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Abstract: With evidence suggesting that climate change is resulting in changes within the hydrologic
cycle, the ability to robustly model hydroclimatic response is critical. This paper assesses how
extreme runoff—1:2- and 1:30-year return period (RP) events—may change at a regional level across
the UK by the 2080s (2069–2098). Capturing uncertainty in the hydroclimatic modelling chain, flow
projections were extracted from the EDgE (End-to-end Demonstrator for improved decision-making
in the water sector in Europe) multi-model ensemble: five Coupled Model Intercomparison Project
(CMIP5) General Circulation Models and four hydrological models forced under emissions scenarios
Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 (5 × 4 × 2 chains). Uncertainty in
extreme value parameterisation was captured through consideration of two methods: generalised
extreme value (GEV) and generalised logistic (GL). The method was applied across 192 catchments
and aggregated to eight regions. The results suggest that, by the 2080s, many regions could experience
large increases in extreme runoff, with a maximum mean change signal of +34% exhibited in East
Scotland (1:2-year RP). Combined with increasing urbanisation, these estimates paint a concerning
picture for the future UK flood landscape. Model chain uncertainty was found to increase by the
2080s, though extreme value (EV) parameter uncertainty becomes dominant at the 1:30-year RP
(exceeding 60% in some regions), highlighting the importance of capturing both the associated EV
parameter and ensemble uncertainty.

Keywords: climate change; projections; extreme value distribution; flood events; generalised extreme
value; generalised logistic; multi-model ensemble; uncertainty propagation

1. Introduction

Floods are a common hydrological hazard that pose widespread threat to lives and
infrastructure [1,2]. According to UN estimates, in the period of 1995–2015, 2.3 billion
people were affected (either in terms of health or socioeconomics) by floods globally,
resulting in 157,000 fatalities and a total cost of USD 662 billion in economic damage [3].
In the UK, millions of people are affected by flooding every year, with annual flood damage
costs estimated to be in the region of GBP 1.1 billion [4]. In response, the UK government
spent GBP 808.2 million on flood risk management in 2018/2019, a GBP 144.9 million
increase in expenditure in just over ten years (2005/2006, [5]).

Climate change is projected to exacerbate these pressures. Studies indicate human
activity as the leading cause of climate change (e.g., [6,7]), with the Intergovernmental
Panel on Climate Change (IPCC) concluding in its Fifth Assessment Report (AR5) that
anthropogenic sources are “extremely likely to have been the dominant cause of the
observed warming since the mid-20th century” [8]. Evidence is building that this warming
has led to increases in precipitation intensity and melt rate (snow and ice) [8–11], resulting
in changes within the hydrologic cycle.

Coinciding with increasing urbanisation, the increase in the frequency and severity
of floods worldwide [8] raises concerns for the future. UK climatological records support
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these concerns; according to Met Office records, there have been 17 record-breaking rainfall
months or seasons since 1910, with nine of them occurring since 2000 [12]. This extreme
rainfall has, in turn, led to a pattern of severe flooding in recent times; notably, the 2007
summer floods, the 2013–2014 winter floods and the 2015–2016 winter floods, with the
latter being the most extreme on record in terms of rainfall intensity [13].

To ensure future flood preparedness, the ability to robustly model the hydroclimatic
response is critical. Given the dynamic and stochastic nature of climate, coupled with the
complexity of hydrological processes, eliciting future flood projections with any degree of
confidence is highly challenging. These projections are the product of a multi-step mod-
elling chain (Figure 1). General Circulation Models (GCMs) are forced under emissions
scenarios to produce outputs that represent physical processes in the atmosphere, ocean,
cryosphere, and land surface (e.g., precipitation, temperature) [14]. GCMs are run at a
coarse spatial resolution; to make them suitable for hydrological modelling, the outputs
are downscaled using statistical or dynamical approaches. Hydrological models (HMs)
are used to propagate the downscaled climate signal to hydrological outputs, generat-
ing simulations of flow. Flood return periods (RPs) are determined by fitting extreme
value distributions to flood peak series (annual maxima or peak-over-threshold) based
on daily flow projections. With each step in the chain, uncertainty cascades, propagating
(or constraining) the uncertainty through the modelling chain [15,16]. These uncertainties
can arise from a number of sources, including model structures, inputs, and parameters.
In order to provide meaningful projections, the characterisation and quantification of this
uncertainty is essential [15,16].

GCM Downscaling HM EVD
Emissions 
Scenario

Figure 1. The multi-step modelling chain for generating future flood projections. General Circulation
Models (GCMs) are forced under emissions scenarios, the outputs of which are downscaled to drive
hydrological models (HMs). Extreme value distributions (EVDs) are then fitted to flood peak series
in order to determine flood return periods.

Consideration of an ensemble of models supports the characterisation and quantifi-
cation of uncertainty. There are two types of ensembles, each accounting for a different
source of uncertainty: the multi-model ensemble (MME) and the perturbed physics en-
semble (PPE; also known as a perturbed parameter ensemble). Providing an estimate of
structural uncertainty, MMEs consider multiple model structures, whilst the PPE explores
parametric uncertainty in a given model through systematic variation of uncertain model
parameters [17]. At present, computational demand is a limiting factor in the consideration
of multi-model perturbed physics ensembles.

Extreme value (EV) theory is used to extract large-return-period events from the
outputs of this hydroclimatological modelling chain [18]. In the UK, flood event return
period analysis is carried out using the methods detailed in the Flood Estimation Hand-
book (FEH) [19]. The FEH recommends fitting either generalised extreme value (GEV) or
generalised logistic (GL) distributions to annual maximum (AMAX) flow series to produce
estimates for high-return-period events. As with climate and hydrological models, these
methods have associated uncertainty relating to the different EV model parameters (fitting
error) and the model structure.

Collet et al. [20] investigated future flood events and climate model parameter un-
certainty across Scotland by deriving flood projections from the Future Flows Hydrology
(FFH) database, a PPE from the third Coupled Model Intercomparison Project (CMIP3).
The study suggested that future extreme runoff may increase significantly across Scotland
by the 2080s, particularly in eastern catchments at high RPs (i.e., 1:100, 1:200 year). The EV
parameter uncertainty associated with these projections was shown to become increasingly
dominant for higher RPs, highlighting the need to account for this uncertainty.
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However, as climate change science and earth system modelling advance through
the incorporation of more processes and the improved parameterisation of physical pro-
cesses [21], new climate models and projections are made available. The CMIP3 models and
Special Report on Emissions Scenarios (SRES) scenarios considered by Collet et al. [20] have
been superseded by CMIP5 and Representative Concentration Pathways (RCPs), introduc-
ing the need for more up-to-date flood projections. Furthermore, Visser-Quinn et al. [22]
highlighted the importance of accounting for different sources of uncertainty in the hydro-
climatological modelling chain through consideration of a range of models, finding large
variance associated with HMs. As Collet et al. considered a PPE (11 members; 11 different
realisations of the GCM HadRM3, and a single hydrological model), multiple models were
not considered, and hence, the influence of HM uncertainty could not be accounted for.

This paper derives flood projections from the EDgE (End-to-end Demonstrator for
improved decision-making in the water sector in Europe) project [23], which utilised
an MME combining five CMIP5-GCMs and four HMs forced under emissions scenarios
RCP 2.6 and RCP 8.5 (5 × 4 × 2 chains). These data represent the state of the art and
affords the ability to quantify the associated structural and EV parameter uncertainty.
Through the fitting of the GEV and GL distributions, the 1:2- and 1:30-year RP events
are extracted for 192 UK catchments. The focus of this paper is on the change across
two 30-year periods: the baseline (1971–2000) and the 2080s (2069–2098). The 2080s were
chosen in alignment with the IPCC [8] to explore the far-future impacts of climate change
on flood events. The method is applied at the catchment scale and aggregated to the
regional level, with the coarser resolution allowing for possible large-scale trends to be
identified. In addition, the analysis is replicated for the 44 Scottish catchments featured
in Collet et al. [20], enabling comparison of the change in projections and uncertainties
between studies. The overarching aim of this paper is to investigate how extreme runoff
may change on a regional level across the UK by the 2080s, as well as the uncertainty
associated with these projections.

2. Methods

The methodology is presented in two stages (Figure 2): data preparation, followed by
analysis. In Stage 1, daily annual maximum (AMAX) flows were extracted for 192 catch-
ments across the UK from: (1) observed data maintained by the National River Flow
Archive (NRFA; 1976–2005); (2) baseline projections from the EDgE project (1971–2000);
and (3) future projections from the EDgE project (2069–2098). The baseline period of 1976–
2005 was selected to maximise the observed data for bias correcting the flow projections;
following which, the standard baseline period of 1971–2000 was used. After bias correc-
tion, two EV methods, GEV and GL, were fitted to the AMAX flows and the 1:2-year and
1:30-year RP flood events identified. These catchment-level data were then aggregated into
eight geographic regions in order to facilitate discussion.

In the second stage, the following analysis was applied at the catchment and regional
levels: (1) the mean change signal, a quantification of the change in extreme runoff esti-
mates; (2) relative standard deviation (RSD), which captures the spread of model chain
outcomes and structural uncertainty; and (3) the probability distribution uncertainty (PDU),
the standardised difference between the upper and lower 95% confidence limits across
the modelling chains, thus capturing the EV parameter uncertainty. These outputs were
subsequently compared with the Collet et al. [20] CMIP3-PPE flood projects.
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Figure 2. Outline of the methodology utilised in this work. It is split into two distinct stages: data
preparation (Stage 1) and analysis (Stage 2).

2.1. Stage 1—Data Preparation
2.1.1. Data

Observed daily flows were extracted from the NRFA using the package ‘rnrfa’ (version
2.0; [24]). To maximise data availability, a baseline period of 1976–2005 was selected; the
standard baseline of 1971–2000 would have seen the loss of an additional 39 catchments.
A total of 192 catchments across the UK were considered (Figure 3a); 116 (60.4%) are located
in England, 52 (27.1%) in Scotland, 20 (10.4%) in Wales, and 4 (2.1%) in Northern Ireland.

Flow projections were extracted from the EDgE (End-to-end Demonstrator for im-
proved decision-making in the water sector in Europe) project [23] across 20 modelling
chains (five GCMs and four HMs). The GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) are a subset from CMIP5, selected to
be consistent with the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP;
https://www.isimip.org/), representing the range of global mean responses in temper-

https://www.isimip.org/
https://www.isimip.org/
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ature and precipitation [25]. The HMs are: mHm [26,27], Noah-MP [28], VIC [29], and
PCR-GLOBWB2 [30]. Noah-MP and VIC can be further classified as land-surface models
(LSMs), simulating land–atmosphere fluxes, whereas mHM and PCR-GLOBWB2 simulate
water balance components, i.e., precipitation and evapotranspiration.

Flows forced under both RCP 2.6 and RCP 8.5 were extracted, allowing the implica-
tions of the most conservative pathway to be compared to that of the most severe. The focus
of this paper is on the change across two 30-year periods: the baseline, 1971–2000, and
the future, 2069–2098, referred to as the 2080s. The 2080s is the long-term future period
used by the IPCC [8] and has become the standard within climate change impact studies.
Furthermore, the future period aligns with that of Collet et al. [20], ensuring consistency in
this regard when drawing comparisons between both studies.

AMAX flows were extracted (per calendar year) from both the observed and projected
data for all 192 catchments. A threshold of 0.8 was set so that any year that had less than
80% completeness of daily flows was removed. A total of 41 observations in the entire
record did not meet this threshold (0.7% of total AMAX flows; a negligible loss of data).

The projected AMAX flows were then bias corrected with reference to the observed
AMAX flows. The bias correction used the baseline period 1976–2005 to maximise the use
of the gauged NRFA data. However, as 1971–2000 is standard (as of AR5) as a baseline,
once the bias correction was complete, this period was used as the baseline in the analysis.
The difference in time periods is possible because the purpose of the observed baseline is to
correct the magnitude of the simulated flows, rather than to align the temporal occurrence
of events.

Figure 3. Map of (a) the 192 UK catchments analysed in this study; and (b) the 44 Scottish catchments
analysed for the comparison with Collet et al. [20]. Catchment fill colour is by region; these regions
are the focus of the regional analysis.
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2.1.2. Bias Correction

Bias in projections represents errors in the statistical properties relative to the observa-
tions. Using the R package ‘qmap’ (version 1.0-4; [31]), the projected AMAX flows were
bias corrected per model chain and per catchment using a quantile mapping approach.
The approach, summarised in Figure 2, looks to improve the fit for extreme flows by
grouping the observed and projected AMAX flows into three equal-sized groups: low,
average, and high flows. A linear transformation function is determined (using the function
‘fitQmap’), which is then applied to each quantile (using the function ‘doQmap’), rescaling
the statistical properties of the projections to those observed.

Validation of the quantile mapping outputs is provided in Supplementary Materials
(Figures S3 and S4). The bias-corrected simulated extreme flows over the baseline period
were compared with observed flows to check for consistency. In all cases, observations were
within the lower and upper quartiles of the EDgE projections (Figure S3). Four catchments
were identified as having an observed–projected median ratio of less than 0.9 or greater
than 1.1 (Figure S4), though these were retained for the analysis. Differences in medians
were greatest for the 1:30-year RP; this may be attributed to the greater EV uncertainty
associated with a higher return period.

2.1.3. Extreme Value (EV) Theory

The objective of EV theory is to quantify the stochastic behaviour of a process at
extreme levels [18]; hence, its common application in hydrology to model extremely high
or low flows (e.g., [32,33]). The theory involves fitting an EV distribution to AMAX or
peak-over-threshold (POT) series, depending on the distribution, to extract the desired RP.

For the purposes of this study, two EV distributions, generalised extreme value (GEV)
and generalised logistic (GL), were fitted to the observed and projected AMAX flows.
The methods detailed in the FEH are standard practice in the UK for flood magnitude
RP event analysis [19]. Whilst the GEV distribution is commonplace, the GL distribution
represents the standard in the UK, as it tends to provide more conservative results [20].

The GEV distribution is a three-parameter distribution, and has the following quantile
function [19]:

Q(F) = ξ +
α

k

{
1− (− ln F)k

}
(k 6= 0), (1)

where ξ is the location parameter, α is the scale parameter, and k is the shape parameter. F
is the non-exceedance probability, so for an RP of event T, F = 1− (1/T).

The GL distribution uses the same three parameters, and has the following quantile
function [19]:

Q(F) = ξ +
α

k

{
1−

(
1− F

F

)k
}

(k 6= 0). (2)

Expressions (1) and (2) therefore provide the flow value Q corresponding to a specified
non-exceedance probability.

Both distributions were fitted to the observed and projected AMAX using the R
packages “lmomco” (version 2.3.2; [34]) for GL and “extRemes” (version 2.0-11; [35]) for
GEV. The GEV and GL distributions were fitted using the L-moments approach [19] to
obtain the distribution parameters. This approach, which is based on L-moments instead of
conventional moments, is recommended by the FEH due to its robustness in the presence
of unusually small or large data [19].

The 95% EV confidence intervals (CIs) were obtained using a parametric bootstrapping
method, in which a sample of size n, equal to the length of the original data, was simulated.
The EV distributions were then fitted to the simulated sample, and the resulting parameter
estimates were stored. This was repeated for 1000 bootstrap iterations, which was deter-
mined through trial and error as the most suitable number of iterations when weighing
both computational time and the difference in parameter estimates, in order to obtain a
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sample from the population of the stored parameters. The percentile method was then
used to determine the 95% confidence interval estimates. The ‘ci.fevd’ function within the
“extRemes” package and the ‘qua2ci.simple’ function within the “lmomco” package were
used to determine the CIs for the GEV and GL distributions, respectively.

To validate the EV distributions, both GEV and GL were manually fitted for an ar-
bitrary station (NRFA station ID 2001: Helmsdale at Kilphedir) using the L-moments
approach. The manual fitting procedure and cumulative distribution function plots
(Figures S1 and S2) are provided in the Supplementary Materials. The location, scale,
and shape parameters from manual fitting were found to be in agreement with those fit
using the R packages.

2.1.4. Regionalisation

The catchment-level data were aggregated into eight geographic regions (Figure 3)
based on measuring authority (provided by the NRFA). Examining the results at a coarser
resolution aided interpretation and facilitated discussion by allowing potential regional
trends to be identified. The subsequent analysis in stage 2 was applied at both the catchment
and regional levels.

2.2. Stage 2—Analysis
2.2.1. Change in Extreme Runoff

In order to quantify the projected change in extreme runoff at the catchment and
regional levels, the mean change signal was calculated. The mean change signal is the
mean of the percentage difference between future and baseline extreme runoff estimates
across the modelling chains (Equation (3)).

Mean change signal =
1
N

N

∑
i=1

(
QF −QBL

QBL

)
× 100, (3)

where QF is the future runoff estimate, QBL is the baseline runoff estimate, and N is the
number of model chains. This was calculated per scenario, per EV method, per catchment
and region, and per RP.

2.2.2. Uncertainty Characterisation

In order to capture the EV parameter uncertainty and the model chain (GCM-HM)
structural uncertainty associated with the projections, each source was analysed separately.
These uncertainties were calculated per scenario, per time period, per EV method, per
catchment and region, and per RP.

The model chain structural uncertainty was captured by determining the relative stan-
dard deviation (RSD), which represents the spread of model chain outcomes, a traditional
proxy measure of uncertainty [36]:

RSD =
σ

µ
, (4)

where σ is the sample standard deviation and µ is the sample mean of the distribution.
This is a standardised measure, allowing comparison between data with different means
and spread. It is based on the premise that the larger the dispersion between the peak
flow projections provided by each model chain, the greater the associated uncertainty. A
catchment/region with a high RSD indicates low agreement between model chains and,
hence, high model chain structural uncertainty; a catchment/region with a small RSD
indicates good agreement between model chains and, hence, low model chain structural
uncertainty.

The uncertainty associated with the EV model parameters was assessed by firstly
determining the relative coefficient of uncertainty, RCu, for each model chain:
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RCu =
CIup − CIlow

E
, (5)

where E is the runoff estimate, CIup is the upper 95% confidence limit, and CIlow is the lower
95% confidence limit. Dividing by the runoff estimate standardises the value, allowing
comparison of CI ranges for locations with different runoff estimates at a given RP. This is
necessary as larger peak flows generally have larger CIs, which leads to higher absolute
uncertainty [37]. The mean RCu over all model chains was then taken to determine the
probability distribution uncertainty, PDU:

PDU =
1
N

N

∑
i=1

RCu(i). (6)

A catchment/region with a high PDU indicates a wide 95% CI relative to the runoff
estimate and, hence, high EV parameter uncertainty; a catchment/region with a small PDU
indicates a narrow 95% CI relative to the runoff estimate and, hence, low EV parameter
uncertainty.

2.2.3. Comparison with CMIP3-PPE

The analysis was repeated on data from Collet et al. [20] to explore how projections
and the associated uncertainties have changed with the current generation of models and
scenarios. The study derived flood projections from the FFH database, which utilised an
11-member CMIP3-PPE (11 different realisations of HadRM3, and a single hydrological
model) to simulate projections of daily flow [38]. It is derived from Future Flows Climate,
an 11-member ensemble based on the SRES A1B emissions scenario outlined in AR4.

A total of 95 catchments across Scotland were considered by Collet et al. [20]; of these,
44 catchments matched with those in this study (Figure 3b).

Detailed in Sections 2.2.1 and 2.2.2, the analysis was performed on their raw data at
the catchment and regional levels. It is important to note that, as Collet et al. [20] was based
on a PPE, computation of RSD quantifies the climate model parameter uncertainty, rather
than the structural uncertainty in this work (an MME).

3. Results

The following results are presented at the regional level to aid interpretation and
the discussion; see the Supplementary Materials (Figures S7–S9) for raw results at the
catchment level. Section 3.1 presents the mean change signal results, which quantify
the projected change in extreme runoff across the UK by the 2080s. Section 3.2 presents
the uncertainty associated with the extreme runoff projections; firstly, the model chain
structural uncertainty (captured through the determination of RSD), and secondly, the EV
parameter uncertainty (captured through the determination of PDU).

3.1. Change in Extreme Runoff by the 2080s

Figure 4 presents the regional mean change signal for both emissions scenarios (RCPs
2.6 and 8.5) and RPs (1:2- and 1:30-year) using the GEV distribution. The GL distribution
is not shown; across all modelling chains and RPs, it was found that both GEV and GL
produced very similar change signal estimates. In the Supplementary Materials (Figure S5),
it is shown that the absolute difference between the distributions is always ≤3%, with a
median difference <1%. Both distributions are special cases of the Kappa distribution, with
the same three parameters [19]—the probable reason for this similarity.

Beginning with RCP 2.6 and the 1:2-year RP (Figure 4a), the largest and smallest mean
change signals are projected in South West England (+19%) and North Scotland (+3%),
respectively. For the 1:30-year RP (Figure 4c), the mean change signal is lower. The highest
and lowest projected changes occur in the same regions, having fallen to +15% and −3%,
respectively. The largest reductions are projected in the northern regions of the UK. Here,
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North Scotland, East Scotland, and Northern Ireland are all projected to see a reduction in
the 1:30-year RP flood magnitude (negative mean change signal, shown in yellow).

Looking to RCP 8.5 and the 1:2-year RP (Figure 4b), East Scotland is projected to see
the highest mean change signal (34%), with Central and South East England seeing the
lowest (18%). As with RCP 2.6, the change signal is lower for the 1:30-year RP (Figure 4d).
Generally, the largest reductions are once more projected in the northern regions. Here, the
minimum change signal is projected in East Scotland (8%), whilst the highest occurs in the
South West of England (20%).

Comparing between emissions scenarios, the mean change signal estimates are sig-
nificantly higher under RCP 8.5 than RCP 2.6 for all regions, with a median increase of
20% at the 1:2-year RP and 8% at the 1:30-year RP. The difference in mean change signal
between RPs is more noticeable under RCP 8.5; the median difference under RCP 2.6 is 5%,
whereas it is 19% under RCP 8.5. This is largely a result of the high change signal estimates
exhibited in Figure 4b.

Figure 4. Regional mean change signal across the UK using the generalised extreme value (GEV)
distribution for the (a) 1:2-year return period (RP) under Representative Concentration Pathway
(RCP) 2.6; (b) 1:2-year RP under RCP 8.5; (c) 1:30-year RP under RCP 2.6; and (d) 1:30-year RP under
RCP 8.5. The generalised logistic (GL) distribution is not shown, as the results are almost identical
(see Supplementary Materials).
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3.2. Uncertainty Associated with Extreme Runoff Projections
3.2.1. Model Chain Structural Uncertainty

The regional RSD is shown in Figure 5 for both time periods (baseline and 2080s),
emissions scenarios, and RPs using the GEV distribution. As before, differences between
the GEV and GL distributions were minimal (Figure S6); consequently, only the GEV results
are presented.

Beginning with the baseline period and the 1:2-year RP (Figure 5a), RSD is lowest
in West Scotland (3%), and does not exceed 6% in any region. For the 1:30-year RP
(Figure 5d), RSD estimates are slightly larger, with the lowest exhibited in North Scotland
(5%), and highest in South West England (9%).

By the 2080s, RSD estimates increase. Under RCP 2.6 for the 1:2-year RP (Figure 5b),
minimum and maximum values are found in Wales and North West England (11%) and
North Scotland (18%), respectively. For the 1:30-year RP (Figure 5e), RSD tends to increase
slightly, remaining lowest in Wales and North West England (13%), but becoming highest
in the West of Scotland (19%).

Looking to RCP 8.5 and the 1:2-year RP (Figure 5c), minimum and maximum values
are again found in Wales and North West England (14%) and North Scotland (21%),
respectively. For the 1:30-year RP (Figure 5f), the lowest RSD is now exhibited in North
Scotland (13%), and the highest in Central and South East England (19%).

Neither emissions scenario consistently exhibits larger RSD estimates than the other,
and the differences between the two remain quite low: never exceeding 6%. From the
baseline period to the 2080s, RSD is estimated to increase across all regions by a median
value of 10%, implying greater agreement between the multi-model chains over the baseline
than the 2080s.

Figure 5. Regional relative standard deviation (RSD) across the UK using the GEV distribution for the
(a) 1:2-year RP over the baseline (1971–2000); (b) 1:2-year RP over the 2080s (2069–2098) under RCP
2.6; (c) 1:2-year RP over the 2080s under RCP 8.5; (d) 1:30-year RP over the baseline; (e) 1:30-year RP
over the 2080s under RCP 2.6; and (f) 1:30-year RP over the 2080s under RCP 8.5. The GL distribution
is not shown, as the results are almost identical (see Supplementary Materials).
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3.2.2. Extreme Value Parameter Uncertainty

Figure 6 shows the regional PDU associated with the GEV and GL distributions for
both time periods (baseline and 2080s), emissions scenarios, and RPs.

The GL distribution exhibits lower parameter uncertainty than GEV for the 1:2-year
RP for all regions across both time periods and scenarios, with a maximum PDU difference
between distributions of 3% exhibited in Central and South East England and a median
difference of approximately 2%. The lowest PDU is found in North Scotland under RCP
8.5 (Figure 6f) at 18%, and the highest in Central and South East England over the baseline
(Figure 6a) at 30%.

For the 1:30-year RP, the opposite is true; the GEV distribution exhibits lower parame-
ter uncertainty for all regions across both time periods and scenarios, with a maximum
PDU difference between distributions of 8% in East Scotland, and a median difference of
6%. There is a large increase in EV parameter uncertainty from the 1:2-year to the 1:30-year
RP, as shown by the PDU estimates. North Scotland under RCP 8.5 (Figure 6i) again
exhibits the lowest PDU (29%), and West Scotland over the baseline (Figure 6j) exhibits the
highest (63%).

The lower EV uncertainty associated with GEV for the 1:30-year RP is more notable
than the lower uncertainty of GL for the 1:2-year RP. This is, in part, due to the higher EV
uncertainty associated with larger RPs.

3.3. Comparison with a CMIP3-PPE

Tables S1–S3 in the Supplementary Materials compare the mean change signals and
associated uncertainties of this work, a CMIP5-MME with Collet et al. [20], and a CMIP3-
PPE. Only results for the 1:2-year RP are compared, since it is statistically more robust than
the 1:30-year RP.

Table S1 compares the regional mean change signal estimates across Scotland at the 1:2-
year RP using GEV and GL. The change signal estimates under SRES A1B fall in between
RCP 2.6 and RCP 8.5, with a median change signal under SRES A1B of 16%, compared
with 9% under RCP 2.6 and 32% under RCP 8.5. The differences in change signal estimates
between GEV and GL are negligible for both this work and Collet et al. [20].

Table S2 compares the regional RSD estimates across Scotland at the 1:2-year RP using
GEV and GL for the baseline and 2080s. The RSD estimates over the baseline are extremely
similar between all three emissions scenarios, but are slightly larger under SRES A1B.
By the 2080s, the RSD is notably lower for Collet et al. [20], with a median RSD of 7%,
compared to 17% under RCP 2.6 and 20% under RCP 8.5. As with the mean change signal,
the differences in RSD between GEV and GL are negligible in both studies.

Table S3 compares the regional PDU estimates across Scotland at the 1:2-year RP using
GEV and GL for the baseline and 2080s. From the baseline to the future, all regions exhibit
an increase in PDU under SRES A1B, whereas under RCP 2.6 and RCP 8.5, PDU decreases.
However, for both studies, the estimates fall within a similar range, and GL exhibits lower
EV parameter uncertainty than GEV.
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Figure 6. Regional probability distribution uncertainty (PDU) across the UK for the (a) 1:2-year RP
using GEV over the baseline; (b) 1:2-year RP using GEV over the 2080s under RCP 2.6; (c) 1:2-year RP
using GEV over the 2080s under RCP 8.5; (d) 1:2-year RP using GL over the baseline; (e) 1:2-year RP
using GL over the 2080s under RCP 2.6; (f) 1:2-year RP using GL over the 2080s under RCP 8.5; (g)
1:30-year RP using GEV over the baseline; (h) 1:30-year RP using GEV over the 2080s under RCP 2.6;
(i) 1:30-year RP using GEV over the 2080s under RCP 8.5; (j) 1:30-year RP using GL over the baseline;
(k) 1:30-year RP using GL over the 2080s under RCP 2.6; and (l) 1:30-year RP using GL over the 2080s
under RCP 8.5.
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4. Discussion
4.1. Change in Extreme Runoff by the 2080s

The results indicate that by the 2080s, flood events may become significantly greater in
magnitude across many of the UK regions. For the 1:2-year RP, extreme runoff is projected
to increase across every region; this increase is much greater under RCP 8.5 than RCP 2.6.
North Scotland is projected to experience the largest change, exhibiting a 34% increase
under RCP 8.5 by the 2080s. Though the return period is small, with a 50% chance of flows
equalling or exceeding the event in any given year, these significant increases in runoff,
combined with increasing urbanisation in flood-prone areas across the UK [39], could still
result in considerable flood impacts for this event by the 2080s without the implementation
of sufficient flood risk management strategies.

The change signal decreases across the UK at the higher 1:30-year return period, with
North and East Scotland and Northern Ireland even experiencing small, negative change
signals under RCP 2.6. However, the remaining five regions still exhibit significant increases
in extreme runoff, with a maximum increase of 20% found in South East England under
RCP 8.5. These projections could have severe implications; according to the Environment
Agency’s Risks of Flooding from Rivers and Sea (RoFRS) dataset [40], an estimated 284,210
people and 197,964 properties are currently at flood risk for 1:30-year events (or lower) in
England. Extreme value analysis of observed flows (Supplementary Materials, Table S4)
suggests that a 20% increase to 1:30-year runoff could be approximately equivalent to a
present day 1:100-year event in English regions. This could result in 764,996 and 453,729
additional people and properties being at flood risk in England [40], thus highlighting the
greater flood exposure that could result from these projections.

Across emissions scenarios, it can be observed that RCP 2.6 and RCP 8.5 generally
experience the same regional change signal trends, but at a lower magnitude under RCP
2.6. This is to be expected; RCP 8.5 is a much more severe scenario than the “stringent”
pathway of RCP 2.6. However, in the South of England, large increases in extreme runoff
are exhibited irrespective of emissions scenario, raising concerns that, even under the
best case, this region could experience flood events that are 15% larger in magnitude than
present-day 1:30-year runoff events.

4.2. Associated Uncertainties

By comparing the findings shown in Figures 5 and 6, it can be seen that EV parameter
uncertainty is the dominant uncertainty. For the 1:2-year RP, the EV uncertainty is moderate,
with a PDU range of 18–30%; however, for the higher 1:30-year RP, uncertainties range
from 29–63%. Uncertainty this high limits the usefulness of the change signal findings;
hence, it is critical to quantify this uncertainty.

The biggest source of EV parameter uncertainty may be related to time period length;
the larger the amount of data considered, the greater the estimation of the EV parameters
and, hence, the better the distribution fit. Thirty-year time periods were used for non-
stationary analysis of river flow time series; however, the likelihood of a high return period
occurring during this time interval becomes relatively low. The associated EV uncertainties
reflect this, with the 1:30-year RP exhibiting, by some margin, the highest PDU. To reduce
EV uncertainty (aside from only considering the smallest RPs), a pooling-group method [19]
can be used to increase the flow series length. However, this method relies on pooling
hydrologically similar catchments (initially in terms of size, wetness, and soil properties),
which would reduce the overall number of catchments. Furthermore, a time series five
times the RP is required, which becomes increasingly difficult for high return periods [20]
(e.g., 5 × 30 or 5 × 100). Therefore, such an approach would be unsuitable for this work.

The GL distribution exhibits lower parameter uncertainty than the GEV distribution
for the 1:2-year RP, whereas for the 1:30-year RP, the uncertainty associated with GEV is
lower. The GL distribution is recommended for UK flood event analysis, as it tends to
provide more conservative results [19]; however, as found by Ul Hassan et al. [41], there
is often no single best distribution for a range of spatially and characteristically different
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catchments, and, as this study has found, across RPs. In addition, studies that have found
better performance with a particular distribution on one level (i.e., catchment or regional)
might find that another performs better when the analysis is repeated on a finer or coarser
scale. In this study, this was not the case; as with the regional results, GL tends to exhibit
lower parameter uncertainty at the catchment level for the 1:2-year RP, and GEV tends to
exhibit lower uncertainty for the 1:30-year RP (see catchment results in Supplementary
Materials, Figure S9).

With regards to the model chain structural uncertainty, low uncertainty was found
over the baseline period, with a median RSD of 8% across all regions. However, by the
2080s, the median RSD across all regions increased to 18%. This significant increase occurs
because the present is more similar to the conditions the models were trained under, leading
to greater agreement between the models over the baseline. The 2080s are more uncertain,
and each model is structurally different, causing the models to diverge over time.

4.3. CMIP3-PPE Comparison

Before discussing the findings of the comparison with Collet et al. [20], there are a
few important details to note. Collet et al. analysed flow projections across Scotland;
consequently, only Scottish regions were subject to comparison. As their study is based
upon AR4, their work considered a CMIP3 climate model, an SRES emissions scenario
(SRES A1B), and a baseline period of 1961–1990. The term ‘baseline’ therefore encompasses
two different periods, depending on which study is the subject. Furthermore, as they
analysed flow projections from a PPE, computation of the RSD yields the climate model
parameter uncertainty, rather than the model chain structural uncertainty.

Despite these differences, it can be seen that both studies are generally in agreement.
The projected change in extreme runoff for Collet et al. [20] falls in between the change
signals from this work, with a median change signal of 16% under SRES A1B compared to
9% and 32% under RCP 2.6 and RCP 8.5, respectively. From a superficial level, at least, this
finding may be expected. There is not an RCP scenario that directly correlates with SRES
A1B, though SRES A1B has been described as a “middle-ground” scenario relative to RCP
2.6 and RCP 8.5 [8,42]. This work also agrees with the finding that the largest change in
runoff is exhibited in the East of Scotland, a trend that Collet et al. attribute to the size of
the eastern catchments and larger attenuation resulting from lakes and reservoirs.

Both studies exhibit similarly low RSD estimates over the baseline period. Though
this similarity is slightly surprising (given the differences in models and baseline periods,
and the disparity in what RSD represents), low uncertainty over the baseline is to be
expected; the present is more similar to the model training conditions. By the 2080s, greater
RSD is exhibited in this work, with a median RSD of 17% and 20% under RCP 2.6 and RCP
8.5, respectively, compared with 7% under SRES A1B. This could indicate that structural
uncertainty has a greater influence on models than parameterisation uncertainty, as the
former results in the largest RSD by the 2080s. However, due to the identified differences
between studies, and the fact that Collet et al. did not assess HM parameter uncertainty
(which would require an HM-PPE), a dedicated study (e.g., see [43,44]) would be required
to investigate this further.

Both studies agree that GL exhibits lower associated uncertainty than GEV across all
three regions for the 1:2-year RP, suggesting that the GL model may be the most suitable
of the two for low RP analysis. The EV uncertainties themselves are generally consistent
between studies, with the PDU for both GEV and GL falling in the range of 21–29% under
all scenarios. However, Collet et al. show an increase in PDU from the baseline to the 2080s,
suggesting greater EV parameter uncertainty by the 2080s, whereas this study found the
uncertainty to decrease by the same period. It is possible that this observation is not of
significance, and is rather a result of the identified differences between the studies.
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4.4. Limitations

The main limitation of this work is the extent of the uncertainties associated with
the extreme runoff projections. For the 1:2-year RP, the EV parameter uncertainty (PDU)
and the model chain structural uncertainty (RSD) are moderate, not exceeding 30% and
21%, respectively. However, for the 1:30-year RP, the EV parameter uncertainty alone
exceeds 60% in a number of regions, indicating a wide 95% confidence interval for the flood
projections. This limits the conclusions that can be drawn from the change signal findings,
as it is unknown which results may be reflective of reality, and which are more a product
of the associated uncertainty. However, by capturing and quantifying these uncertainties
as opposed to neglecting them, the value of the projections can be said to increase [15,16].

The spatial distribution of catchments was lacking in certain regions. This sparsity is
apparent in Northern Ireland and parts of North and West Scotland (Figure 3a). Regional
analysis is heavily influenced by data availability, since the mean change signal and
uncertainty estimates for each region are aggregations of the catchments found within.
This limitation of data availability is common in similar studies (e.g., [20,37]). Although
not performed in this work due to a large number of catchments, recent innovations in
spatiotemporal extreme value analysis offer methods to improve the estimation of model
parameters for catchments with limited data by ”pooling“ together information from
neighbouring locations (e.g., [45,46]).

The current version of the EDgE modelling chain has not considered artificial influ-
ences that alter natural runoff. Flow records for sixty percent of all UK gauging stations are
significantly affected by flow manipulations [47]. These flow manipulations can come in
the form of river regulation, water abstractions for public water supply and industrial use,
groundwater recharge, and outflows from sewage treatment works. With a growing popu-
lation and urbanisation, the presence of artificial influences that affect runoff is projected to
increase [48]. Therefore, it is important to consider these influences and their increasing
presence when analysing future extreme flows.

4.5. Scope for Future Research

To take this work further, the model chain structural uncertainty could be partitioned
into GCM and HM structural uncertainty to allow for more thorough analysis of individual
model uncertainty. This may be possible through the application of a quasi-ergodic (QE)
analysis of variance (ANOVA) approach to the hydroclimatological model chain (e.g., [22]).
However, it has not been determined if using such an approach would be possible, as the
EV is not technically a time series (as is required for QE-ANOVA).

Parameter uncertainty in models, which has been shown to be comparable to or
greater than structural uncertainty [43], could be considered for a more comprehensive
analysis of model uncertainty. To assess both uncertainty types, MMEs and PPEs could
be used in combination (a multi-model PPE). The current issue with this is computational
demand, but with continued technological advancement, this may become a more feasible
proposition in the near future.

The methodology is readily transferable, as evidenced by replicating the method from
Collet et al. [20] and using it in this study. It could be further adapted into a framework
to establish a consistent method for future climate change impact studies, which would
allow for intercomparison between works. As the EDgE project utilised the ISI-MIP subset
of CMIP5 GCMs, this study can be compared on a cross-sectoral basis. For example,
Rosenzweig et al. [49] used the ISI-MIP subset of models in a study of the impact of climate
change on the agricultural sector. Other studies have used the ISI-MIP subset to investigate
the impact of climate change on biomes, fisheries, and coastal systems, amongst others [25].
Through comparison, a consistent and comprehensive picture of the cross-sectoral impacts
of climate change projections can be built up.

The Sixth Assessment Report (AR6) will introduce the next generation of models,
CMIP6, and a new set of forcing scenarios combining RCPs with Shared Socioeconomic
Pathways (SSPs) [50]. SSPs are scenarios of projected global socioeconomic changes up to
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2100, which are used to derive greenhouse gas emissions scenarios with different climate
policies [51]. These scenarios grant an understanding of the extent to which societal devel-
opments can affect the severity of climate change risks and response options, something
that was not possible with the scenarios of AR5. Just as this study did with Collet et al. [20],
there will be a need to repeat and compare with this study for the upcoming generation
of models and scenarios to understand how projections differ and how the associated
uncertainties might have changed.

5. Conclusions

With evidence suggesting that climate change is resulting in changes within the
hydrologic cycle, there is concern that in the future, flood events will become more frequent
and severe in magnitude. The ability to robustly model the climate and hydrological
response under climate change is therefore critical.

Collet et al. [20] investigated the projected change in future flood events across Scot-
land and the uncertainty associated with these projections. The study, which was based
upon AR4, suggests that much of Scotland may experience large increases in extreme
runoff by the 2080s. However, two areas of development are identified: (1) The release
of AR5 introduced a new generation of climate models (CMIP5) and emissions scenarios
(RCPs), rendering the findings out of date; and (2) the work considered a PPE, yet, as
Visser et al. [52] highlighted, there is a need to account for different sources of uncertainty
through a range of models. This paper addresses these areas by deriving flood projections
from the EDgE MME (five CMIP5-GCMs, four HMs, two RCPs) with the aim of investigat-
ing how extreme runoff may change on a regional level across the UK by the 2080s and the
uncertainty associated with these projections.

The results suggest that by the 2080s, many UK regions could experience large in-
creases in extreme runoff, particularly under RCP 8.5. Under this scenario, for the 1:2-year
RP, the largest increases were exhibited in the north (North, East, and West Scotland). For
the 1:30-year RP, irrespective of emissions scenario, the largest increases were found in the
south (South West England, Central and South East England, Wales, and North West Eng-
land). These projected increases in extreme runoff, coupled with increasing urbanisation in
flood-prone areas across the UK, could result in severe flood impacts by the 2080s without
the implementation of sufficient flood risk management strategies.

The model chain structural and EV parameter uncertainties associated with these
projections were evaluated. RSD estimates indicated low model chain structural uncertainty
over the baseline, with higher uncertainty by the 2080s, a result of the present being more
similar to the conditions the models were trained under. The EV parameter uncertainty
increased significantly from the 1:2-year return period to the 1:30-year return period, with
the PDU exceeding 60% in some regions. This was considered the main limitation of this
work; high uncertainty limits the conclusions that can be drawn from the extreme flow
projections. However, by capturing these uncertainties as opposed to neglecting them, the
value of the projections increases.

The findings of this study were generally consistent with Collet et al. [20], despite
the different models, scenarios, and baseline periods considered. The mean change signal
and PDU estimates all fell under a similar range. The similarity in RSD estimates over the
baseline was particularly surprising, given that it represents the climate model parameter
uncertainty in Collet et al. (as a PPE) and the model chain structural uncertainty in this
work (as an MME). However, the increase in RSD by the 2080s was more significant in this
work. This raises the question about whether model structure uncertainty may be more
dominant than model parameter uncertainty, though a dedicated study would be required
to investigate this further.

To build upon this work, the easily transferable methodology could be further adapted
into a framework to establish a consistent method for future climate change impact studies,
which, in turn, would allow for intercomparison between studies. Additionally, with AR6
scheduled for release in 2021, there will be a need to repeat and compare with this study
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under the upcoming generation of models and scenarios to understand how projections
differ and how the associated uncertainties have changed.
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AMAX Annual maximum
AR Assessment Report
CI Confidence interval
CMIP Coupled Model Intercomparison Project
EDgE End-to-end Demonstrator for improved decision making in the water sector in Europe
EV Extreme value
FEF Flood Estimation Handbook
FFH Future Flows Hydrology
GCM General Circulation Model
GEV Generalised extreme value
GL Generalised logistic
HM Hydrological model
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ISI-MIP Inter-Sectoral Impact Model Intercomparison Project
MME Multi-model ensemble
NRFA National River Flow Archive
PDU Probability distribution uncertainty
POT Peak-over-threshold
PPE Perturbed physics ensemble
RCP Representative Concentration Pathway
RCu Relative coefficient of uncertainty
RoFRS Risks of Flooding from Rivers and Sea
RP Return period
RSD Relative standard deviation
SRES Special Report on Emissions Scenarios
SSP Shared Socioeconomic Pathway
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