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Abstract: In this paper, a study concerning the soil liquefaction potential in the city of Catania is
presented. The stress-based liquefaction analysis framework for cohesionless soil includes a function
that describes fundamental aspects of dynamic site response, i.e., the shear stress reduction coefficient,
rd, which depends on several factors (depth; earthquake and ground motion characteristics; dynamic
soil properties). Various relationships of rd are reported in literature because of the importance of
assessment of CSR. Herein, new variations of rd with depth have been obtained using different
deterministic earthquake scenarios as input motion. The relationships are based on large numbers of
site response analyses for different site conditions. The new relationships obtained have been used
for the evaluation of the liquefaction potential in the area of the Catania Harbour. The liquefaction
resistance has been evaluated by the horizontal stress index (KD) from seismic dilatometer Marchetti
tests (SDMTs). Various correlations were developed to estimate the CRR from KD, expressed in form
of CRR-KD curves to differentiate between liquefiable and non-liquefiable zones. In this study three
different CRR-KD curves have been used.

Keywords: liquefaction; site response analyses; simplified analysis methods; shear stress reduc-
tion factor

1. Introduction

Soil liquefaction is a major cause of damage during earthquake [1]. Liquefaction is
defined as the transformation of a granular material from solid to a liquefiable state as a
consequence of increase pore pressure and reduced effective stress [2]. Thus, the evaluation
of the susceptibility of a site to seismic-induced liquefaction is an important step in many
geotechnical investigations. It may be assessed comparing the cyclic resistance ratio (CRR)
to the cyclic shear stress ratio (CSR) due to the ground motion [3–7].

Estimates of the in situ CSR can be developed directly, using dynamic response
analysis, but it is common in simplified analysis methods to develop estimates of the in
situ CSR using empirical relationships [5]. One of the parameters to be evaluated is the
stress reduction coefficient rd.

In this paper, new rd relationships are proposed for the eastern coastal plain of Catania
area (Italy). The city of Catania, in South-Eastern Sicily, was affected by several destructive
earthquakes of about magnitude 7.0 in past times. Extensive liquefaction effects occurred
following the 1693 and 1818 strong earthquakes [8–11].

2. Shear Stress Reduction Factor: State-of-Art Review

The stress-based simplified procedure for evaluating soil liquefaction potential, orig-
inally developed by Seed and Idriss [12], compares the seismic demand of a soil layer
(CSR) with the capacity of the soil to resist liquefaction (CRR). If CSR is greater than CRR,
liquefaction can occur. The cyclic stress ratio CSR can be calculated by the following
equation [3]:
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where τav = average cyclic shear stress, amax = peak horizontal acceleration at the ground
surface generated by the earthquake, g = acceleration of gravity, σv0 and σv0’= total and
effective overburden stresses, and rd = stress reduction coefficient depending on depth.

The stress reduction coefficient rd is added to adjust for the flexibility of the soil profile
because the soil does not respond as a rigid body [6].

For routine practice the values of rd are estimated from the chart by Seed and Idriss [12]
as shown in Figure 1.
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Figure 1. Range of values of rd for different soil profiles (Modified from Seed and Idriss [12]).

This chart was determined using a limited number of input strong motion and soil
profiles having sand in the upper ±15 m. The dashed line labeled “Average values”
represents the recommended values of rd from the surface to a depth of 12 m (~40 ft) [5].
The value of rd decreases from a value of 1 at the ground surface to lower value at large
depths.

The following equations can be used to estimate the average rd value given in the
chart from the surface to a depth 30 m (~100 ft):

rd = 1.0− 0.00765z f or z ≤ 9.15 m (2a)

rd = 1.174− 0.0267z f or 9.15 m < z ≤ 23 m (2b)

rd = 0.744− 0.008z f or 23 m < z ≤ 30 m (2c)

where z = depth below ground surface in meters.
The Equations (2a,b) were proposed by Liao and Whitman [13] and the Equation (2c)

was proposed by Robertson and Wride [14]. Youd et al. [7] suggested the Equations (2a,b)
for noncritical projects and did not recommend values of rd below a depth of 23 m. Indeed,
the uncertainty of rd increases with depth and the simplified procedure is not well verified
for depths greater than 15 m [14]. Moreover, the rd proposal of Seed and Idriss understates
the variance and provides biased (generally high) estimation of rd between 3 and 15 m [1].
Unfortunately, it is the critical soil strata for evaluating soil liquefaction potential [1].
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Several other relationships have been proposed because of the importance of assess-
ment of CSR. Ishihara [15] performed a series of analyses using uniform soil profile and
sinusoidal input motions and concluded that the parameter rd can be expressed as:

rd =
VS
wz

sin
(

wz
VS

)
(3)

where VS = uniform soil shear wave velocity, w = frequency of excitation, z = depth. This
relationship is plotted in Figure 2.
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Another simple and widely used relationship is the one proposed by Iwasaki [16] in
which the parameter rd is expressed through a linearly decreasing function with depth as:

rd = 1− 0.015z (4)

This function was obtained applying six earthquake motions to two alluvial deposits.
Idriss [17], based on studies carried out by Golesorkhi [18], performed several hundred

parametric site response analyses and proposed a rd relationship that takes into account
the effects of earthquake magnitude and depth in the evaluation of rd.

For z ≤ 34 m the following equation was obtained:

ln(rd) = α(z) + β(z)M (5)

where
α(z) = −1.012− 1.126 sin

( z
11.73

+ 5.133
)

(5a)

β(z) = 0.106 + 0.118 sin
( z

11.28
+ 5.142

)
(5b)

For z > 34 m the following expression is more appropriate:

rd = 0.12 exp(0.22M) (6)

in which z = depth in meters and M = moment magnitude.
Plots of rd calculated using previous equation for M = 51/2, 61/2, 71/2, and 8 are presented

in Figure 3. Also shown is the average of the range published by Seed and Idriss [12].
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Figure 3. Variation of the stress reduction coefficient with depth and earthquake magnitude (from
Idriss and Boulanger [6]).

Cetin and Seed [5], using the Bayesian updating method, suggested new rd correlations
as a function of depth, earthquake magnitude, intensity of shaking, and site stiffness.
They performed a total of 2153 site response analyses by the equivalent linear method.
The rd recommendations proposed by Seed and Idriss [12] are conservatively biased
compared to over 80,000 point estimations of rd from 2153 cases as shown in Figure 4.
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Figure 4. rd results of the site response analyses. Also shown for comparison is the proposed rd range
and recommendations of Seed and Idriss [12] (from Cetin and Seed [5]).

Another probabilistic relationship was developed by Kishida et al. [19,20] using
Monte Carlo simulations. The relationship was based on about 23,000 analyses. The input
parameters were PGA, the average shear wave velocity, and the spectral ratio parameter.
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A recent study was performed by Lasley et al. [21]. They suggested a new rd relation-
ship from equivalent-linear site response analyses. Several forms for rd were examined and
the following form was selected for its simplicity and shape:

rd = (1− α) exp
(
−z
β

)
+ α (7)

where α = limiting value of rd at large depths, β = variable that controls the curvature of the
function at shallow depths, z = depth in meters and (1-α) = term that scales the exponential.

Two different sets of expression for α and β were proposed, one being a function of
magnitude (Mw) and average shear-wave velocity in the upper 12 m of the profile (VS12)
and the other solely being a function of MW. The first set of expressions for α and β is:

α1 = exp(b1 + b2Mw + b3VS12) (7a)

β1 = exp(b4 + b5Mw + b6VS12) (7b)

and the second set is:
α2 = exp(b1 + b2Mw) (8a)

β2 = b3 + b4Mw (8b)

where b1-b6 are regression coefficients.

3. Seismicity of the Catania Area

The city of Catania, in South-Eastern Sicily (Italy), is subjected to high seismic hazards.
It was shaken by a number of strong earthquakes. In particular the events of February 1169,
December 1542, January 1693, February 1818 and January 1848 produced relevant dam-
ages [22]. A repetition of events with similar characteristics would provide the additional
risk of a damaging tsunami, as well as liquefaction phenomena around the coast [9–11].

Seismic liquefaction phenomena were reported by historical sources [23–25] follow-
ing the 1693 (MS = 7.0–7.3, Io = X–XI MCS) and 1818 (MS = 6.2, Io = IX MCS) strong
earthquakes [26].

Figures 5 and 6 show the intensity maps for both earthquakes.
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The most significant liquefaction features seem to have occurred in the Catania area,
near Saint Giuseppe La Rena site, situated in the meisoseismal region of both events.
These effects are significant for the implications on hazard assessment mainly for the
alluvial flood plain just south of the city, where most industry and facilities are located [27].

The seismic events that occurred in January 1693 and February 1818 have been chosen
as scenario earthquakes.

The Val di Noto earthquake of 11 January 1693 struck a vast territory of south-
eastern Sicily and caused the partial, and in many cases total, destruction of 57 cities
and 60,000 casualties [28–31]. The Etna earthquake that took place on 20 February 1818,
was a moderate earthquake, but its effects were noticed over a vast area [9,32–34]

4. Site Response Analysis

Local site response analyses, as well as dynamic soil-structure interaction analyses,
have been performed in Catania area (Sicily, Italy), which is recognized as a typical Mediter-
ranean city at high seismic risk [35–40].

A database of about 1200 boreholes and water-wells is available in the data-bank of the
Research Project: Detailed Scenarios and Actions for Seismic Prevention of Damage in the Urban
Area of Catania [41]. The creation of the database provided the basis for the geotechnical
zonation and seismic microzonation of the city of Catania [42,43]. Based on the geotechnical
zonation, only the eastern coastal plain of Catania is susceptible to liquefaction because
of the presence of saturated sand deposits in the uppermost 20 m. In this paper, new rd
relationships are proposed for the eastern coastal plain of Catania.

Table 1 shows experimental sites and tests used to obtain new rd relationships.
The locations of experimental sites are reported in Figure 7.
In the Saint Giuseppe La Rena site, eight boreholes (No. 418–425 of the database) were

made. The depth of the boreholes varies from 8 to 30 m, the water table lies around 2 m
below the ground surface and, for all of them, standard penetration tests (SPTs) date are
available. Near the borings, eleven cone penetration tests (CPTs) were also made. More
recently, at the same site, a seismic dilatometer Marchetti test (SDMT1) was performed.
The SDMT1 has an effective depth of 23 m. The subsoil exploration revealed the presence
of sand with a content of fine particles less than 30% for a depth of about 10 m.

The locations of the SPTs, CPTs, and SDMT1 are reported in Figure 8 [8]. Figure 9
shows an example of SPT profile.
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Table 1. Experimental sites and tests used to obtain new rd relationships in Catania area (Sicily, Italy).

Experimental Sites Tests

Saint Giuseppe La Rena SPT 1 (borehole 418)
Saint Giuseppe La Rena SPT 2 (borehole 419)
Saint Giuseppe La Rena SPT 3 (borehole 420)
Saint Giuseppe La Rena SPT 4 (borehole 421)
Saint Giuseppe La Rena SPT 5 (borehole 422)
Saint Giuseppe La Rena SPT 6 (borehole 423)
Saint Giuseppe La Rena SPT 7 (borehole 424)
Saint Giuseppe La Rena SPT 8 (borehole 425)
Saint Giuseppe La Rena SDMT 1

Catania Harbour SDMT 2
Catania Harbour SDMT 3
Catania Harbour SDMT 4
Catania Harbour SDMT 5
Catania Harbour SDMT 6

Nazario Sauro school SDMT 7
Nazario Sauro school SDMT 8

INGV building SDMT 9
Madre Teresa di Calcutta School SDMT 10

STM M6 SDMT 11
Bellini Garden SDMT 12

Monte Po SDMT 13
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In the Catania Harbour area five seismic dilatometer Marchetti tests (SDMT2-6) were
performed. They have an effective depth of 30.50 m, 32.00 m, 31.00 m, 30.00 m, and 32.00 m.
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Two seismic dilatometer tests, indicated as SDMT 7 and SDMT 8, were conducted from
ground level to depths of 17.5 m and 29.5 m, respectively, in the Nazario Sauro school site.
In addition, in the INGV (National Institute of Geophysics and Volcanology) site, a seismic
dilatometer test (SDMT 9) was performed. It has an effective depth of 34.50 m. Other
SDMT tests (SDMT 10-13) were carried out in Madre Teresa di Calcutta School (SDMT 10,
depth of 29.50 m), STM M6 (SDMT 11, depth of 39.94 m), Bellini Garden (SDMT 12, depth
of 30.44 m), and Monte Po (SDMT 13, depth of 12.50 m) sites. Figure 10 shows the location
of the SDMTs in each experimental sites.
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The SDMTs have been carried out with the aim to evaluate the soil profile of shear
wave velocity for the site response analysis. VS measurements have been incorporated
within a Marchetti flat dilatometer (DMT) by placing a velocity transducer in a connecting
rod just above the blade. The seismic modulus is an instrumented tube housing two
receivers at a distance of 0.50 m [8,30] (Figure 11).
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Figure 11. Seismic dilatometer test: (a) SDMT equipment (blade and seismic module); (b) schematic
test layout (From Castelli et al. [30]).

The test configuration “two receivers”/“true interval” avoids the problem connected
with the possible inaccurate determination of the “first arrival” time sometimes met with
the “pseudo interval” configuration (one receiver) [8,30]. The energization is obtained by
a swinging hammer, hitting horizontally a steel parallelepipedal base. The shear wave
velocity Vs is the ratio between the difference of distance between the energy source and
the two receivers and the measured delay time of the pulse from the upper to the lower
receiver [8].

SDMT obtained parameters by the equipment shown in Figure 12 at the sites are: Id:
material index; M: vertical drained constrained modulus; φ: angle of shear resistance; KD:
horizontal stress index; VS: shear waves velocity; G0 = δV2

S: small strain shear modulus.
Shear wave velocity plays a fundamental role in seismic analyses. It is widely recog-

nized that NSPT-value and S-wave velocity of sands are variables dependent on several
parameters such as combinations of effective stress, void ratio, soil fabric, etc. [44].

The possibility of using the standard penetration test blowcounts, in order to deter-
mine the VS, is based on the presence in the literature of several empirical correlations that
relate VS and NSPT-values.

The following empirical correlations have been used to obtain the shear wave velocity
profiles, as a function of depth, for each of the eight boreholes.

(a) Ohta and Goto [45]:

VS = 54.33(NSPT)
0.173α β

( z
0.303

)0.193
(9)

where VS = shear wave velocity (m/s), NSPT = number of blows from SPT, z = depth
in meters, α = age factor (Holocene = 1.000, Pleistocene = 1.303), β = geological factor
(clays = 1.000, sands = 1.086).

(b) Yoshida and Motonori [46]:

VS = β(NSPT)
0.25σ′

0.14
V0 (10)

where VS = shear wave velocity (m/s), NSPT = number of blows from SPT, β = geological
factor (any soil 55, fine sand 49), σv0’ = effective vertical stress.

In Figure 13, the shear wave velocities are shown against depth for borehole 421,
as an example, by Equations (9) and (10). Also shown is the shear wave velocity from
SDMT1. It is possible to notice that the values obtained with the correlation of Yoshida and
Motonori are slightly higher than values determined with the correlation of Ohta and Goto
and closer than the values measured from the SDMT1. Thus, it was decided to choose for
the seismic response analysis, the values of Vs calculated with the Equation (10), because
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they are more likely to adhere to the real values. Moreover, Equation (10) better captures
the soil variability because it includes the unit weight of soil.
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Figure 12. SDMT equipment (a) at the Saint Giuseppe La Rena site; (b) at the Catania Harbour site; (c) at STM M6 site; (d) at
Bellini Garden site; (e) at Monte Po site; (f) at INGV site.

In addition to situ investigations, the following laboratory tests were carried out on
undisturbed samples: n. 6 Resonant Column tests, n. 3 Direct shear tests, and n. 3 Triaxial
tests.

Results of direct shear tests are presented in Figures 14 and 15 for S2C2 (retrieved at
13.20 m in SDMT2 borehole) and S4C1 (retrieved at 8.40 m in SDMT4 borehole) soil samples.
Figure 14 shows the horizontal shear stress- horizontal displacement curves under different
normal stress conditions (98.1 kN/m2, 196.2 kN/m2 and 294.3 kN/m2). The plots of shear
stresses corresponding to failure versus normal stresses are shown in Figure 15.
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Figure 14. Horizontal shear stress- horizontal displacement curves under different normal stress conditions (98.1 kN/m2,
196.2 kN/m2 and 294.3 kN/m2): (a) S2C2 soil sample (retrieved at 13.20 m in SDMT2 borehole), (b) S4C1 soil sample
(retrieved at 8.40 m in SDMT4 borehole).

The experimental results of resonant column tests were used to determine the empiri-
cal parameters of the equation proposed by Yokota et al. [47] to describe the shear modulus
decay with shear strain level:

G(γ)

G0
=

1

1 + αγ(%)β
(11)

The values of α = 9 and β = 0.815 were obtained.
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As suggested by Yokota et al. [47], the inverse variation of damping ratio with respect
to the normalized shear modulus has an exponential form:

D(γ)(%) = η exp
[
−λG(γ)

G0

]
(12)

in which D(γ) = strain dependent damping ratio, γ = shear strain, η, λ = soil constants. The
values of η = 80 and λ = 4 were obtained [48].
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Local site response analyses have been performed using 1-D linear equivalent code
STRATA [49] assuming the geometric and geological models of substrate as 1-D physical
models.

The shear wave velocity profiles used for soil response analyses are obtained from SPTs
date, available for all the eight boreholes (N◦418–425), and from the seismic dilatometer
tests (SDMT1-13). The values of the other parameters were taken from the geotechnical
characterization obtained through in situ and laboratory tests performed.

The dynamic response model requires the knowledge of the depth of bedrock. The con-
ventionally adopted depth of the bedrock corresponds to a VS value of 800 m/s (soil type A
according to Italian technical regulations [50]). The criterion of choice adopted to evaluate
the depth of bedrock consists in the linear interpolation of the shear waves profiles. The
depth obtained is approximately 80 m which corresponds to a VS value of about 800 m/s.

During strong earthquakes the soil tends to behave as non-linear material. To take
into account the soil non linearity, laws of shear modulus and damping ratio against strain
have been inserted in the code.

The fourteen 1-D columns have been excited at the base using four seismograms.
The chosen input motions are: three seismograms, called B3R3RAD, PT1R3, and PT6R3,
evaluated assuming the source to be along the Hyblean-Maltese fault and generating the
1693 seismic ground motion scenario [51,52]; a seismogram evaluated assuming the source
to be along the Hyblean-Maltese fault and generating the 1818 seismic ground motion
scenario [51].

Based on the interactive seismic hazard maps of the city of Catania [53], the seismo-
grams have been scaled to the maximum PGA of 0.3 g (corresponding to a return period
of 975 years) and to the maximum PGA of 0.5 g (corresponding to a return period of
2475 years) by entering the scale factors in the STRATA code [49]. The interactive seismic
hazard maps (Figure 16) were obtained by a probabilistic approach [53].
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Figure 16. Interactive seismic hazard maps of the city of Catania: (a) 5% probability of exceedance in 50 years (return period
of 975 years); (b) 2% probability of exceedance in 50 years (return period of 2475 years).

Figures 17 and 18 show the results of seismic site response analyses for the seismic
dilatometer tests (SDMT1-13) and for n. 418–425 boreholes to evaluate the variation of rd
over a range of soil profiles.Geosciences 2019, 9, x FOR PEER REVIEW 15 of 27 
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5. Shear Stress Reduction Factor rd in the Catania Area (Italy)

The procedure for computing the factor of safety against liquefaction is termed “sim-
plified procedure.” Since its inception in the 1970s, it has been revised and updated by
many authors. One of the parameters to be evaluated is the stress reduction coefficient, rd,
as a parameter describing the ratio of cyclic stress for a flexible soil column to the cyclic
stress for a rigid soil column [5] (Figure 19):

rd =
(τmax)deformable soil
(τmax)rigid body

(13)

Herein, new stress reduction coefficient rd relationships are proposed for the eastern
coastal plain of Catania area (Italy). They have been developed from equivalent-linear site
response analyses performed on soil profiles obtained from SPTs date, available for eight
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boreholes (n. 418–425), and from seismic dilatometer tests (SDMT1-13). The seismic events
of 1693 and 1818 have been chosen as scenario earthquakes.Geosciences 2019, 9, x FOR PEER REVIEW 17 of 27 
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Figure 19. Schematic for determining maximum shear stress, τmax, and the stress reduction coefficient,
rd (from Idriss and Boulanger [6]).

According to the approach originally proposed by Seed and Idriss [12], the ranges
of values of rd for sandy saturated soil profiles of eastern coastal Catania area have been
determined. They are shown in the Figures 20 and 21.

Geosciences 2019, 9, x FOR PEER REVIEW 17 of 27 

 

 
Figure 19. Schematic for determining maximum shear stress, 𝜏 , and the stress reduction coeffi-
cient, rd (from Idriss and Boulanger [6]). 

Herein, new stress reduction coefficient rd relationships are proposed for the eastern 
coastal plain of Catania area (Italy). They have been developed from equivalent-linear 
site response analyses performed on soil profiles obtained from SPTs date, available for 
eight boreholes (n. 418–425), and from seismic dilatometer tests (SDMT1-13). The seismic 
events of 1693 and 1818 have been chosen as scenario earthquakes.  

According to the approach originally proposed by Seed and Idriss [12], the ranges of 
values of rd for sandy saturated soil profiles of eastern coastal Catania area have been 
determined. They are shown in the Figures 20 and 21. 

 
Figure 20. Range of values of rd for different soil profiles (SPT1-8 and SDMT1-13) using 1693 and 
1818 scaled synthetic seismograms to the maximum PGA of 0.3 g. 

Figure 20. Range of values of rd for different soil profiles (SPT1-8 and SDMT1-13) using 1693 and
1818 scaled synthetic seismograms to the maximum PGA of 0.3 g.

The dashed lines labelled “Average values” represent the recommended values of rd
from the surface to a depth of 30 m. They can be approximated by Equations (14) and (15).

rd = 1− 0.018 z PGA = 0.3g (14)

rd = 1− 0.017 z PGA = 0.5g (15)

In the Figure 22, the rd relationships obtained for soil profiles of the Catania coastal
area are compared to the relationship previously proposed by Iwasaki [16]. As can be seen
from the chart, the latter provides slightly higher estimates of rd.
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Figure 22. Comparison of rd relationship obtained by Iwasaki [16] and relationships proposed in this
study.

Moreover, the following two sets of equations can be used to estimate the average rd
values, given in the Figures 20 and 21, from the surface to a depth 30 m:

rd = 1.0− 0.028z for z ≤ 9.15m (PGA = 0.3) (16a)

rd = 0.840− 0.010z for 9.15m < z ≤ 23m (PGA = 0.3) (16b)

rd = 0.723− 0.005z for 23m < z ≤ 30m (PGA = 0.3) (16c)
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rd = 1.0− 0.024z for z ≤ 9.15m (PGA = 0.5) (17a)

rd = 0.889− 0.011z for 9.15m < z ≤ 23m (PGA = 0.5) (17b)

rd = 0.677− 0.002z for 23m < z ≤ 30m (PGA = 0.5) (17c)

In the Figure 23, the suggested rd relationships are compared to relationships previ-
ously proposed by Liao and Whitman [13], and Robertson and Wride [14] from the chart of
Seed and Idriss [12]. It is possible to observe that the rd proposal of Seed and Idriss [12]
provides higher estimation of rd between 0 and 19 m.
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Lastly, it is possible to notice that the Equations (14) and (16a–c) provide slopes of
the straight lines slightly lower than that given by Equations (15) and (17a–c), respectively.
This is due to the fact that during strong motion the soil tends to behave as non-linear.

6. Evaluation of Liquefaction Potential Using the Seismic Dilatometer Marchetti Tests
(SDMTs) in the Catania Harbour (Italy)

The new rd relationships, more responsive to soil types examined, have been used for
potential liquefaction evaluation in the Catania Harbour (Italy).

One way to quantify the potential for liquefaction is through the computation of the
liquefaction resistance factor (FSL) profile given by the ratio of the cyclic resistance ratio
CRR(z) to cyclic shear stress ratio CSR(z), where z is the depth of the deposit [54].

The cyclic shear stress ratio CSR is calculated by Equation (1). Moreover, the stress-
based analysis framework includes a magnitude scaling factor (MSF). It allows to adjust
the induced CSR during earthquake magnitude M to an equivalent CSR for an earthquake
magnitude M = 7.5.

According to Youd et al. [7], the MSF is given by the following expression:

MSF =
102.24

M2.56 (18)
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The cyclic resistance ratio CRR is commonly evaluated using empirical correlations
with SPT and CPT. However, the latter are relatively insensitive to some factors that can
influence the liquefaction resistance such as ageing, stress history, overconsolidation, and
horizontal earth pressure coefficient. Instead, the dilatometer test could take better account
of these factors in the evaluation of liquefaction resistance [55].

Marchetti [56] and later studies suggested that the horizontal stress index from DMT
is a suitable parameter to evaluate the liquefaction resistance of sands [8]. In this paper
three CRR-KD curves, approximated by the Equations (19)–(21), have been used.

CRR = 0.0107KD
3 − 0.0741KD

2 + 0.2169KD − 0.1306 (19)

CRR = 0.0242e(0.6534KD) (20)

CRR = 0.0084KD
2.7032 (21)

The Equation (19) was proposed by Monaco et al. [57] and the Equations (20) and (21)
were developed by Grasso and Maugeri [8].

Then it is possible to evaluate the liquefaction potential index (LPI). The LPI, proposed
by Iwasaki et al. [58], provides a depth-weighted index of the potential for triggering of
liquefaction at a site [59]. It is computed as:

LPI =
∫ 20

0
F(z)w(z)dzm (22)

where:
F(z) = 0 for FSL ≥ 1 (23)

F(z) = 1− FSL for FSL < 1 (24)

w(z) = 10− 0.5z (25)

According to Iwasaki et al. [60], the level of liquefaction severity with respect to LPI is
given in Table 2.

Table 2. Level of liquefaction severity [60]

LPI Level of Liquefaction Severity

0 Very low
0 < LPI ≤ 5 Low

5 < LPI ≤ 15 High
LPI > 15 Very high

The LPI framework was used in many recent studies [61–71]
In this paper, the procedure described above has been applied to the 5 SDMTs date

available in the Catania Harbour area (Figure 10).
To evaluate the CSR, the results obtained from the site response analysis using scaled

seismograms of 1693 to the maximum PGA of 0.3 g have been taken. The values of the
surface maximum accelerations, i.e., for PT1R3 seismogram, are reported in Table 3.

Table 3. Values of the surface maximum acceleration for the five SDMTs obtained from the site
response analysis using the scaled PT1R3 seismogram to the maximum PGA of 0.3g.

Surface Maximum Accelerations

SDMT2 0.44g
SDMT3 0.43g
SDMT4 0.45g
SDMT5 0.49g
SDMT6 0.41g
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Thus, it has been decided to choose the values of 0.4g and 0.5g for the peak horizontal
acceleration at the ground surface amax. The stress reduction coefficient rd and the magni-
tude scaling factor MSF have been given by the Equations (17a,b) and (18), respectively,
and the values of the other parameters have been taken from the SDMTs date.

Typical CSR profiles obtained i.e., for SDMT2 are shown in Figure 24.
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are reported in Figure 27.
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Based on the results obtained by the SDMT4, the LPI value is higher than 5 (high
liquefaction potential) at the depth of about 3 m; while the results obtained by SDMT2
show a high liquefaction potential from the depth of about 7 m.

The liquefaction potential index at the depth of 20 m for the 5 SDMTs is summarized
in Table 4.

Table 4. The liquefaction potential index from the five SDMTs for the three different CRR-KD curves
using amax of 0.4g and 0.5g.

Liquefaction Potential Index

amax 0.4 g 0.5 g

CRR-KD curves 1 2 3 1 2 3

SDMT2 13.30 9.12 9.37 17.04 12.52 12.22
SDMT3 12.44 7.48 7.80 16.47 11.06 10.59
SDMT4 17.13 11.97 12.01 22.50 16.06 15.78
SDMT5 7.50 3.36 3.53 11.13 6.02 5.41
SDMT6 12.51 8.99 9.44 15.83 11.86 11.74

It is possible to observe that the results obtained from the three CRR-KD curves are in
good agreement and the level of liquefaction severity is generally high. However, lower
LPI values are obtained from the SDMT5 and higher values from the SDMT4. Furthermore,
results demonstrate that the ground acceleration is a crucial parameter in the evaluation of
liquefaction potential: a 0.1g increase of amax produces a rise of about 25–50% in LPI.

7. Conclusions

In this paper, new variations of rd with depth have been obtained from equivalent-
linear site response analyses performed on different profiles representative of eastern
coastal plain of Catania area. To evaluate the soil profiles and the geotechnical characteris-
tics, in situ and laboratory tests were performed.

Two different charts were determined analytically using a seismogram of 1818 and
three seismograms of 1693 with PGA of 0.3g and 0.5g as input motion. The dashed range
represents the range of rd values and the dashed line represents the recommended values
of rd from the surface to a depth of 30 m.

Average values can be approximated by Equations (14), (15), (16a–c) and (17a–c).
Comparing the relationships obtained in this study to the relationships previously

proposed by Iwasaki, Liao and Whitman and Robertson and Wride, it is possible to notice
that the values of rd obtained here are lower.

This work has been used for the potential liquefaction evaluation in Catania Harbour
because the new rd relationship is more responsive to soil type examined. The findings can
be summarized as follows:

(1) The results obtained from the three CRR-KD curves are in good agreement. However,
it is possible to observe that the equation developed by Monaco provides LPI values
slightly larger than those obtained from the equations proposed by Grasso and
Maugeri;

(2) The results show a high liquefaction potential from the depth of about 3–7 m;
(3) Lower values of the liquefaction potential index are obtained from the SDMT4 and

higher values from the SDMT3;
(4) Finally, results demonstrate that the peak horizontal acceleration at the ground surface

amax is an important parameter in the evaluation of liquefaction potential.
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