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Abstract: The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to
characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The
authors report the results of site characterization in Macerata (Italy), where they measured the Vs

using the seismic dilatometer in a 100 m deep borehole. The standard Vs estimation originates from
the cross-correlation between the signals acquired by two geophones at increasing depths. This paper
focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an
unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of
Lamb waves may be notable up to 100 m depth. The amplitude of surface waves decrease rapidly
with depth; still, their influence may be essential up to depths considered unusual for standard
geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may
bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena.
The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the
importance of Lamb waves in soil characterization.

Keywords: dispersion curve; shear wave; seismic dilatometer; soil mechanics; in situ test

1. Introduction

The Navier’s equilibrium equations of an infinite isotropic elastic medium admit two
types of waves: volumetric waves, involving no rotation and rotational waves, involving no
volume changes. Soil mechanics and seismology name the longitudinal waves P (Pressure)
waves and the transverse waves S (Shear) waves [1]. In the considered infinite idealized
medium, the transverse and longitudinal motion of the particles is uncoupled: P and S
waves are nondispersive and propagate with their constant velocities, independent on
the wavenumber. In an isotropic elastic plane, a third class of solutions may satisfy the
equilibrium equations: the Lamb waves [2]. After the pioneering works of Lamb and
Rayleigh, the study of surface waves fed a vast amount of theoretical, experimental and
technical investigations. A medium with a finite dimension admits the propagation of
dispersive waves, which exhibit the coupling between the longitudinal and transverse
motion. Therefore, Lamb waves do not originate from a modification of the constitutive
properties, but descend from the boundaries modifications.

Several scholars [3–9] attributed the dispersive nature of soils to their constitutive
properties. As explained in the following sections, the current research follows the classical
formulations in soil mechanics, which considers the soil as an isotropic homogeneous
elastic medium [10]. This assumption may be very restrictive, and several studies tran-
scended the limits of the classical theories by formulating ad hoc differential equations for
granular media. The interpretation of the experimental data in the light of the granular
micromechanics would entail dedicated experimental tests. Therefore this research stands
on the groundwork of classical theory of Lamb waves.
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In the last decades, there has been a revived interest in methods used to measure
the shear wave velocity (Vs) due to the inclusion of the value up to 30 m depth (Vs,30) in
several building codes [11–15]. Accordingly, several direct and indirect methods were
developed to evaluate Vs,30. Direct methods stem from direct measurements with the
depth, while indirect methods estimate the soil properties from measurements on the free
surface [16–18]. Direct methods, like the seismic dilatometer [19], determine the time lag
between two signals acquired by two spaced sensors, triggered by an impulsive force,
using frequency or time-domain methods.

On the contrary, indirect methods are based on measuring the dispersion features
of surface waves leading to an estimate of the shear wave profile from inversion algo-
rithms [20,21]. Modern surface wave testing relies on advanced signal processing and
inversion algorithms to extract information about the shear wave velocity profile from ob-
servations of Rayleigh wave propagation by the free surface [22]. Frequently, the inversion
derives from the comparison between a theoretical dispersion curve and the experimentally
one. The Vs profile is iteratively updated until the agreement between the theoretical and
experimental dispersion curves is satisfactory [23].

Rayleigh waves are nondispersive in a homogeneous isotropic elastic medium [1].
They become dispersive if the mechanical properties of the medium change with depth
(layered medium). Accordingly, the dispersion curve is an indicator of the mechanical
properties of the soil [24,25]. Rayleigh waves travel in a zone of about one wavelength
from the free surface, and hence they are informative about this zone [26,27].

Still, the experimental tests carried out by the authors revealed that transverse waves
generated on the free surface could manifest a dispersive nature up to significant depths.
Specifically, the amplitude of these waves does not decrease with depth according to their
wavelength. Accurately, waves with a wavelength less than 1m are detectable up to 100 m
depth. Reasonably, these waves are not Rayleigh ones, which should extinguish rapidly
with depth according to their wavenumber. They possibly belong to the broader class of
Lamb waves propagating within each soil layer [28]. Lamb waves are always dispersive due
to the nature of the boundaries. They propagate in solid plates, or spheres [29–31]. Lamb’s
wave theory, developed by Horace Lamb in 1916 [30], describes the characteristics of waves
propagating in thin, flat or curved plates, having a thickness of the order of magnitude of
the guided wavelength. These waves, remaining constrained within the thickness, have
the advantage of propagating in long distances with reduced attenuation. Lamb waves
arise from the superposition of longitudinal and transverse waves. They result in the
excitation of symmetric and antisymmetric modes. The symmetrical modes are labelled
longitudinal modes, since the average displacement across the plate thickness is parallel to
the propagating direction. The antisymmetric modes show an average displacement in the
transverse direction, orthogonal to the propagating direction.

Lamb waves have multiple applications. Specifically, in the last decades, they have
been widely used for damage detection purposes [32–34] (e.g., identifying cracks in thin
materials and tubular products). Extensive developments in Lamb wave applications
provide a basis for controlling many industrial products in the aerospace and transport
sectors [35,36].

Lamb waves can also propagate in multi-layered soils [28]. Their use in geotechnics is
still limited and confined to research activities [37,38]. However, to the authors’ knowledge,
except for the recent paper by [39], no scholar endeavoured to estimate the propagation of
Lamb waves in the multi-layered soils from their direct experimental measure within each
layer [40]. Specifically, the authors measured the transverse response of a layered soil up to
100 m depth using the Seismic Flat Dilatometer (SDMT).

The soil, excited by a shear, directional impulse on the free surface, like the one gener-
ated by a pendulum hammer hitting an anvil pressed to the ground, maybe approximately
viewed as a problem in the x-z plane. The y direction orthogonal to that of the excitation
may be neglected in the mathematical formulation, and the problem befalls in the case of
propagating Lamb waves. A certain amount of energy disperses in the y direction, thus
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causing a consistent decay of the amplitude with depth. Still, the directional nature of the
shear impulse may endorse a mathematical formulation on the x-z plane.

The authors noticed that the waves measured in a 100 m deep borehole exhibited a
nondispersive nature. Therefore, they will attempt to grasp the presence of Lamb waves
by estimating the dependence of Vs with the wavenumber. This paper analyses the nature
of waves propagating in the vertical direction. Unfortunately, the discussion is limited by
the available experimental data, which refer to velocity measurements in the horizontal
direction with increasing depth.

This paper has the following structure: the first section presents the mathematical
background of wave propagation in an isotropic elastic space and isotropic elastic plane.
The plane case leads to propagating Lamb waves characterized by hyperbolic dispersion
curves. The third section introduces the experimental details of the in situ tests. The fourth
section presents the results acquired from the 100 m deep borehole and addresses several
issues arisen from the discussion of the dispersion curves.

2. Mathematical Background

This section presents the general theory of wave propagation in isotropic elastic media.
The equations derived in this part support the interpretation of the experimental data.
Additionally, the authors describe the method followed to calculate the dispersion curves
from the acquired time series.

2.1. Waves in Infinite Isotropic Elastic Media

The Navier’s equilibrium equations of an isotropic elastic medium in vector notation
are [1]:

(λ + µ)∇∇ · u + µ∇2u + ρ f = ρü, (1)

where λ and µ are the Lamè constants, ∇ is the gradient operator, ∇· is the divergence
operator, u = {u, v, w} collects the particle displacements in the x,y,z directions, ρ is the
mass density, f is the vector of external forces, ü is the double derivative of u with respect
to time.

If the body forces f are null, the divergence and curl of Equation (1), yield the dilatation
(Equation (2)) and distorsional (Equation (3)) wave equations [1]:

∇2∆ =
1
c2

p

∂2∆
∂t2 (2)

∇2ω =
1
c2

s

∂2ω

∂t2 , (3)

where ∆ = ∂u
∂x + ∂v

∂y + ∂w
∂z , u = ∇× u and c1, c2 are respectively [1]:

cp =

(
λ + 2µ

ρ

)0.5
(4)

cs =

(
µ

ρ

)0.5
. (5)

Volumetric waves, involving no rotation, and rotational waves, involving no volume
changes, propagate in an isotropic elastic medium with two distinct velocities, cp and
cs, respectively. Poisson, Kirchhoff, Love and Rayleigh contributed significantly to the
solution of Equation (1), by solving the initial value and boundary value problems for
given body forces.

2.2. Waves in an Isotropic Elastic Plane

Dilatational and distortional waves do propagate in an infinite elastic medium. A third
solution of Equation (1) arises in an elastic space. This section restraints Equation (1) to the
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x-z plane, where the x axis is parallel to the free plane surface and z explores the depth of
the plane. The third solution relates to the coupling between longitudinal and transverse
waves. Therefore, Equation (1) restricted to the x-z plane yields the two following equations
in terms of the Φ and Ψ potential functions:

∇2Φ =

(
λ + 2µ

ρ

)
∂2Φ
∂t2 (6)

∇2Ψ =

(
µ

ρ

)
∂2Ψ
∂t2 , (7)

where
u =

∂Φ
∂x

+
∂Ψ
∂z

(8)

w =
∂Φ
∂z
− ∂Ψ

∂x
. (9)

It is assumed that two waves with pulsation ω and wavenumber ν propagates in the z
direction, with amplitude F and G dependent on the distance x:

Φ = F(x)exp[i(νz−ωt)] (10)

Ψ = G(x)exp[i(νz−ωt).] (11)

The two waves, which express the coupling between the longitudinal and transverse
motion are a class of the Lamb waves. The substitution of Equations (10) and (11) in
Equations (6) and (7) returns two ordinary differential equations in terms of the two
coefficients F and G:

F′′(x)− qF(x) = 0 (12)

G′′(x)− sG(x) = 0 (13)

where q and s are:

q =

(
ν2 +

ω2

c2
p

)
(14)

s =
(

ν2 +
ω2

c2
s

)
. (15)

The solutions of Equations (11) and (12) are

F(x) = A1exp(−qx) + A2exp(qx) (16)

G(x) = B1exp(−sx) + B2exp(sx). (17)

Since the solution cannot reach infinity when the depth tends to zero, the authors
consider the sole first terms:

F(x) = A1exp(−qx) (18)

G(x) = B1exp(−sx). (19)

A1 and B1 originate from the solution of the boundary value problem. The current
investigation focuses on the wave propagation along the z axis corresponding to the
position of the excitation source, when x = 0. The dispersion law of the coupled u-w wave
originates by subtracting Equation (14) to Equation (15):

c2 =

(
c2

pc2
s

c2
s − c2

p

)
q− s

ν2 . (20)
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Thus, c reads

c =

(
cpcs

√
q− s

c2
s − c2

p

1
ν

)
=

A
ν

. (21)

2.3. Empirical Estimate of the Dispersion Law from Acquired Signals

A conventional procedure to estimate the velocity of the shear waves using the
SDMT originates from the cross-correlation between two time-series recorded by the two
spaced sensors.

The authors estimate the occurrence of dispersion phenomena using a frequency-
domain method based on the repeated filtering of the acquired signals. The use of filter-
banks is an acknowledged procedure to estimate the frequency properties of structural
systems. There are numerous applications of these techniques on structural systems
different to soils [41]. The main idea is that the scholar isolates the harmonic contributions
to the experimental response by using a sequence of narrow-banded filters, see [42,43]. The
authors estimate the dependence of the velocity on the wavenumber: a rectangular band-
pass filter with a certain width δF spans a given frequency domain. The lower bound of the
frequency domain arises from the natural frequency of the geophones: the lower frequency
corresponds to the frequency characterized by acceptable linearity of the characteristic
frequency response function of the geophone. The upper bound originates from the
inspection of the frequency spectrum of the acquired signals: the authors arbitrarily chose
a frequency value associated with a significant frequency content. The dispersion curve
stems from the relation between the phase velocity and the central natural frequency of the
rectangular filtering window. Accurately, the dispersion curve is the relation between the
phase velocity and the wavenumber. The wavenumber derives from the frequency using
the following relation:

c = c(ν) ν =
2π f

c
, (22)

where c is the phase velocity, ν is the wavenumber, and f is the central frequency of the
rectangular-like band filter.

3. Experimental Tests

In March–April 2019, the authors carried out an experimental investigation in Mac-
erata (Italy). The details of the experimental campaigns are detailed in [39]. This paper
focuses on the data acquired in a specific borehole 100 m deep using the seismic dilatome-
ter in Figure 1. The SDMT is the combination of the mechanical flat dilatometer (DMT),
introduced by Marchetti [44–48], with an add-on seismic module used to measure the
Vs, first introduced by Hepton [49]. The DMT procedure follows the recommendations
contained in the documents ASTM [50], Eurocode 7 [51] and ISO [51]. The SDMT is a
seismic module for recording seismic waves in the soil to evaluate shear wave velocity
Vs. The device is equipped with two geophone receivers with a 0.50 m vertical offset. The
instrument may be combined with a DMT blade, a dummy cone or a CPT probe. The
S wave is usually generated with a hammer striking in the horizontal direction. There
are no international standards for the execution of SDMT tests. Still, there are several
research papers that show a possible procedure for the reliable estimation of the shear
wave velocities [52–59]. Specifically, according to [52], the ratio between the difference of
the distances source-receivers (S2 − S1) and the delay between the two-time histories (∆t)
is an estimate of the shear wave velocity [49]:

Vs =
S2 − S1

∆t
. (23)
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(a) (b)

Figure 1. (a) Description of the SDMT procedure in non-penetrable soils, (b) SDMT equipment.

The delay time could be estimated from the cross-correlation between the time-
series acquired by two spaced geophones. Since SDMT barely penetrates very hard soils,
Totani et al. [19] developed an alternative procedure leading to the Vs estimates in non-
penetrable soils based on the following process: drilling of a borehole to the required
depth; insertion of the SDMT to the maximum depth; backfilling of the borehole with sand;
backward penetration of the SDMT along the backfilled borehole and measurements of the
shear waves in a 0.50 m step pattern. in this investigation, the experimenters followed the
above procedure for non-penetrable soils.

4. Results

This section elaborates the signals acquired by the geophones at increasing depths.
Figure 2a depicts sample signals pre-processing. After an initial high-frequency part, lower
frequency waves appear from the extremity of the time-series. The two signals’ direct
examination proves that the impulsive input propagates with a visible distortion: the
higher frequency waves propagate with a velocity different from, the lower frequency
ones. The dispersion curve may display lowering velocities corresponding to increasing
wavenumbers. The single side Fourier spectrum of the two signals in Figure 2a declares
that the frequency content decreases as the frequency rises. It suggests that high-frequency
waves carry higher energy content and energy decay in a shorter distance than low-
frequency ones. The Fourier spectrum of each series is peculiar, like the sampled one,
which exhibits an unexpected frequency content in the range 500–800 Hz. In general,
the amplitude of the harmonic waves with frequency higher than 500/1000 Hz could be
considered negligible, as confirmed by the phase spectrum of the same data and Figure 2d,
which shows the difference in phase between the two signals.

Consequently, the authors decided to estimate the dispersion curve up to 100 Hz: at
a 100 m depth, in the considered range, the authors are confident in the consistency of
the results.
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(a) (b)

(c) (d)

Figure 2. (a) Time history, (b) Amplitude, phase (c,d) difference of phase of two recorded signal corresponding to a
10 m depth.

The Vs descends from the re-phasing of the two signals. The re-phasing corresponds
to a mutual shift equal to the time lag associated with the maximum value of the cross-
correlation, as represented by Figure 3. The cross-correlation can be very noisy (Figure 3),
and many competing peaks may stand alongside the highest one. This evidence further
proves that the waves do propagate with distortion, thus causing a possible ambiguity in
selecting a unique time lag, valid for all wavenumbers.

Figure 3. Cross-correlation between the two recorded signal corresponding to a 10 m depth.
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The filtering of the two signals in Figure 4 with a bandpass ranging between 20 and
22 Hz shows an improvement of the results: the cross-correlation exhibits a single peak in
a time lag shorter than the period of the lowest harmonic wave of the bandpass.

(a) (b)

Figure 4. (a) Time history of the filtered signals, (b) Cross-correlation between the two filtered signals.

Figure 5 shows the final results: the vertical profile of the shear waves velocities
determined according to the standard method described in the above paragraphs. The
red dots correspond to the values, which yield the highest correlation. The black dots
correspond to the data characterized by a lower correlation. This picture further enlightens
the practical difficulties faced during the experimental tests: the authors repeated the tests
as many times as needed to obtain a satisfactory quality of the cross-correlation.

Figure 5. Profile of the shear waves: the red dots correspond to the time series which yield the
maximum correlation, the black dots derive from cross-correlations with lower values.
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Additionally, Figure 5 displays the schematic soil stratigraphy obtained from the S4
borehole to a 100 m depth.

Likely, the Vs generally grows with depth, showing higher values in correspondence
of fine sand or sandstone layers, where values of Vs > 800 m/s may be encountered.
The Vs obtained by SDMT is about 200–300 m/s in the upper ≈20 m, increase to about
700–800 m/s between ≈20 m and 40 m. Then, it reduces to about 400 m/s and below 40 m
increases almost linearly with depth to about 600–700 m/s up to 100 m.

The Effect of Dispersion: Results and Discussion

Figure 6 illustrates the results obtained from the procedure described in Section 2.
The sequence of band-pass filters used for the analyses has the following characteristics:
bandwidth 5 Hz with 1 Hz overlapping. There is a marked dependency of the velocity of
the shear waves on the wavenumber. As the wavenumber lowers, the velocity blows up;
Conversely, as the wavenumber increases the velocity lowers and likely tends to zero or a
horizontal asymptote. The results may grow in inaccuracy as the wavenumber increases.
Still, in the considered range, the results can be considered reliable: the amplitude of
the harmonics up to 100 Hz is considerable, as proved by the spectra in Figure 2. The
four different colours identify the sequence of the four sections of the investigated vertical:
0–20 m, 20–40 m, 40–60 m, 60–100 m. Four hyperbolae, described by the following equation,
manage to fit the experimental points adequately:

c =
A
ν

, (24)

where A is a constant.

Figure 6. Dispersion curves in the considered four sections of the investigated vertical.

In contrast with the significant scatter of the results obtained from the standard
procedure in Figure 5, the dispersion curves present a minimum scatter. The experimental
dots gather very close to the fitting hyperbola. The results in Figure 6 are free of ambiguities:
the acquired pulses are characterized by a notable dispersion which follows Equation (24).
Pure shear waves do not manifest such behavior: they are nondispersive waves. Therefore
two possible interpretations may follow.

• A first possibility is that the acquired pulses do not correspond to pure shear waves,
but they exhibit coupling between the longitudinal and transverse motion mostly
explicated in the x-z plane. The directional nature of the input may force the soil grans
to move in the x-z plane, while they do not manifest a significant displacement in
the y direction. These waves belong to the class of Lamb waves, characterized by a
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dispersion curve derived in the second section in Equation (21). Therefore, the leading
cause of dispersion may stand in the excitation, which forces the particles to move in
a plane, as occurs in Lamb waves which can propagate in plates and spheres.

• It is also plausible that the experimenters measure almost pure shear waves and
that the primary source of dispersion stands in the granular nature of the medium.
Granular media may exhibit hyperbolic-like dispersive curves [60,61]. Therefore, the
constitutive nature of the soil, rather than the boundary conditions may determine
the observed behavior. There are copious theoretical and numerical researches on the
dispersion of continuum models representative of random granular assemblies [3–9].
These studies mostly deal with high-order deformation gradients, the constitutive
relations descend from the Cosserat theory and the grains interact through Hertz-
Mindlin contacts [60,61].

However, can a non-penetrable soil, like the one investigated in this research, be
considered a granular medium? From a theoretical viewpoint, soils are micro granular
media. However, the effect of granularity is scale-dependent. The coarser grains present in
the boreholes lay in the rage of sands, between 2 and 0.063 mm. The wavenumber reached
in the analyses do not exceed 8, that is, the considered wavelength does not exceed 0.125 m.
The ratio between the lowest wavelength and the largest grain size would higher than 60.
Still, these sand samples are characterized by tiny grains, approaching the dimensions of the
silts. Therefore, the ratio between the considered lowest wavelength and the dimensions
of the grains exceeds the thousands. In this perspective, the standard approximation,
which assumes soils as isotropic elastic media may be consistent. Besides, the tested
soils are classified as non-penetrable, due to the difficulty in penetrating them with an
instrumented device at a controlled rate (e.g., Cone Penetration Test). The grains in fine
non-penetrable soils are characterized by a certain amount of cementation, which makes
them more similar to rocks than soils. Therefore, in this circumstance, the authors believe
that the first hypothesis may be the most likely: the directional hammer may generate
waves similar to Lamb waves. Besides, the dispersion curve is in excellent accordance with
the model in Section 2.

Theoretically, damping phenomena may produce dispersion effects on the propagating
shear waves. However, the damping causes dispersion phenomena different from those
observed in this investigation, as illustrated in the recent work by [62].

Interestingly, A, the coefficient of the fitting hyperbola, approximately corresponds to
the velocity of the shear waves estimated from the standard practice, without band-pass
filtering on the entire series. The legend of Figure 6 details the four expressions of the fitting
hyperbola. The experimental data collected from the S4 borehole comprise measurements
in the transverse direction. Acquisitions in the longitudinal one might have supported the
unequivocal assessment of the nature of the measured signals. It is not comfortable with
the available information to study the correspondence between the terms appearing in
Equation (21) and the A coefficient. This analysis would have supported the understanding
of the physical nature of A. The authors will attempt to carry out experimental tests, where
responses in the x,y and z directions would be possibly collected, as partially achieved
by [63].

Figure 7 illustrates the maximum amplitude of the response as a function of the
wavenumber and the depth. Accurately, Figure 7 presents the tridimensional plot, where
the gradient colours express the varying wavenumbers. The comprehension of the tridi-
mensional figure is challenging: Figure 7b show the projection of the dots on two planes.

Figure 7b reveals that the soil behaves like a filter which does not admit wavenum-
bers higher than five. There is almost a discontinuity, between the number of dots in
the range 0–5 and those exceeding 5. Besides, the dots exceeding 5 refer to the first me-
ters (see Figure 7a). It is likely that wavenumbers exceeding five do not propagate as a
consequence of the microstructure of the soil.

Figure 7c bestows a piece of different information: except for the first 40 m where
there are harmonics with high amplitude, there is not an evident curve which shows the
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decaying of the amplitude with depth (like the exponential decay in surface waves). This
aspect may support the fact that the measured signals may be representatives of Lamb
waves. The solution of the governing equations yielded an exponential decay along the
x-axis. Interestingly, contemporary measures of the waves on the free surface would have
granted a better comprehension.

(a) (b)

(c)

Figure 7. 3-D dispersion curves where the phase velocity is function of the signal amplitude in [mV], the wavenumber
[m−1] and the depth [m]. The three images (a–c) are different views of the same scatter plot.

5. Conclusions

The authors carried out the geotechnical characterization of a site in Macerata (Italy).
They investigated a 100 m deep borehole within an extended experimental campaign using
the Seismic Flat Dilatometer (SDMT). The conventional estimation of the shear wave veloci-
ties using SDMT originates from the cross-correlation between the recordings of two spaced
geophones at increasing depth triggered by a hammer’s strike on the surface. The authors
attempted to estimate the dependence of the shear wave velocity on the wavenumber
of the propagating wave by highlighting the dispersive soil features. They proposed a
procedure based on the use of narrow-banded filter banks applied to the acquired signal.
The dispersion curve stems from the relation between the phase velocity and the central
natural frequency of the rectangular filtering window. The experimental data representa-
tive of the transverse propagating waves revealed characteristic dispersion curves typical
of a class of Lamb waves. Likely, the seismic dilatometer measurements do not refer, as
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generally acknowledged in the field of geotechnics, to pure shear waves, but they may be
more properly considered as Lamb waves. Therefore, the standard practice based on the
estimation of the shear wave velocity from the cross-correlation of the two signals acquired
by two spaced geophones may be inaccurate. Further analyses in the frequency domain
by processing the data with moving filters may enrich the conventional practice in SDMT
by estimating the dispersion curves of the propagating waves. Interestingly, the shear
waves’ conventional estimates correspond to the phase velocities with a wavelength close
to 1 m. Except for the first 40 m where there are harmonics with high amplitude, there is no
evident curve that shows the decaying of the amplitude with depth (like the exponential
decay in surface waves). This aspect may support the fact that the measured signals may
be representatives of Lamb waves. Future research efforts will focus on estimating the
dispersion curves of penetrable soils characterized by more uniform mechanical properties.
The analysis of the simultaneous recordings on the free surface and inside the borehole will
possibly shed light on the nature of the waves generated by an impulsive shear excitation.
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