

Two problem configurations with different wave heights were considered. For the first case, H = 
0.016 m; for the second case, H = 0.032 m. The initial waveform of the wave is given by Equation (17). 

The problem was solved using a computational mesh refined at the interface and composed of 
1.4 million cells. The base cell size is equal to 0.08 m; the vertical cell size near the interface is equal to 
0.005 m. The basin walls in the discrete model were non-reflecting boundaries, through which waves 
could leave the domain without reflection; the bottom and the island were no-slip boundaries; and 
the top boundary had fixed zero static pressure. The experiment was run in parallel mode on 128 
CPUs; the total computational time was about 60 min. 

Figure 31 shows the calculated results for a wave flowing around an island at individual time 
points. 

 

Figure 31. Calculated results for a wave flowing around an island at individual time points for H = 
0.032 m. 

The calculated results show that the wave pattern of the flow around the island corresponds to 
the classical description of a flow with a detached boundary layer around a bluff-stern body [41]. 

Figure 31. Calculated results for a wave flowing around an island at individual time points for
H = 0.032 m.

The calculated results show that the wave pattern of the flow around the island corresponds to
the classical description of a flow with a detached boundary layer around a bluff-stern body [41].

Figure 32 shows the amplitude of water sloshing in the basin as a function of time for the two
problem configurations. The dots in the plot represent the experimental data from [40]. The solid black
line shows the amplitude of water sloshing in the basin obtained in the LOGOS calculations.
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Comparison of the gage readings shows their close agreement for the first incident wave both
in the waveform and in the amplitude of the wave. However, some differences in further sloshing
are observed, which can be related to the mesh quality. The mean square deviation relative to the
analytical solution for this problem is about 10%.

3.9. Generation of Waves by a Sliding Wedge-Shaped Body

This problem serves for numerically modeling an experiment described in [22,42]. In this
experiment, waves were generated by a wedge-shaped body of height 0.455 m, length 0.91 m and
width 0.61 m sliding under the influence of gravity down a slope in a tank with water (Figure 33).
The problem geometry and gage locations are shown in Figure 33. All the dimensions are given
in meters.
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Gage 1 measures the change in sea level, and Gage 2, the run-up over the slope.
The problem was solved using a composite computational mesh (Figure 34) refined at the interface

and wave propagation area and composed of 2.5 million cells, including a prismatic sublayer on
the slope. The base cell size is equal to 0.02 m. The walls and the bottom of the tank were no-slip
boundaries; the top boundary had fixed zero static pressure. The problem was run in parallel mode on
96 CPUs; the total computational time was 70 min.
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Figure 35. Free surface position.

The numerical modeling confirms that the sea level behind the wedge-shaped body sliding down
along a slope is depressed, following which a diverging wave forms. Figure 36 shows the wave
amplitude as a function of time for Gages 2 and 4.
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The plots in Figure 36 demonstrate close quantitative agreement between the numerical and
the experimental data. Here, we estimate the waveform relative to the experiment; the mean error,
taken as the mean value of the errors corresponding to the given experimental points, for this problem
is about 15%.

3.10. Wave Propagation in a Nonuniform-Bottom Tank with Run-Up onto an Obstacle

This problem considers a wave traveling across a basin of length 22 m and depth h0 = 0.2 m.
The bottom of the basin starting from x = 10 m has a slope and an obstacle. Experimental studies
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of such wave propagation are reported in [23]. This problem is a good test to verify the technique
described above.

Figure 37 shows the problem geometry. The wave is formed at the left wall of the basin and has a
height of H0 = 0.07 m.
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Elevation coordinates of the obstacle are given in Table 3.

Table 3. Elevation coordinates of the obstacle.

T1 (13.63, 0.008) m
T2 (13.67, 0.017) m
T3 (13.70, 0.025) m
T4 (13.73, 0.033) m
T5 (13.77, 0.042) m
T6 (13.80, 0.050) m
T7 (13.83, 0.059) m
T8 (13.86, 0.067) m
T9 (13.97, 0.065) m
T10 (13.99, 0.055) m
T11 (14.01, 0.044) m
T12 (14.02, 0.034) m

The problem domain was discretized with a three-dimensional unstructured computational mesh
consisting of truncated polyhedrons (Figure 38).
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The mesh had 1.1 million cells. The characteristic cell size was set as 0.1 m. To resolve the moving
wave in greater detail, an additional mesh block was constructed with refinement around y = 0 from
−0.1 to 0.2 m, where the characteristic size was ∆x = 0.02 m and ∆y = 0.001 m. The problem was run in
parallel mode on 64 CPUs; the total computational time was 20 min.

Figure 39 shows the wave profiles calculated by LOGOS in comparison with the experiment at
different time points. One can see that the calculated and the experimental data are in close agreement.
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Figure 40 presents a comparison of the calculated wave profiles with the experimental data and
calculated velocity fields.
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The paper presents verification results for the LOGOS software package as applied to tsunami 
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Figure 40. Wave profile: (a)—experiment; (b)—calculation; (c)—velocity field (left—time 2.63 s,
right—time 3.71 s)

The results shown in the figure demonstrate close qualitative agreement between the calculated
and the experimental data.

4. Conclusions

The paper presents verification results for the LOGOS software package as applied to tsunami
simulations. First, LOGOS free-surface flow simulations were verified against the test cases of a
collapsing water column and gravity water sloshing in a tank and the known test cases of wave
generation by objects falling into water or lifted out of it. Then, LOGOS verification specifically as
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applied to tsunami simulations was performed on international benchmarks, including the propagation
and run-up of a single wave onto a flat slope and a vertical wall, the sliding of a wedge-shaped body
down a slope, flow around an island and wave run-up onto an obstacle.

The results of the verification calculations show that LOGOS enables sufficiently accurate
numerical simulations of free-surface flows and delivers acceptable results in tsunami simulations.
LOGOS is shown to be good at modeling the formation, propagation and run-up of waves. For
all the problems, the error in the calculated results relative to the reference data does not exceed
10%, except for one problem, in which the error was 15%. This level of accuracy is satisfactory for
tsunami simulations. Consequently, this technology can be used in numerical simulations of tsunami
propagation, including generation, propagation and run-up on a beach.
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