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Abstract: The stability of open-pit brown-coal mines is affected by the manner in which water
is transmitted or retained within their slopes. This in turn is a function of the in-situ fracture
network at those mines. Fracture networks in real mines exhibit significant degrees of heterogeneity;
encompassing a wide range of apertures, inter-fracture separations, and orientations. While each
of these factors plays a role in determining fluid movement, over the scale of a mine it is often
impractical to precisely measure, let alone simulate, the behaviour of each fracture. Accordingly,
effective continuum models capable of representing the bulk effects of the fracture network are
needed to understand the movement of fluid within these slopes. This article presents an analysis
of the fracture distribution within the slopes of a brown coal mine and outlines a model to capture
the effects on the bulk permeability. A stress-dependent effective-fracture-permeability model is
introduced that captures the effects of the fracture apertures, spacing, and orientation. We discuss
how this model captures the fracture heterogeneity and the effects of changing stress conditions
on fluid flow. The fracture network data and the results from the effective permeability model
demonstrate that in many cases slope permeability is dominated by highly permeable but low-
probability fractures. These results highlight the need for models capable of capturing the effects of
heterogeneity and uncertainty on the slope behaviour.

Keywords: fractures; fissures and joints; hydraulic properties; numerical modelling

1. Introduction

The stability of an open-cut mine is strongly influenced by water flow within the
in-situ fracture network. This is particularly true of brown coal mines: while solid coal is
relatively impermeable e.g., [1,2], it contains numerous fractures that permit water to flow
into the mine slopes. Excessive water retention within a slope may decrease the effective
strength of the rock and lead to slope failure [3]. The effects of water can be represented as
an overall reduction of shear strength in the rock [4–6]. However, this fails to account for
the effects of fractures and its heterogeneity in the slope.

Numerical models are needed to predict the effect of fractures on the fluid retention in
mine slopes. Discrete fracture models, which involve the explicit simulation of individual
fractures, are often used to represent flow in fractured media [7–11]. These discrete fracture
models often require extensive knowledge and data of the fracture network to explicitly
simulate the fracture [12–14]. However, they are too numerically intensive to accurately
represent large-scale simulations over long time frames, as required for mine slope stabil-
ity [15–17]. A less numerically intensive approach is offered by effective continuum models.
Effective-continuum-fracture models represent fracture permeability using estimates from
the bulk material [18–20]. Such effective-continuum-fracture models are faster compared to
discrete-fracture-permeability models that track the flow within each individual fracture.

Several of these continuum fracture models assume representative fracture properties
for the entire fracture domain [16,21–24]. However, the heterogeneity of fracture networks
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strongly influences fluid flow trajectories [25–27] and may result in conditions that lead
to slope failure, e.g., [28–30], or may dramatically affect transport properties within those
networks, e.g., [31–33] . Nevertheless, attempts to capture heterogeneity with effective
continuum models often still use average values for the model [34–36]. An average value
for fractures may be accurate when there is a high fracture density and a narrow aperture
distribution but may not properly account for the effects of material heterogeneity [37].
Hence, care must be taken when representing fractured media using continuous fields.

In this article, we discuss how best to represent the effect of the fracture network on the
slope permeability using effective continuum models. We introduce probability-density-
distribution functions that capture the variations in the fracture orientation, aperture, and
spacing. These distributions are fitted to data obtained from a working brown-coal mine,
AGL Loy Yang, in Victoria, Australia. Each distribution is evaluated by comparing their
predictions of the fracture permeability with those from the original data.

We compare the results from the model with other representations of the fracture
network and discuss the implications for slope permeability and transport properties
and how it differs from models based on averaged values alone. By incorporating the
fracture distribution in the numerical model, we are able to capture the effects of fracture
heterogeneity. This model can then be applied in other contexts such as slope stability to
highlight areas of high fluid retention that may cause slope failure e.g., [30]. The method
used here to capture fracture heterogeneity in open-cut mines can also be applied in other
fields such as underground tunnelling and shale gas where heterogeneous fractures often
dictate the fluid or gas flow [38–41].

2. Model Description

In this section, we outline the theoretical basis for the fracture network model. We
first introduce the basic effective continuum model representing the joint-set permeability
and describe how that model can be expanded to account for variations in the joint prop-
erties. Next, we introduce different methods to capture the distributions in both the joint
orientation and the aperture and spacing of the fractures. These models are then tested
against data obtained from the fracture network distribution in a brown coal slope from
the AGL Loy Yang mine in the following section.

2.1. Effective Fracture-Set Permeability

The effective continuum model introduced here assumes that the permeability of a
mine slope can be determined from the expected transmissibility of its in situ fracture
network [42]. Each individual fracture’s permeability is estimated based on a parallel plate
approximation:

κ f rac =
h2

12
, (1)

where κ f rac is the permeability of the fracture and h is the hydraulic aperture [43–47]. As
perfectly smooth fractures do not exist in nature, the permeability is affected by the fracture
roughness and other geometric properties. Due to this, the hydraulic aperture is not equal
to the mechanical aperture of the fracture, and this estimate should be viewed as an upper
bound of the fracture permeability [48]. Nevertheless, the mechanical aperture and the
hydraulic aperture are approximately equivalent for fractures with large apertures [49,50].
Assuming there exists a set of fractures separated by a spacing d, the three-dimensional
permeability becomes:

κ
joint
ij =

h3

12d
[δij − ninj] , (2)

where δij is the Kronecker delta and ni is the fracture normal calculated from the dip and
strike [51,52].
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The hydraulic aperture, h, is sensitive to changes in the in situ stress conditions. Several
models have been proposed to capture this relationship, for example: Seidle et al. [53], Liu
& Rutqvist [54], Chen et al. [55] and Yan et al. [56] employ the following equation:

h = ho exp(−Chσe f f ) , (3)

where Ch is the fracture compressibility, ho is the initial hydraulic aperture, and σe f f is
the effective stress. The effective stress is defined as the stress acting perpendicular to
the fracture less the pore pressure. The fracture compressibility measures the change in
aperture as a function of the change in applied stress:

Ch =
−1
φ f

∂φ f

∂σe f f
, (4)

where φ f is the fracture porosity [55,57,58]. Fracture compressibility is difficult to measure;
however, an extensive review by Tan [59] reports a range of values up to 0.2 MPa−1 for
brown coal.

Multiple joint sets are represented in the effective continuum model as a superposition
of their individual contributions:

κtotal
ij =

N

∑
n

κn
ij , (5)

where N is the number of joint sets and κn
ij is the permeability of the nth joint set. Note,

however, that the effective stress on each joint set will differ due to differences in the
orientations of the fractures.

No real-world fracture network matches the idealized description outlined above.
Fractures are not uniformly spaced, their orientations and apertures vary, and their mea-
surement is prone to error and uncertainties. The variability in fracture properties makes
it difficult to represent the heterogeneity in the fracture network explicitly. Thus, there is
a need to adopt effective averaging procedures that capture the essential physics of the
fracture system.

Under the simplest approach—one typically adopted in effective continuum models—
it is assumed that the fracture network can be represented by a given number of principal
joint sets. The number and orientation of joint-sets is determined using the median dip, the
dip direction, and the fracture separation. However, within those joint sets there are addi-
tional variations in fracture aperture, spacing, and orientation. In the following sections,
we introduce different functions and methods that we use to describe these distributions.
Later, in Section 3, we consider how well these methods capture the characteristics of the
fracture network from the AGL-Loy Yang mine.

2.2. Representing Joint Aperture and Separation

The distribution of fracture apertures and spacings is often described using log-normal
probability distributions. Here, we also consider a second distribution function, the log-
beta distribution. In Section 3, we compare the ability of both functions to describe an
actual fracture data set.

The log-normal distribution is fitted by calculating the cumulative probability for
each spacing or aperture and minimising the combined difference with the cumulative
probability from the original data set. For a log-normal distribution, the Cumulative
Distribution Function (CDF) is:

CDFln(x) =
1
2

[
1 + er f

(
ln(x)− µ√

2σ

)]
, (6)

where CDFln(x) is the log-normal cumulative distribution function of x, er f is the error
function, µ is the log-mean, and σ is the log-standard deviation.
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Here the log-normal distributions are fitted to both the fracture aperture and the
inter-fracture separation (i.e., the distance between each fracture less the fracture aperture).
Fitting to the inter-fracture separation, rather than the fracture separation, ensures that the
fracture aperture is never greater than the separation between fractures.

The log-normal distribution has a disadvantage, however, in that it is unbounded.
There is always a small but finite probability of generating an unphysically large value. To
overcome this deficit, the fracture properties were also fitted with log-beta distributions.

The log-beta function is similar to log-normal distributions in that it fits a probability
distribution to the natural log of the underlying data. The standard beta distribution is
restricted to 1 ≥ x ≥ 0, and thus an adjustment must be made for the range of values in
the log-beta function.

The CDF of the log-beta function is:

CDFlb(x) =
Γ(α + β)

Γ(α)Γ(β)

∫ tmax

t=tmin

tα−1(1− t)β−1dt , (7)

where, t = log(x)/6σ and the limits of the integral are given by tmax/min = (µ± 3σ)/6σ; Γ
is the gamma function with α and β as the two shape parameters.

2.3. Representing the Distribution of Joint Orientation

Given a set of fracture data that include the joint orientation, the aperture, and the
spacing, the stress-dependent permeability of the entire system can be estimated from the
equations given in Section 2.1.

A probability-density distribution based on the phi-theta grid can be produced to
represent the distribution and uncertainty of a single joint set. Here, a weighted Gaussian
distribution is used to show how the fractures in the joints vary about their average
orientation.

The probability-density-distribution function for a single joint set is assumed to be
symmetric about a principal direction ni with an approximately Gaussian distribution,
whose orientation is defined by a second vector ti that lies perpendicular to ni:

PDF(v : n, t, σt, σs) =
1

2πσtσs
exp

[
−1

2

(
(v · t)2

σ2
t

+
(v · s)2

σ2
s

)]
, (8)

where PDF(v : n, t, σt, σs) describes a probability density function for finding a fracture
with normal v in a joint set described by a principal direction n, and σt and σs are the
standard deviations along t and s = n× t, respectively.

We find the values of n, t, σt, and σs that best match the observed distribution of
fractures by comparing the discrete set of fractures with the probability-density distribution
of the joint set. This is accomplished by introducing a weighting function w(u, v) that
maps a specific fracture orientation v to all other orientations. For the discrete fracture
network, this is given as:

ΦT(u) =
1
N

N

∑
i=1

w(u, fi)fi , (9)

where the sum is over the discrete set of fractures. In this way, the discrete fracture set is
converted to a continuous representation that we can compare to the probability-density-
distribution function for the joint set once it has been similarly weighted:

ΦJ(u) =
∫

w(u, v)PDF(v : n, t, σt, σs)dv . (10)

where here the integral is taken over all possible fracture orientations.
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The misfit between our target function ΦT(u) and the weighted probability-density
distribution function ΦJ(u) is given by

F =
∫ [

ΦJ(u)−ΦT(u)
]2du . (11)

To fit the probability-density distribution to the fracture set, we searched for the values of
n, t, σt, and σs that minimized this misfit. The integral is evaluated using a quadrature rule:

F ≈ 1
∆θ∆φ ∑

ij

[
ΦJ(uij)−ΦT(uij)

]2qiqj sin(φj) , (12)

where qx are quadrature weights, and i and j refer to grid indices in the azimuthal (θ) and
the polar (φ) axes, respectively.

3. Fracture Network Representation

The previous section introduced several methods to represent the distribution of
properties in the fracture set. Here, we evaluate these methods by testing their ability to
match the distribution of fracture data obtained in a real-world fracture network, from
surveys taken at the AGL Loy Yang brown-coal mine. The separate distributions are
assessed with regard to their ability to represent not only the distribution of fracture
properties but also their ability to reproduce fracture networks with similar permeability
distributions.

3.1. Fracture Network

As an example, data from the fractures in the AGL Loy Yang coal mine are plotted on
a stereonet given in Figure 1. The fractures have a median dip of 78◦ and a dip direction of
85◦. The fracture apertures have a mean value of 10.9 mm with a standard deviation of
15 mm, while the fracture spacing has a mean of 3 m with a standard deviation of 4.8 m (as
noted in Figure 1).

Dip 78◦

Dip direction 85◦

Mean aperture 10.9 mm
Std. dev. aperture 15 mm

Mean spacing 3 m
Std. dev. spacing 4.8 m

Figure 1. Stereonet and associated statistical properties of the fracture network recorded at the AGL
Loy Yang coal mine.

We apply the equations in Sections 2.2 and 2.3 to determine a probability distribution
that accurately represents the fracture network. Firstly, the distributions of the fitted
fracture apertures and spacings are described in Section 3.2. Following this, Gaussian
distributions are applied to the fracture orientations as described in Section 3.3.

3.2. Fracture Spacing and Aperture

We apply the log-normal and log-beta distributions described in Section 2.2 to rep-
resent the fracture spacing and apertures in the raw data. The cumulative-distribution
functions of the raw data and the fitted log-normal and log-beta functions of the fracture
apertures and separations introduced in Equations (6) and (7) are shown in Figure 2. Both
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the standard log-normal distribution and the log-beta distributions demonstrate an ex-
cellent fit for the underlying raw data of apertures and separations, similar to reported
distributions for other fracture sets [60,61].

(a) (b)

Figure 2. Raw and fitted cumulative distributions for (a) the fracture spacing and (b) the fracture
aperture.

For the purpose of this study, the range of the log-beta function was set to three
log-standard deviations on either side of the log-mean of the data (i.e., µ + 3σ ≥ log(x) ≥
µ− 3σ). This resulted in a distribution that captures the bulk of the data but eliminates
the effect of the long-tail found in the log-normal distribution. The two shape parameters
(α and β) for the log-beta distributions were found by minimizing the misfit between the
raw cumulative distribution function from the data and that given by the fitted log-beta
function.

The mean permeability of the fractures, E(K), from the raw data (8.5× 10−6 m2) was
over two orders of magnitude greater than the permeability determined from the mean
spacing and aperture (e.g., E(h)3/12E(d) = 4.8× 10−8 m2). In comparison, the expected
permeability from the log-normal fits was determined to be 1.4× 10−5 m2, whereas the
expected permeability of the log-beta distribution was 2.0× 10−6 m2.

The major contribution to the permeability for both the log-normal and log-beta distri-
butions arises from relatively large apertures (10–20 cm) with a small fracture separation
(less than one meter) (Figure 3). Although fractures in this range are extremely rare, the
cubic dependence on the aperture exaggerates their influence on the expected permeability.
Compared to the raw data, the log-normal distribution over-estimates the permeability,
whereas the beta distribution gives an under-estimate—as it limits the range and lowers
the probability of large fractures. Nevertheless, both functions yield similar distributions
to that given by the raw fracture data (Figure 4).

The small number of fractures with large permeabilities result in highly variable
average permeabilities that are sensitive to the sample size. This results in difficulty when
making a direct comparison between the mean permeabilities of the raw data and the fitted
probability distributions.

Figure 5 plots the distributions of average permeability obtained from random samples
from the log-normal and log-beta distributions equal in size to the number of fractures in
the raw data. The average permeability of the raw data (vertical blue line) and and the
permeability obtained from the average fracture aperture and spacing (vertical dashed line)
are also included for the purpose of comparison.

Comparing the mean fracture permeabilities of the raw data and random samples
from the fitted probability distributions shows that the sub-sampled permeabilities of the
fitted distributions are generally lower than their means. This is due to the tendency to not
sample the high-permeability but low-probability fractures. For this reason, although the
log-beta function arguably provides a better fit to the raw fracture distribution, it fails to
match the raw permeability for any of the sample realisations (demonstrated by the green
and blue lines in Figure 5).
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Conversely, sub-samples from the log-normal distribution produce higher mean
permeabilities. As a result, the raw data permeability is within the range of values produced
by sampling from the log-normal distribution (demonstrated by the red and blue lines
in Figure 5). On average, subsamples from the log-normal distribution predict a lower
average permeability to that of the raw data that are sampled approximately 30% of the
time. However, the unbounded nature of the log-permeability means that subsamples from
the log-normal distribution often significantly over-estimate the observed permeability.

(a) (b)

Figure 3. Contributions to the expected permeability as a function of the fracture aperture and
spacing for (a) the log-normal and (b) the log-beta distributions. Both plots illustrate that the largest
contribution to the average permeability comes from large-aperture and tightly spaced fractures.
However, the long tail of the log-normal aperture distribution in (a) over-represents the contribution
from large apertures.

10-1210-1110-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2

Permeability (m2 )

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 P
ro
b
a
b
ili
ty

raw data

log-normal

log-beta

E(h)3 /12E(d)

Figure 4. Semi-log plots of cumulative distributions of the (log) permeability for the raw data (blue),
log-normal distribution (red), and log-beta distribution (green). Vertical dashed line shows the
permeability determined from the mean aperture and spacing.

Fitting the beta function directly to the sample data fails to represent the probability
of the larger aperture fractures and hence skews the permeability calculation. On the
other hand, while the log-normal permeability produces a range that better captures the
observed permeability, its unbounded nature results in unrealistically high permeabilities
in many cases. However, these deficits may be overcome by fitting the beta function to the
log-normal distribution of the apertures. This new log-beta fit has the advantage of being
able to capture the effects of the high-permeability samples while removing the possibility
of excessively large fractures that the log-normal distribution includes. This produces a
sub-sampled distribution that includes the observed expected permeability but excludes
extremely large fracture apertures (Figure 5 yellow line).
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10-8 10-7 10-6 10-5 10-4 10-3 10-2

Permeability (m2 )
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data-fitted log-beta

log-fitted log-beta

E(h)3 /12E(d)

Figure 5. Semilog plots comparing the distribution of mean permeabilities of random samples
with the same size as the raw data. The plots show the range of permeabilities calculated from a
log-normal (red), a log-beta (green), and a log-beta function fitted to the log-normal distribution
(yellow) distributions with that of the raw data).

3.3. Fracture Orientation

In this section, we consider how best to match the distribution of the fracture ori-
entations. We apply the equations in Section 2.3 to determine a suitable fit to the data
provided by AGL Loy Yang. Figure 6a is generated by applying the weighting function in
Equation (9) to a sample of 1000 fracture observations from the original data.

Figure 6b,c are generated by fitting the distribution to the given in Equation (9) to
discrete fracture density using the method outlined in Equations (11) and (12). Figure 6b
applies a single Gaussian distribution and can only capture a single joint set. Thus, it
overemphasises the dominant vertical fractures. Figure 6c applied three Gaussian distri-
butions and captures some of the horizontal fractures in the stereonet. However, it still
overemphasises the dominant vertical fractures and underperforms when capturing the
horizontal joint set.

The fits to the probability distribution of the fracture sets provide an accurate represen-
tation of the overall joint orientations. However, because the fit tries to match the fracture
density rather than the permeability, the effect of the main joint set are overemphasized,
and the minor joint sets are not adequately captured.

In an effort to maintain an accurate representation but generate a fracture distribution
that more faithfully reproduces the permeability, we also considered a second approach
in which the joint set is instead fitted to the permeability distribution. Similar to fitting
the probability-density distribution, we also searched for the values of n, t, σt, and σs to
fit the permeability distribution to the permeability of the fracture data set. However,
instead of minimising the cumulative difference between fracture densities, we compared
the cumulative probability distribution of the raw and fitted permeabilities.

To isolate the effect of the fracture orientation as opposed to the other fracture properties,
we considered how the permeability distributions of the original fracture set compare with the
fitted distributions under the assumption of constant fracture apertures and spacing.

Cumulative distribution plots of the permeability for the original data and each of
the fitted distributions are given in Figure 7. The permeabilities along three axes were
considered (e1, e2, e3), corresponding to the principal axes of the expected permeability
κraw

ij for the raw data. To create the cumulative permeability distributions in the plots, we
randomly generated 10,000 fractures from the fitted orientation distributions and calculated
their permeabilities along the principal directions from

κn = κijen
i en

j (13)
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where κn is the permeability of each individual fracture along the “nth” principal direction,
en

i . These values were then collected for each of the randomly generated fractures and
sorted to produce the cumulative distribution plots in Figure 7.

Original Stereonet

(a)

Fitted to Fracture Orientations
Single joint-set Three joint-sets

(b) (c)

Fitted to Fracture Permeabilities
Single joint-set Three joint-sets

(d) (e)

Figure 6. Stereonets after convolution with the weighting function: (a) the original discrete fracture
distribution; (b) a single normal distribution fitted to the fracture orientations captures the dominant
vertical joint set; (c) three normal distributions fitted to the fracture orientations captures some of the
horizontal fractures but fails to improve on (b) substantially; (d) a single normal distribution fitted
to the permeability distribution again captures the dominant vertical joint set; and (e) three normal
distributions fitted to the permeability distribution provide an excellent fit to the permeability and
more accurately represent the fracture orientations.

Figure 7a shows the cumulative distributions of the permeabilities for the raw fracture
data. Two of the the principal axes showed very similar permeabilities due to the preferen-
tial orientation of the fractures shown in Figure 6a. Nevertheless, the average permeability
along the minor axis was more than half that of the major and secondary axes, due to the
scatter in the fracture orientations.
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Original Permeability Distributions
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Figure 7. Cumulative distribution plots of the permeability along the principal directions of the
fracture-network’s permeability tensor: (a) the original permeability distributions; (b) fitting a single
distribution to the fracture orientations underestimates horizontal fracture contributions; (c) three
distributions fitted to the fracture orientations provide a better fit but still overestimate the dominant
fracture permeability; (d) a single distribution fitted to the permeability still underestimates the
minor horizontal fracture permeability; and (e) three joint-set distributions fitted to the permeabilities
show an excellent match to the raw data.

The permeability distributions for the normal fits to the fracture orientations are
shown in Figure 7b,c. The single normal fit to the fracture orientations (Figure 7b) is able
to match the maximum and minimum permeability (e.g., the range) and has features that
make it qualitatively similar to the raw distribution. However, the expected permeabilities
fails to match those from the raw data. Because the single distribution only captures the
dominant direction, the principal and secondary axes are too close to the maximum values.
Likewise, the expected permeability along the minor axis is significantly less than the
actual expected value. As a result, the model would grossly underestimate transverse flow
within the fracture network. Increasing the number of distributions in Figure 7c improves
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the fit slightly, but the expected values remain underestimated for the minor axis and
overestimated for the major and secondary axis.

To address the mismatch in the mean permeabilities observed in Figure 7b,c, we fit
the fracture orientations by minimising the least-squared difference with the continuous
permeability directly. As might be expected, fitting the distributions to the permeabilities
themselves results in a significantly better fit, even for only one joint set (Figure 7d). The
expected permeabilities along each of the principal axes (vertical lines) are much closer
to those from the original data than even the three-joint set fit to the fracture distribution
(Figure 7c). When three distributions are used to the match the permeability, the fit is excel-
lent, especially for the expected permeabilities along each axis (Figure 7e). Moreover, even
though the permeability is fitted rather than the fracture orientations, the fit nevertheless
does a better job of capturing the the off-axis fracture orientations (Figure 6e).

4. Results and Discussion

To illustrate the effects of the different fracture-permeability distributions on the fluid
flow, the numerical model was implemented within the Multiphysics Object-Oriented
Simulation Environment (MOOSE) produced by the Idaho National Laboratory. MOOSE
simulations have been used to couple multiple physics processes—in particular, coupling
between solid mechanics, fluid flow, and heat conduction [62,63]. Here, we used a modified
version of the Porous Flow module for our hydromechanical coupling [64]. Under this
model, each cell in the finite-element simulation is assigned a permeability determined by
sampling the fitted fracture-aperture distributions and orientations described in Section 3
and then calculating the effect on the permeability using the process outlined in Section 2.1.
The sampled values are recorded and—in the case of the fracture apertures—updated in
each timestep to capture changes to the permeability in response to changing effective
stress conditions. By tracking the fractures in this manner, we are able to capture the effects
of fracture heterogeneity and anisotropy on the fluid flow.

In Figures 8 and 9, we show the effect of the different fracture orientations on the
regional fluid flow. To illustrate the effect of the distributions on the flow profile, we
compared simulations of the horizontal and vertical flows through a rectangular region.
The plots compare the fluid flow streamlines and retention time of each of the fracture
distribution models. The same variable aperture field was kept for each simulation. Con-
stant flux-inflow and -outflow boundary conditions were applied on each boundary in
the direction of flow, while periodic boundary conditions were applied in the transverse
direction.

In the case of the vertical flow, which is roughly in line with the dominant fracture
plane, all of the simulations produced flow paths with similar geometries. Comparing the
streamlines of the different permeability distributions there was little effect on the direction
of flow. However, with three Gaussian fits to the permeability (Figure 8f), there were more
streamlines with a longer retention time, indicating lower vertical permeability. Each of
the permeability distributions had significantly higher permeability in the vertical axis and
showed little difference in the streamline geometries despite variations in retention time
(Figure 10).

However, the differences in the streamline geometries are more pronounced when
horizontal flows were considered (Figure 9). The constant fracture orientation results
in a highly preferred flow direction as seen in Figure 9b. The streamlines in Figure 9d
and e have limited horizontal flow as there are many areas of stagnation. This occurs
as those models under-represent the horizontal connectivity of the fracture network. In
contrast, Figure 9f uses the sampled data from three Gaussian distributions to the raw
permeability. As a result, it contains areas of higher horizontal permeability that allow
for more direct fluid flow. Using fracture orientation values taken from a single fit to
the fracture density also produces more flow paths as seen in Figure 9c. However, these
streamlines deviate upwards and have longer residence times due to the significantly
higher vertical permeability and the low horizontal permeability. This is compounded
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with increasing compressive stresses with depth and hence smaller aperture sizes and
permeability. These results suggest that average approximations are likely to overestimate
(and also miscalculate) transport properties and dispersion within fractured slopes, while
models fitted to the fracture network (rather than the permeability) will underestimate
transport and overestimate dispersion, particularly in transverse flows.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Plots showing (a) the boundary conditions and the log aperture field for vertical flow
simulations; (b) the flow streamlines with a constant orientation; (c) the flow streamlines with
orientation samples taken from a single Gaussian distribution fitted to the fracture density; (d) the
flow streamlines with orientation samples taken from three Gaussian distributions fitted to the
fracture density; (e) the flow streamlines with orientation samples taken from a single Gaussian
distribution fitted to the fracture permeability; and (f) the flow streamlines with orientation samples
taken from three Gaussian distributions fitted to the fracture permeability.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Plots showing (a) the boundary conditions and the log aperture field for horizontal flow
simulations; (b) the flow streamlines with a constant orientation; (c) the flow streamlines with
orientation samples taken from a single Gaussian distribution fitted to the fracture density; (d) the
flow streamlines with orientation samples taken from three Gaussian distributions fitted to the
fracture density; (e) the flow streamlines with orientation samples taken from a single Gaussian
distribution fitted to the fracture permeability; and (f) the flow streamlines with orientation samples
taken from three Gaussian distributions fitted to the fracture permeability.
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Figure 10. The cumulative distribution of the fluid residence time based on the seepage velocity
distribution for the constant permeability, constant aperture, and sampled aperture cases shown
in Figure 8. Preferential flow paths arising from the fracture heterogeneity greatly impact the fluid
residence times—significantly reducing them compared to the assumption of an average permeability.
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5. Conclusions

Here, we presented an effective joint-permeability model that captures the influence
of fracture orientation, separation, and aperture on fracture networks. The model uses
a parallel-plate approximation, combined with distributions associated with each of the
fracture network parameters, to capture the variability of the fracture characteristics and
the effects of stress acting on the fracture network.

Probability distributions are used to represent the heterogeneity in the system. Here,
this was illustrated by fitting fracture data obtained from the AGL Loy Yang brown-coal
mine in Victoria, Australia. More specifically, log-normal and log-beta distributions were
fitted to the fracture apertures and separations, while Gaussian distributions were used
for the fracture orientations. Particular emphasis was placed on fitting the distribution
of the fracture permeabilities rather than the distributions within the individual fractures
themselves. This focus resulted in a more accurate match to the overall permeability due to
the non-linearities associated with both the fracture orientation and the fracture aperture
and spacing. It was found that applying three Gaussian distributions to the permeability
distribution yielded the best results. With a single Gaussian distribution or fitting the
fracture density, the fit overemphasises the predominant joint set, resulting in a far higher
permeability in that direction.

Introducing probability distributions to represent the fracture properties allows the
effects of the fracture heterogeneity to be simulated. This is important for the fracture
distributions in brown coal because a mean orientation fails to accurately capture fluid
flow in non-dominant directions. The fracture model was implemented in the MOOSE
multiphysics solver. Results from the simulation demonstrate that the mean orientation
tensor resulted in a more consistent and uniform flow rate compared to a permeability
sampled from the fracture orientation distributions. Not only does this result in a different
flow path but it also greatly affects the flow rate and hence the retention time of fluid within
mine slopes.

Author Contributions: Conceptualization, R.H. and S.D.C.W.; methodology, R.H. and S.D.C.W.;
software, R.H.; validation, R.H.; formal analysis, R.H.; investigation, R.H.; resources, S.D.C.W.; data
curation, R.H.; writing—original draft preparation, R.H. and S.D.C.W.; writing—review and editing,
R.H. and S.D.C.W.; visualization, R.H.; supervision, S.D.C.W.; project administration, S.D.C.W.;
funding acquisition, S.D.C.W. All authors have read and agreed to the published version of the
manuscript.

Funding: Roger Hu was funded by a grant from AGL Loy Yang.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We gratefully acknowledge the support for this project provided by AGL Loy
Yang and the continuing advice and collaboration of Jon Missen and Nicole Anderson.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pan, Z.; Connell, L.D. Modelling permeability for coal reservoirs: A review of analytical models and testing data. Int. J. Coal Geol.

2012, 92, 1–44. [CrossRef]
2. Zhang, G.; Ranjith, P.; Liang, W.; Haque, A.; Perera, M.; Li, D. Stress-dependent fracture porosity and permeability of fractured

coal: An in-situ X-ray tomography study. Int. J. Coal Geol. 2019, 213, 103279. [CrossRef]
3. Cai, F.; Ugai, K. Numerical analysis of rainfall effects on slope stability. Int. J. Geomech. 2004, 4, 69–78. [CrossRef]
4. Cheng-Gang, B. Behavior of unsaturated soil and stability of expansive soil slope. Chin. J. Geotech. Eng. 2004, 26, 1–15.
5. Osman, N.; Barakbah, S. Parameters to predict slope stability—soil water and root profiles. Ecol. Eng. 2006, 28, 90–95. [CrossRef]
6. Nguyen, T.S.; Likitlersuang, S. Reliability analysis of unsaturated soil slope stability under infiltration considering hydraulic and

shear strength parameters. Bull. Eng. Geol. Environ. 2019, 78, 5727–5743. [CrossRef]
7. Kim, J.G.; Deo, M.D. Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J. 2000, 46, 1120–1130.

[CrossRef]

http://doi.org/10.1016/j.coal.2011.12.009
http://dx.doi.org/10.1016/j.coal.2019.103279
http://dx.doi.org/10.1061/(ASCE)1532-3641(2004)4:2(69)
http://dx.doi.org/10.1016/j.ecoleng.2006.04.004
http://dx.doi.org/10.1007/s10064-019-01513-2
http://dx.doi.org/10.1002/aic.690460604


Geosciences 2021, 11, 511 15 of 16

8. Maillot, J.; Davy, P.; Le Goc, R.; Darcel, C.; De Dreuzy, J.R. Connectivity, permeability, and channeling in randomly distributed
and kinematically defined discrete fracture network models. Water Resour. Res. 2016, 52, 8526–8545. [CrossRef]

9. Huang, N.; Jiang, Y.; Liu, R.; Li, B. Estimation of permeability of 3-D discrete fracture networks: An alternative possibility based
on trace map analysis. Eng. Geol. 2017, 226, 12–19. [CrossRef]

10. Liu, R.; Li, B.; Yu, L.; Jiang, Y.; Jing, H. A discrete-fracture-network fault model revealing permeability and aperture evolutions of
a fault after earthquakes. Int. J. Rock Mech. Min. Sci. 2018, 107, 19–24. [CrossRef]

11. Huang, N.; Liu, R.; Jiang, Y.; Cheng, Y.; Li, B. Shear-flow coupling characteristics of a three-dimensional discrete fracture
network-fault model considering stress-induced aperture variations. J. Hydrol. 2019, 571, 416–424. [CrossRef]

12. Tavakkoli, M.; Mohammadsadeghi, M.; Shahrabadi, A.; Khajoee, S.; Malakooti, R.; Beidokhti, M.S. Deterministic versus stochastic
discrete fracture network (DFN) modeling, application in a heterogeneous naturally fractured reservoir. In Proceedings of the
Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 14–16 December 2009.

13. Merrien-Soukatchoff, V.; Korini, T.; Thoraval, A. Use of an integrated discrete fracture network code for stochastic stability
analyses of fractured rock masses. Rock Mech. Rock Eng. 2012, 45, 159–181. [CrossRef]

14. Li, L.; Jiang, H.; Li, J.; Wu, K.; Meng, F.; Xu, Q.; Chen, Z. An analysis of stochastic discrete fracture networks on shale gas recovery.
J. Pet. Sci. Eng. 2018, 167, 78–87. [CrossRef]

15. Styles, T.; Coggan, J.; Pine, R. Stability analysis of a large fractured rock slope using a DFN-based mass strength approach. In
Proceedings of the International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Vancouver, BC,
Canada, 18 September 2011; Volume 21, p. 2011.

16. Leung, C.; Hoch, A.; Zimmerman, R. Comparison of discrete fracture network and equivalent continuum simulations of fluid
flow through two-dimensional fracture networks for the DECOVALEX–2011 project. Mineral. Mag. 2012, 76. [CrossRef]

17. Elmouttie, M.; Krähenbühl, G.; Soliman, A. A new excavation analysis method for slope design using discrete fracture network
based polyhedral modelling. Comput. Geotech. 2016, 76, 93–104. [CrossRef]

18. Meng, Z.; Zhang, J.; Wang, R. In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin. Int.
J. Rock Mech. Min. Sci. 2011, 48, 122–131. [CrossRef]

19. Adhikary, D.; Wilkins, A. Reducing the impact of longwall extraction on groundwater systems. ACARP Report C18016 2012.
Available online: https://www.acarp.com.au/abstracts.aspx?repId=C18016 (accessed on 10 October 2021).

20. Wilkins, A.; Qu, Q. A formalism to compute permeability changes in anisotropic fractured rocks due to arbitrary deformations.
Int. J. Rock Mech. Min. Sci. 2020, 125, 104159. [CrossRef]

21. Peters, R.; Klavetter, E.A. A continuum model for water movement in an unsaturated fractured rock mass. Water Resour. Res.
1988, 24, 416–430. [CrossRef]

22. Wang, J.G.; Kabir, A.; Liu, J.; Chen, Z. Effects of non-Darcy flow on the performance of coal seam gas wells. Int. J. Coal Geol. 2012,
93, 62–74. [CrossRef]

23. Suresh Kumar, G. Mathematical modeling of groundwater flow and solute transport in saturated fractured rock using a
dual-porosity approach. J. Hydrol. Eng. 2014, 19, 04014033. [CrossRef]

24. Cao, P.; Liu, J.; Leong, Y.K. A fully coupled multiscale shale deformation-gas transport model for the evaluation of shale gas
extraction. Fuel 2016, 178, 103–117. [CrossRef]

25. Pruess, K. On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. J. Contam. Hydrol. 1998,
30, 333–362. [CrossRef]

26. De Dreuzy, J.R.; Méheust, Y.; Pichot, G. Influence of fracture scale heterogeneity on the flow properties of three-dimensional
discrete fracture networks (DFN). J. Geophys. Res. Solid Earth 2012, 117. [CrossRef]

27. Santillán, D.; Mosquera, J.C.; Cueto-Felgueroso, L. Fluid-driven fracture propagation in heterogeneous media: Probability
distributions of fracture trajectories. Phys. Rev. E 2017, 96, 053002. [CrossRef] [PubMed]

28. Li, L.; Tang, C.; Zhu, W.; Liang, Z. Numerical analysis of slope stability based on the gravity increase method. Comput. Geotech.
2009, 36, 1246–1258. [CrossRef]

29. Srivastava, A.; Babu, G.S.; Haldar, S. Influence of spatial variability of permeability property on steady state seepage flow and
slope stability analysis. Eng. Geol. 2010, 110, 93–101. [CrossRef]

30. Kumar, A.; Hu, R.; Walsh, S.D. Development of Reduced Order Hydro-mechanical Models of Fractured Media. Rock Mech. Rock
Eng. 2021, 1–14. doi:10.1007/s00603-021-02668-9 [CrossRef]

31. Berkowitz, B.; Scher, H. Anomalous transport in random fracture networks. Phys. Rev. Lett. 1997, 79, 4038. [CrossRef]
32. Fu, P.; Hao, Y.; Walsh, S.D.; Carrigan, C.R. Thermal drawdown-induced flow channeling in fractured geothermal reservoirs. Rock

Mech. Rock Eng. 2016, 49, 1001–1024. [CrossRef]
33. Kang, P.K.; Lei, Q.; Dentz, M.; Juanes, R. Stress-induced anomalous transport in natural fracture networks. Water Resour. Res.

2019, 55, 4163–4185. [CrossRef]
34. N@ tinger, B. The effective permeability of a heterogeneous porous medium. Transp. Porous Media 1994, 15, 99–127.
35. Baek, S.H.; Kim, C.Y.; Kim, K.Y.; Hong, S.W.; Moon, H.K. A numerical study on the effect of heterogeneous/anisotropic nature

of rock masses on displacement behavior of tunnel. Tunn. Undergr. Space Technol. 2006, 21, 391. doi:10.1016/j.tust.2005.12.202
[CrossRef]

36. Kong, P.; Jiang, L.; Shu, J.; Sainoki, A.; Wang, Q. Effect of fracture heterogeneity on rock mass stability in a highly heterogeneous
underground roadway. Rock Mech. Rock Eng. 2019, 52, 4547–4564. [CrossRef]

http://dx.doi.org/10.1002/2016WR018973
http://dx.doi.org/10.1016/j.enggeo.2017.05.005
http://dx.doi.org/10.1016/j.ijrmms.2018.04.036
http://dx.doi.org/10.1016/j.jhydrol.2019.01.068
http://dx.doi.org/10.1007/s00603-011-0136-7
http://dx.doi.org/10.1016/j.petrol.2018.04.007
http://dx.doi.org/10.1180/minmag.2012.076.8.31
http://dx.doi.org/10.1016/j.compgeo.2016.02.014
http://dx.doi.org/10.1016/j.ijrmms.2010.10.003
http://dx.doi.org/10.1016/j.ijrmms.2019.104159
http://dx.doi.org/10.1029/WR024i003p00416
http://dx.doi.org/10.1016/j.coal.2012.01.013
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000986
http://dx.doi.org/10.1016/j.fuel.2016.03.055
http://dx.doi.org/10.1016/S0169-7722(97)00049-1
http://dx.doi.org/10.1029/2012JB009461
http://dx.doi.org/10.1103/PhysRevE.96.053002
http://www.ncbi.nlm.nih.gov/pubmed/29347739
http://dx.doi.org/10.1016/j.compgeo.2009.06.004
http://dx.doi.org/10.1016/j.enggeo.2009.11.006
http://dx.doi.org/10.1007/s00603-021-02668-9
http://dx.doi.org/10.1103/PhysRevLett.79.4038
http://dx.doi.org/10.1007/s00603-015-0776-0
http://dx.doi.org/10.1029/2019WR024944
http://dx.doi.org/10.1016/j.tust.2005.12.202
http://dx.doi.org/10.1007/s00603-019-01887-5


Geosciences 2021, 11, 511 16 of 16

37. Long, J.C.S.; Remer, J.S.; Wilson, C.R.; Witherspoon, P.A. Porous media equivalents for networks of discontinuous fractures.
Water Resour. Res. 1982, 18, 645–658. doi:10.1029/WR018i003p00645. [CrossRef]

38. Cesano, D.; Bagtzoglou, A.C.; Olofsson, B. Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction
in underground excavations: The heterogeneity index. Tunn. Undergr. Space Technol. 2003, 18, 19–34. [CrossRef]

39. Farhadian, H.; Katibeh, H.; Huggenberger, P. Empirical model for estimating groundwater flow into tunnel in discontinuous rock
masses. Environ. Earth Sci. 2016, 75, 471. [CrossRef]

40. Zeng, J.; Wang, X.; Guo, J.; Zeng, F. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale
reservoir. J. Nat. Gas Sci. Eng. 2017, 38, 527–548. [CrossRef]

41. You, X.T.; Liu, J.Y.; Jia, C.S.; Li, J.; Liao, X.Y.; Zheng, A.W. Production data analysis of shale gas using fractal model and fuzzy
theory: Evaluating fracturing heterogeneity. Appl. Energy 2019, 250, 1246–1259. [CrossRef]

42. Pruess, K.; Wang, J.; Tsang, Y. On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated
fractured tuff: 2. Effective continuum approximation. Water Resour. Res. 1990, 26, 1249–1261.

43. Witherspoon, P.A.; Wang, J.S.; Iwai, K.; Gale, J.E. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour.
Res. 1980, 16, 1016–1024. [CrossRef]

44. Zimmerman, R.W.; Bodvarsson, G.S. Hydraulic conductivity of rock fractures. Transp. Porous Media 1996, 23, 1–30. [CrossRef]
45. Waite, M.E.; Ge, S.; Spetzler, H.; Bahr, D.B. The effect of surface geometry on fracture permeability: A case study using a

sinusoidal fracture. Geophys. Res. Lett. 1998, 25, 813–816. [CrossRef]
46. Teng, T.; Gao, F.; Ju, Y.; Xue, Y. How moisture loss affects coal porosity and permeability during gas recovery in wet reservoirs?

Int. J. Min. Sci. Technol. 2017, 27, 899–906. [CrossRef]
47. Wang, K.; Liu, A.; Zhou, A. Theoretical analysis of influencing factors on resistance in the process of gas migration in coal seams.

Int. J. Min. Sci. Technol. 2017, 27, 315–319. [CrossRef]
48. Javanmard, H.; Ebigbo, A.; Walsh, S.D.; Saar, M.O.; Vogler, D. No-Flow Fraction (NFF) permeability model for rough fractures

under normal stress. Water Resour. Res. 2021, 57, e2020WR029080. [CrossRef]
49. Iwai, K. Fundamental Studies of Fluid Flow through a Single Fracture. Ph. D. Thesis, University of California, Berkeley, CA,

USA, 1976.
50. Barton, N.; Bandis, S.; Bakhtar, K. Strength, deformation and conductivity coupling of rock joints. In International Journal of Rock

Mechanics and Mining Sciences & Geomechanics Abstracts; Elsevier: Amsterdam, The Netherlands, 1985; Volume 22, pp. 121–140.
51. Chen, M.; Bai, M.; Roegiers, J.C. Permeability tensors of anisotropic fracture networks. Math. Geol. 1999, 31, 335–373. [CrossRef]
52. Snow, D.T. Anisotropie permeability of fractured media. Water Resour. Res. 1969, 5, 1273–1289. [CrossRef]
53. Seidle, J.; Jeansonne, M.; Erickson, D. Application of matchstick geometry to stress dependent permeability in coals. In

Proceedings of the SPE Rocky Mountain Regional Meeting. Society of Petroleum Engineers, Casper, Wyoming, 18–21 May 1992.
54. Liu, H.H.; Rutqvist, J. A new coal-permeability model: Internal swelling stress and fracture–matrix interaction. Transp. Porous

Media 2010, 82, 157–171. [CrossRef]
55. Chen, D.; Pan, Z.; Ye, Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match

and insights. Fuel 2015, 139, 383–392. [CrossRef]
56. Yan, Z.; Wang, K.; Zang, J.; Wang, C.; Liu, A. Anisotropic coal permeability and its stress sensitivity. Int. J. Min. Sci. Technol. 2019,

29, 507–511. [CrossRef]
57. Zheng, G.; Pan, Z.; Chen, Z.; Tang, S.; Connell, L.D.; Zhang, S.; Wang, B. Laboratory study of gas permeability and cleat

compressibility for CBM/ECBM in Chinese coals. Energy Explor. Exploit. 2012, 30, 451–476. [CrossRef]
58. Lei, G.; Cao, N.; McPherson, B.J.; Liao, Q.; Chen, W. A novel Analytical Model for pore Volume compressibility of fractal porous

Media. Sci. Rep. 2019, 9, 1–11.
59. Tan, Y.; Pan, Z.; Feng, X.T.; Zhang, D.; Connell, L.D.; Li, S. Laboratory characterisation of fracture compressibility for coal and

shale gas reservoir rocks: A review. Int. J. Coal Geol. 2019, 204, 1–7. [CrossRef]
60. Renshaw, C.E. On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. Solid

Earth 1995, 100, 24629–24636. [CrossRef]
61. Monsalve, J.J.; Baggett, J.; Bishop, R.; Ripepi, N. Application of laser scanning for rock mass characterization and discrete fracture

network generation in an underground limestone mine. Int. J. Min. Sci. Technol. 2019, 29, 131–137. [CrossRef]
62. Tonks, M.R.; Gaston, D.; Millett, P.C.; Andrs, D.; Talbot, P. An object-oriented finite element framework for multiphysics phase

field simulations. Comput. Mater. Sci. 2012, 51, 20–29. [CrossRef]
63. Podgorney, R.; Huang, H.; Gaston, D. Massively Parallel Fully Coupled Implicit Modeling of Coupled Thermal-Hydrological-Mechanical

Processes for Enhanced Geothermal System Reservoirs; Stanford Geothermal Workshop: Stanford, CA, USA, 2010.
64. Wilkins, A.; Green, C.P.; Ennis-King, J. PorousFlow: A multiphysics simulation code for coupled problems in porous media. J.

Open Source Softw. 2020, 5, 2176. [CrossRef]

http://dx.doi.org/10.1029/WR018i003p00645
http://dx.doi.org/10.1016/S0886-7798(02)00098-6
http://dx.doi.org/10.1007/s12665-016-5332-z
http://dx.doi.org/10.1016/j.jngse.2017.01.005
http://dx.doi.org/10.1016/j.apenergy.2019.05.049
http://dx.doi.org/10.1029/WR016i006p01016
http://dx.doi.org/10.1007/BF00145263
http://dx.doi.org/10.1029/98GL00441
http://dx.doi.org/10.1016/j.ijmst.2017.06.016
http://dx.doi.org/10.1016/j.ijmst.2017.01.011
http://dx.doi.org/10.1029/2020WR029080
http://dx.doi.org/10.1023/A:1007534523363
http://dx.doi.org/10.1029/WR005i006p01273
http://dx.doi.org/10.1007/s11242-009-9442-x
http://dx.doi.org/10.1016/j.fuel.2014.09.018
http://dx.doi.org/10.1016/j.ijmst.2018.10.005
http://dx.doi.org/10.1260/0144-5987.30.3.451
http://dx.doi.org/10.1016/j.coal.2019.01.010
http://dx.doi.org/10.1029/95JB02159
http://dx.doi.org/10.1016/j.ijmst.2018.11.009
http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://dx.doi.org/10.21105/joss.02176

	Introduction
	Model Description
	Effective Fracture-Set Permeability
	Representing Joint Aperture and Separation
	Representing the Distribution of Joint Orientation

	Fracture Network Representation
	Fracture Network
	Fracture Spacing and Aperture
	Fracture Orientation

	Results and Discussion
	Conclusions
	References

