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Abstract: Predicting the range of achievable strength and stiffness from stabilized soil mixtures
is critical for engineering design and construction, especially for organic soils, which are often
considered “unsuitable” due to their high compressibility and the lack of knowledge about their
mechanical behavior after stabilization. This study investigates the mechanical behavior of stabilized
organic soils using machine learning (ML) methods. ML algorithms were developed and trained
using a database from a comprehensive experimental study (see Part I), including more than one
thousand unconfined compression tests on organic clay samples stabilized by wet soil mixing (WSM)
technique. Three different ML methods were adopted and compared, including two artificial neural
networks (ANN) and a linear regression method. ANN models proved reliable in the prediction of
the stiffness and strength of stabilized organic soils, significantly outperforming linear regression
models. Binder type, mixing ratio, soil organic and water content, sample size, aging, temperature,
relative humidity, and carbonation were the control variables (input parameters) incorporated into
the ML models. The impacts of these factors were evaluated through rigorous ANN-based parametric
analyses. Additionally, the nonlinear relations of stiffness and strength with these parameters were
developed, and their optimum ranges were identified through the ANN models. Overall, the robust
ML approach presented in this paper can significantly improve the mixture design for organic soil
stabilization and minimize the experimental cost for implementing WSM in engineering projects.

Keywords: stabilized organic soils; artificial neural networks; machine learning; regression; strength;
stiffness; predictive modeling; parametric analysis; deep (wet) soil mixing

1. Introduction

Organic soils are widely accessible yet often avoided in construction projects due to
their high compressibility and lack of knowledge about proper stabilization techniques and
the behavior of stabilized organic soils. Extensive studies have investigated the mechanical
behavior of stabilized mineral soils. However, only a limited number of studies have
addressed stabilized organic soils’ behavior, leaving a knowledge gap in this field [1–17].

One of the most commonly used methods to improve soil stiffness and strength is
deep soil mixing (DSM). DSM is a cost-effective method for organic soil improvement
using binders; however, as an evolving field, it still requires further knowledge and
understanding through experimental and numerical investigations [18].

Mechanical properties (stiffness and strength) of stabilized soils are related to several
soil and binder mixture properties and experimental factors (control variables). Investigat-
ing the effects of these variables and their interactions becomes increasingly complicated as
the number of variables increases. For such a high-dimensional system, machine learning
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(ML) can provide a powerful tool to capture nonlinearities and the complex relations
between the control variables and the target parameter.

This study introduces a novel ML approach to predict the stiffness (unconfined tangent
modulus at 50% of the maximum stress, E) and unconfined compression strength (UCS)
of stabilized organic soils. The predictive models were developed based on a database of
UCS tests on organic clay samples stabilized using the wet soil mixing (WSM) method (see
Part I [19,20]). Effects of various control variables on the mechanical behavior of stabilized
organic soils were investigated using ML methods. The control variables included organic
content (OC), water content (w), the ratio of binder (RB), the quantity of binder (QB), grout
to soil ratio (G/S), water to binder ratio (W/B), sample size (diameter to height ratio, D/H),
aging (time, t), temperature (T), relative humidity (RH), and carbonation (CO2).

Two prominent ANN algorithms, radial basis function (RBF) and multilayer percep-
tron (MLP), and the multiple linear regression (MLR) method were implemented, and their
performance was analyzed and compared. Additionally, the stepwise parameter selection
method was implemented to identify the most influential control variables, reduce the
dimensionality, and optimize the ANN models’ performance. Moreover, an ANN-based
sensitivity analysis method was adopted to investigate each control variable’s impact
and identify their optimum range for maximizing the strength and stiffness of stabilized
organic soils.

2. Background

ANNs have been widely used in various geotechnical applications [21], such as in
prediction of pile capacity [22–30], constitutive modeling of soil [31–37], site characteriza-
tion [38,39], earth-retaining structures [40], settlement of foundations [41,42], prediction
of unknown foundations [43], slope stability [44,45], design of tunnels and underground
openings [46,47], liquefaction [48–52], soil permeability and hydraulic conductivity [53],
soil compaction [54,55], and soil classification [56,57].

Some studies have applied ANNs to model the stiffness and strength of stabilized
soils and other cement-based products. Tinoco et al. [58] applied ML methods including
ANNs, support vector machines (SVM), and MLR to predict the UCS based on a compiled
database (444 records) from multiple experimental studies on a variety of soil-cement
mixtures. They reported both ANN and SVM to predict the UCS with high accuracy.
They found water to cement ratio, cement content, organic content, and the mixture’s age
to be the most influential parameters. Molaabasi et al. [59] applied the group method
of data handling (GMDH)-type ANNs to predict the stress–strain behavior of zeolite-
cemented sand based on results of 216 UCS tests, showing GMDH can be a reliable
tool for capturing the influence of various parameters on the behavior of stabilized sand
mixtures. Suman et al. [60] developed predictive models for the UCS of cement-stabilized
soils using functional networks and multivariate adaptive regression splines based on
a literature database, reporting these AI techniques’ generalization ability to be better
than ANNs. They found the most influential input parameters to be moisture content
and gravel content, among others (Atterberg limits, sand and cement content). Cement
content was not as significant due to the generally low cement content of samples in this
database. Wang and Al-Tabbaa [61] used Bayesian predictive neural network models
to predict the UCS values of cement-stabilized soils (inorganic) as a function of selected
soil mix variables, such as grain size distribution, water content, cement content, and
curing time. Shrestha and Al-Tabbaa [62] established trends using ANNs between UCS
as a function of selected soil mix variables such as initial soil water content and binder
dosage. Stegemann and Buenfeld [63–65] performed a series of ANN analyses to predict
the UCS of cement-solidified wastes and developed nonlinear correlations between the
UCS and waste quantities. They also evaluated the effects of contaminants and hydraulic
binders. Narendra et al. [66] proposed a generic mathematical model using ANNs based on
MLP, RBF, and genetic programming (GP) developed based on laboratory tests conducted
on stabilized inorganic clays with varying water contents, cement contents, and curing
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periods. MLP was shown to have the highest prediction accuracy, followed by GP, RBF,
and other empirical models. Das et al. [67] applied MLPs with Levenberg–Marquardt
optimization, Bayesian regularization, and differential evolution algorithms for predicting
the UCS and maximum dry density of cement-stabilized soils, incorporating Atterberg
limits, gradation, and cement and water content as input parameters. Mozumder and
Laskar [68] applied MLP models with Bayesian regularization algorithm for predicting the
UCS for geopolymer stabilized clays with blast furnace slag and fly ash, reporting ANNs
to outperform MLR models.

3. Modeling
3.1. Experimental Database

Part I of this paper presents the experimental study, the database, and descriptive
statistics used for ML analysis [19]. The database included the results of around 1030
unconfined compression tests (339 distinct data records by averaging over the repetitive
tests) on three organic soils, including Irish Moss Peat (Pt) with 94% organic content, and
two organic clays, OH-1 and OH-2. The OH-1 clay had medium organic content (30%) and
extremely high plasticity (LL = 155%), and the OH-2 had low organic content (4%) and
high plasticity (LL = 65%). These were combined independently with six mixtures from
different binders, including Portland cement (PC), blast furnace slag (BFS), pulverized fuel
ash (PFA), lime (L), gypsum (G), and magnesium oxide cement (MgO-C). Tables 1 and 2
summarize the organic soils, binders, and mixtures used to prepare the samples [20].

Table 1. Characteristics of the organic soils, binders, and mixtures.

Organic Soil Density (kg/m3) OC (%) w (%)

Irish Moss Peat (Pt)
294

94
210

446 500
1014 1000

Medium Organic Clay (OH-1) 1219 30 180

Low Organic Clay (OH-2) 1471 4 85

Table 2. Binder types and mixtures.

Binders Binder Mixtures Ratio

Portland Cement (PC) PC
Blast Furnace Slag (BFS) PC + BFS 1:2

Pulverized Fuel Ash (PFA) PC + PFA 1:1
Lime (L) PC + PFA + L 3:6:1

Magnesium Oxide Cement (MgO-C) PC + PFA + MgO-C 2:6:2
Gypsum (G) L + G + BFS 1:1:1

Soil specimens were prepared using a small, concrete-type mechanical mixer. The
organic soils and grouts were mixed in the concrete mixer for ten minutes; then, the mix
was placed in five layers in a split PVC tube. After the sample preparation process was
completed, some of the specimens were cured at a standard ambient temperature (21 ◦C).
Others were placed in a conventional oven and within carbon dioxide (CO2) incubators at
three different temperatures (21 ◦C, 45 ◦C, and 60 ◦C) and three different relative humidity
(70%, 80%, and 90%). Samples were cured to varying ages of 14, 28, 60, 90, 105, and 120 days
before they were tested. Table 3 presents the control and response variables (the strength
and stiffness measured from the tests) and their corresponding range of variation in the
database. Figure 1 provides a graphical representation of the experimental design.
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Table 3. List of control variables and their level/range in the database.

No. Variables Range of Variation Mean Standard Deviation

Control Variables (Input Parameters)

1 Organic Content of
Soil (OC)

4 (OH-2), 30 (OH-1), 94
(Pt) (%) 69.2 (%) 33.2 (%)

2 Water Content of Soil (w) 85, 180, 210, 500, 1000
(%) 400.2 (%) 258.6 (%)

3 Ratio of Binder for
Portland Cement (RB-PC) 0, 0.2, 0.3, 0.33, 0.5, 1 0.749 0.339

4 Ratio of Binder for Blast
Furnace Slag (RB-BFS) 0, 0.33, 0.67 0.180 0.292

5
Ratio of Binder for

Pulverized Fuel Ash
(RB-PFA)

0, 0.5, 0.6 0.045 0.154

6 Ratio of Binder for Lime
(RB-L) 0, 0.1, 0.33 0.012 0.056

7
Ratio of Binder for
Magnesium Oxide

(RB-MgO-C)
0, 0.2 0.005 0.032

8 Ratio of Binder for
Gypsum (RB-G) 0, 0.33 0.009 0.054

9 Quantity of Binder (QB) 100–500 (kg/m3) 265.9 (kg/m3) 76.6 (kg/m3)
10 Grout to Soil Ratio (G/S) 0.14–3.38 0.856 0.568

11 Water to Binder ratio
(W/B) 0.5, 0.8, 1 0.937 0.157

12 Specimen
Diameter/Height (D/H) 0.5, 1 0.920 0.183

13 Time (t) 14–180 (days) 61 (days) 36 (days)
14 Temperature (T) 21, 45, 60 (◦C) 32.9 (◦C) 15.7 (◦C)
15 Relative Humidity (RH) 70, 80, 90 (%) 87.6 (%) 4.9 (%)
16 Carbonation (CO2) 0, 20 (%) 2.9 (%) 7.1 (%)

Response Variables (Target Parameters)

Unconfined Tangent
Modulus (E) 0.83–214.62 (MPa) 34.03 (MPa) 31.44 (MPa)

Unconfined Compression
Strength (UCS) 0.04–2.09 (MPa) 0.50 (MPa) 0.40 (MPa)
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3.2. Artificial Neural Networks

ANNs, first introduced by McCulloch and Pitts [69], have evolved to model regression,
classification, and pattern recognition problems with significant computational efficiency.
Among various types of ANNs, RBF and MLP are known as “universal approximators”
and are commonly used for nonlinear regression modeling [70,71]. These two modeling
techniques were applied in this study.

The ANN models’ performance was evaluated using R2, the coefficient of determina-
tion between measured (actual) and predicted values, and the root mean square of error
(RMSE) obtained from the discrepancy between measured and predicted values. To avoid
overfitting, a fraction of the database was used to train the ANN models (training subset),
and the rest was used to monitor and evaluate the generalization ability of the model
(validation and test subsets).

3.2.1. Radial Basis Functions

The RBF network is a feedforward neural network with three layers: the input, hidden,
and output layer, as presented in Figure 2. The input layer feeds the input parameters
(control variables) into the model. The output layer has one neuron corresponding to the
response or output parameter (UCS or E). The function of hidden neurons is to map the
input parameters to the output. The basis (transfer/activation) function of the hidden
neurons follows a Gaussian form [70,71]:

ϕ(X) = e(−
‖X-C‖2

2σ2 ) (1)

where X is the input vector, and C is the vector determining the center of the basis func-
tions. σ is the parameter that specifies the spread of the basis functions and controls
interpolation’s smoothness.
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The RBF network uses the fixed center learning strategy, i.e., the hidden neurons’
centers are defined as the input vectors in the training dataset. Therefore, the number of
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hidden units is equal to the size of the training dataset. The final output function of the
network can be written as follows:

Y = We−(‖X−C‖b1)
2
+ b2 (2)

where
Y = output matrix (model response);
W = weight matrix (model parameters);
X = input matrix (predictor variables);
C = centers of Gaussian functions;
b1 = 1

σ
√

2
= spread of the Gaussian function (hyperparameter);

b2 = bias vector of the output layer (hyperparameters).
If it is assumed that b2 = 0, then the RBF network provides an interpolating function

that passes through all the data points. Such a function is overfitted, and therefore highly
oscillatory [70]. Thus, the bias parameter is introduced to smooth the interpolation and
improve the generalization of the model.

The proposed network was evaluated for various values of b1. The value that mini-
mized the error on the test dataset was eventually selected as the standard deviation of the
Gaussian functions. The weights of the second layer were calculated to minimize the error
function (the sum of squared errors) given by:

E =
1
2∑

n
∑
k
(yk(xn)− tn

k )
2 (3)

where tn
k is the target value of the unit k, corresponding to the input vector xn. Minimizing

the error function of Equation (3) leads to solving a set of linear equations:

ΦWT = T
WT = (ΦTΦ)

−1
ΦTd

(4)

where, Φ is the output of the hidden layer, and T is the target matrix containing tn
k elements.

Ensembles of networks were generated by the random subsampling method, also
known as the Monte Carlo sampling method [72]. The RBF network was trained from
scratch a large number of times (1000). Each time, the database was randomly divided into
training and test subsets (4:1 ratio), and a new network was generated and trained, starting
from a random initial set of weights, forming an ensemble of networks. The networks
learned from the data points in the training datasets, and their generalization was examined
through the test datasets. The ensembles’ performance was evaluated using the average R2

(R2
ave) and RMSE (RMSEave).

3.2.2. Multilayer Perceptron

The MLP network architecture is presented in Figure 3. It consists of three layers,
including the input layer, the hidden layer with N neurons, and the output layer. Hidden
neurons in MLP networks apply threshold or sigmoid activation functions. A preliminary
analysis was performed to select the appropriate type of sigmoid function. Based on this
analysis, tan-sigmoid and log-sigmoid functions resulted in about the same prediction
accuracy. However, tan-sigmoid slightly outperformed the log-sigmoid function. In general,
tan-sigmoid activation functions are known to result in faster convergence compared to
log-sigmoid functions. The tan-sigmoid activation function used for the MLP network is
defined as [70,71]:

ϕ(X) = tanh(X) =
eX − e−X

eX + e−X (5)
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The output layer has one neuron associated with the response variable. The output
function of the network can be formulated as:

Y = W2
1− e−2(W1X+b1)

1 + e−2(W1X+b1)
+ b2 (6)

where
Y = output matrix (model response).
W1 = weight matrix of the hidden layer (model parameters).
W2 = weight matrix of the output layer (model parameters).
X = input matrix (predictor variables).
b1 = bias vector of the hidden layer (hyperparameters).
b2 = bias vector of the output layer (hyperparameters).
The weights are adjusted following a backpropagation algorithm (BP). The learning

process consists of conducting two rounds of computation for each iteration: a forward
error computation and a backward error backpropagation. The mean squared error is
computed based on the discrepancy between output and target vectors in the forward
pass. The network weights get adjusted layer by layer in the backward pass, based on an
optimization algorithm (such as gradient descent, Levenberg–Marquardt, etc.).

The Levenberg–Marquardt (LM) optimization algorithm is known to outperform
the conventional gradient descent methods [70,71] and was implemented for the MLP
networks in this study. The database was split into three groups: training, validation, and
test (3:1:1 ratio). Network weights were adjusted during training while the performance
was being monitored over the validation dataset. This learning process continued until
the network error began to increase over the validation dataset or until it reached a certain
threshold (usually 0.1–0.01). The random subsampling method was used to generate
ensembles of MLPs. Additionally, to assess the optimum number of hidden neurons, a
sensitivity analysis was performed by varying the number of hidden neurons from 5
to 100.
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3.2.3. Multiple Linear Regression (MLR)

MLR models were also developed to compare with the two ANN models described
earlier. The proposed MLR model is formulated as [73]:

Y = β0 + β1X1 + · · ·+ βnXn =
^
βX (7)

where
Y = output matrix (model response).
β0, . . . , βn = regression coefficients (model parameters).
X = input matrix (predictor variables).
Regression coefficients were computed using the least squares method (LSM).
All the computations in this study were performed by MATLAB [74].

4. Analysis and Results
4.1. RBF Network Analysis

ANN models showed considerable improvement in performance after data normaliza-
tion. Therefore, the normalized experimental database was used to train the ANN models.

Table 4 presents a summary of the prediction results. R2ave over the test datasets is
close to 0.8 for the prediction of E and above 0.9 for the prediction of UCS. Additionally,
the RMSE is 13 MPa for E and 0.11 MPa for UCS. These results show that RBF models
successfully captured the correlations between the control and the response variables
within the training dataset and generalized the captured trends to the test dataset with
acceptable accuracy. RBF models show better performance for the prediction of UCS
compared to E.

Table 4. Performance of RBF models for E and UCS.

Model
All Training Test

R2
ave RMSEave R2

ave RMSEave R2
ave RMSEave

RBF-Tot-E 0.89 2.78 0.92 0.03 0.77 13.77
RBF-Tot-UCS 0.95 0.09 0.96 0.08 0.92 0.11

Figure 4 shows the distribution of R2 values corresponding to the networks of the
ensemble (RBF-Tot). As expected, the uncertainty of predictions over the training dataset is
significantly lower than the test dataset. Additionally, the uncertainty of predictions for E
is substantially higher than for UCS.
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4.2. MLP Network Analysis

According to [70], for MLPs with continuous nonlinear hidden-layer activation func-
tions, one hidden layer with an arbitrarily large number of units suffices for any approxi-
mation. However, there are no rules for determining the optimum number of neurons in a
hidden layer. Typically, it is recommended to keep the number of hidden neurons between
the number of input elements and the number of output elements, but not greater than
twice the number of input elements [70]. Too few hidden neurons increase the prediction
error and prevent the ANN model from having enough flexibility to fit the data points.
On the other hand, too many hidden neurons would make the model overfit the data and
therefore fail to generalize [75].

Trenn [76] suggests the following formulation for the minimum number of hidden
units for a single hidden layer network to reach a specific order of approximation:

n =

(
N + n0
n0

)
n0 + 2

(8)

where
n = Minimum number of hidden units;
N = Order of approximation;
n0 = Number of input variables.
N refers to the degree of Taylor polynomials approximating the MLP function. For

instance, to have an approximation of N = 2 in this problem (with 16 input variables), at
least nine hidden neurons are required.

Figure 5 shows the variation of R2 with respect to the number of hidden neurons. The
optimum number of hidden neurons is 20 for predicting E and 25 for predicting UCS.
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The performance of the MLP models is summarized in Table 5. The average R2 over
the test dataset is 0.8 for UCS and 0.61 for E. The average RMSE is 18 MPa for E and
0.17 MPa for UCS, showing a reasonably good level of prediction accuracy (especially
for UCS). Figure 6 presents the distribution of the R2 associated with the networks of the
MLP ensembles. As expected, and consistent with the RBF models’ results, the uncertainty
of predictions over the training datasets was much lower compared to the other subsets.
Additionally, the uncertainty of predictions for UCS was less than E.
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Table 5. Performance of MLP models for E and UCS.

Model
All Training Validation Test

R2
ave RMSEave R2

ave RMSEave R2
ave RMSEave R2

ave RMSEave

MLP-20-E 0.81 13.58 0.95 6.15 0.50 20.74 0.61 18.47
MLP-25-UCS 0.90 0.12 0.99 0.04 0.73 0.20 0.80 0.17
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The RBF models outperformed the MLPs, showing 35% less error for the prediction of
E and 40% less error for the prediction of UCS.

4.3. Stepwise Parameter Selection for ANNs

A stepwise parameter selection method was implemented to identify the most sig-
nificant parameters for the mechanical properties of stabilized organic soils [77]. This
method reduces the ANN model dimensionality and optimizes the overall performance by
identifying the highly correlated input parameters and removing the redundant ones.

This method includes forward stepwise selection (FSS) and backward stepwise elimi-
nation (BSE) of the input parameters, based on their significance to the network’s prediction
accuracy. At each step, an ensemble of networks is trained using a control subset of the
database (including 80% of the whole database). In forward stepwise selection, parameters
compete to be added one by one to the model. A parameter is added to the model only if the
adjusted R2 for the model becomes larger than the adjusted R2 of the reduced model. In the
backward elimination, the process starts with a network containing all input parameters,
and the parameters are gradually removed one by one. A parameter is removed when the
adjusted R2 for the reduced model becomes larger than the present model.

Adjusted R2 provides the possibility of penalizing the model for the number of input
parameters and is calculated based on the following equation:

R2
adj =

(n− 1)R2 − p
n− 1− p

(9)

where
R2

adj = adjusted value.
n = no. of data points presented to the network in the training dataset.
R2 = R2 for the reduced model.
p = no. of model parameters (weights and biases) for the reduced model.
Tables 6 and 7 present the selected and removed parameters using the forward and

backward stepwise methods for the RBF and MLP models, respectively. The parameters
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were ranked based on their sequence of addition to the model, which represented their
significance to the model performance. For ranking, the parameter addition process was
continued even after the R2

adj of the reduced model started to decrease. After this stage,
the parameter that resulted in the smallest decrease in R2

adj was added to the model at
each step. This continued until all the parameters were added to the model.

Table 6. Stepwise selection of parameters, RBF network.

RBF-E RBF-UCS

Order of Addi-
tion/Elimination FSS BSE Ranking/Sequence

of Addition FSS BSE Ranking/Sequence
of Addition

1 Binder Type w Binder Type G/S W/B G/S
2 G/S OC G/S Binder Type Binder Type
3 t QB t t t
4 D/H W/B D/H T T
5 T T RH RH
6 RH RH CO2 CO2
7 CO2 CO2 D/H D/H
8 w w
9 OC OC
10 QB QB
11 W/B W/B

Table 7. Stepwise selection of parameters, MLP network.

MLP-E MLP-UCS

Order of Addi-
tion/Elimination FSS BSE Ranking/Sequence

of Addition FSS BSE Ranking/Sequence
of Addition

1 Binder Type W/B Binder Type G/S QB G/S
2 G/S G/S Binder Type Binder Type
3 t t t t
4 D/H D/H T T
5 T T RH RH
6 RH RH CO2 CO2
7 CO2 CO2 W/B W/B
8 QB QB D/H D/H
9 w QB QB

10 OC OC OC
11 W/B w

Based on the FSS method, w, OC, QB, and W/B were parameters that could be removed
from the RBF model for the prediction of UCS. However, based on the BSE method, only
W/B could be eliminated. The same parameters were selected for the prediction of E, but
the parameters’ ranking was slightly different.

The FSS method added all the parameters to the MLP model for UCS prediction,
except for w. The BSE method only removed QB. For the prediction of E, the FSS method
did not add w, OC, or W/B to the MLP. W/B was the only parameter eliminated from the
model by the BSE method.

The final selected parameters were different for the RBF and MLP models. However,
the parameters chosen by both the FSS and BSE methods for the MLP model covered those
chosen by the RBF model. Additionally, the resulted ranking of parameters was similar for
both MLP and RBF.

QB is known to directly influence cemented soils’ stiffness and strength [78]; however,
the stepwise selection method suggested removing it from the model. From the cross-
correlation of the input and target parameters (see Table 8), it is observed that G/S and QB
show a relatively high correlation (r = 0.46), i.e., the G/S variable could represent QB to
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some extent. Additionally, OC is removed by the FSS method due to the high correlation
with G/S (r = 0.61). As observed from Figure 1, for OC = 94%, G/S ranges between 0.14 to
3.38. For OC = 30, G/S is 0.41, and for OC = 4%, G/S is 1.12. Either W/B or w (or both)
was eliminated due to limited significance in the presence of other relevant parameters.
W/B is equal to 1 for most experiments; therefore, there is not much variability in W/B to
influence E and UCS predictions. Additionally, there is a high negative correlation (–0.81)
between W/B and w, per Table 8, as for lower initial water content, a higher ratio of water
to binder was used.

Table 8. Cross-correlation between input and target parameters (high correlations shown in bold).

OC w PC BFS PFA L MgO-
C G QB G/S W/B D/H t T RH CO2 E UCS

OC 1.00 0.69 0.32 −0.17 −0.23 −0.16 −0.13 −0.13 0.16 0.61 −0.30 −0.33 −0.07 −0.16 0.11 −0.09 0.08 0.19
w 1.00 0.26 −0.17 −0.16 −0.12 −0.09 −0.09 0.14 0.00 −0.81 −0.29 −0.05 −0.17 0.11 −0.10 −0.19 −0.09

PC 1.00 −0.79 −0.37 −0.42 −0.27 −0.36 0.15 0.18 −0.30 −0.32 −0.07 −0.13 −0.01 −0.02 0.18 0.30
BFS 1.00 −0.18 0.05 −0.10 0.08 −0.13 −0.11 0.25 0.27 0.00 0.33 −0.11 0.12 −0.07 −0.14
PFA 1.00 0.13 0.60 −0.05 −0.06 −0.12 0.12 0.13 0.10 −0.22 0.14 −0.12 −0.16 −0.27

L 1.00 −0.03 0.95 −0.04 −0.08 0.08 0.09 0.07 −0.16 0.10 −0.09 −0.13 −0.15
MgO−C 1.00 −0.03 −0.03 −0.07 0.07 0.07 0.05 −0.13 0.08 −0.07 −0.08 −0.16

G 1.00 −0.03 −0.07 0.07 0.07 0.05 −0.13 0.08 −0.07 −0.10 −0.11
QB 1.00 0.46 −0.28 −0.19 −0.01 −0.16 0.10 −0.09 0.40 0.59
G/S 1.00 0.22 −0.20 −0.05 −0.12 0.08 −0.07 0.45 0.56
W/B 1.00 0.37 0.02 0.30 −0.20 0.17 0.16 0.02
D/H 1.00 0.02 0.33 −0.21 0.18 0.11 −0.21

t 1.00 −0.03 0.02 −0.01 0.09 0.11
T 1.00 −0.31 0.35 −0.21 −0.29

RH 1.00 0.20 −0.02 0.05
CO2 1.00 −0.08 −0.09

4.4. Linear Regression Analysis

For the MLR model development, the database was divided into training and test
datasets with a 4:1 ratio. An ensemble of models (1000 models) was generated using
the random subsampling method, similarly to the ANN models. Table 9 presents the
performance of the MLR ensemble models. The prediction accuracy of the MLR models is
significantly lower than the ANN models, showing R2ave of 0.42 for E and 0.62 for UCS
over the test datasets.

Table 9. Performance of the LR ensemble for E and UCS.

Model
R2

ave RMSEave

All Training Test All Training Test

LR-E 0.49 0.51 0.42 22.33 22.04 23.48
LR-UCS 0.66 0.67 0.62 0.23 0.23 0.25

4.5. Model Comparison

The three ML models (RBF, MLP, and MLR) were further evaluated and compared
over a fraction of the database that was not previously used for training, incorporating
only the input parameters selected by the stepwise method.

Figure 7 presents the measured vs. predicted E and UCS by the three models. Both
the RBF and MLP models outperformed the MLR model, showing R2 > 0.95. The MLR
model shows a significantly lower R2, 0.64 for prediction of E, and 0.73 for UCS.

4.6. Sensitivity Analysis

The impacts of control variables on the predicted E and UCS were evaluated using
a sensitivity analysis method known as the profile method [79]. This method evaluates
the sensitivity of ANN models to each input parameter and captures the variation trend
between the model response and each parameter. The generated profile graphs, as shown
in Figure 8, capture the optimum range of each parameter to achieve the maximum strength
and stiffness.
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including 50% CI: (a) OC, (b) w, (c) QB, (d) G/S, (e) W/B, (f) D/H, (g) t, (h) T, (i) RH, (j) CO2.

A set of fictitious matrices was constructed corresponding to each input variable
(except for the binder ratio). All other input variables were held constant at their mean
value, whereas the studied parameter varied over its range. The range of variation was
divided into ten intervals, and the model response was evaluated at each point. Note that
the binder ratio’s effect was not explored in this analysis because it was not possible to
vary one binder type ratio while keeping the ratio of the other types constant (the sum of
the binder ratios for the six binder types should be equal to 1). Thus, for each parameter,
11 input vectors were presented to the models that resulted in 11 responses compiling the
response graph for that parameter.

The MLP-20-E and MLP-25-UCS models were used for generating the response graphs.
The response graphs present the average of predictions from 1000 networks in the MLP
ensembles. The upper and lower bounds correspond to the 50% confidence interval (CI)
of the model predictions. While interpreting these graphs for a parameter, one should
consider the mean value for all other input parameters (see Table 3).

The following observations are made from the response graphs:

• An increase in OC significantly decreases E and UCS, as confirmed by other stud-
ies [1,2,80].

• UCS shows a slight increase with w, reaching maximum at a range between 800% to
1000%, opposing the generally expected trend. Such a trend has occurred primarily in
the field when the initial water content is very low, also when adding large quantities
of dry binders that prevent proper mixing and hydration [81].

• Both E and UCS increase with an increase in QB, as confirmed by other studies [78].
• Increasing G/S increases both E and UCS up to a certain value. In this analysis, the

optimum range for G/S is between 2 and 2.5.
• The optimum range for W/B is between 0.6 to 0.7, and larger values of W/B cause a

considerable decrease in E and UCS.
• D/H does not show a significant impact on UCS; however, E shows to increase with

D/H slightly.
• Age of the specimen is positively correlated with E and UCS. E and UCS rapidly in-

crease during the first 90 days (a time when much of the hydration process developed).
After that, the rate of increase decays.

• Both E and UCS decay with an increase in curing temperature (T), opposing the
behavior of common stabilized mineral soils, where the temperature increases the
strength and stiffness. The negative effect of temperature on the stiffness and strength
of organic soils is related to several factors, such as gradual loss of the initial evaporable
water in the mix, dehydration during chemical reactions, and porosity changes [20].

• RH = 0.8 is shown to be the optimum value for both E and UCS, although the overall
trend suggests that relative humidity is not a significant parameter.

• CO2 shows a minimal effect on E and UCS, with a slight developing trend observed
for UCS.
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The response graphs versus the scale of variation (1 to 11) for each control variable
are presented in Figure 9. The ranking of the variables (ANN input parameters) was
determined by comparing E and UCS range of variations within the domain of each
variable, representing their order of significance to the stiffness and strength of stabilized
organic soils (see Table 10).
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Table 10. Ranking of the control variables (input parameters) based on the sensitivity analysis using
the profile method.

Ranking Parameter Max. E
Variation (MPa) Parameter Max. UCS

Variation (MPa)

1 QB 80.59 G/S 0.99
2 G/S 53.07 OC 0.81
3 OC 34.97 QB 0.71
4 T 32.91 W/B 0.55
5 W/B 29.93 T 0.41
6 t 25.61 w 0.33
7 D/H 20.88 t 0.22
8 CO2 4.25 CO2 0.12
9 RH 3.94 RH 0.10

10 w 3.74 D/H 0.08

5. Conclusions

Understanding the behavior of stabilized organic soils, the optimal design of soil
binder mixture, and the range of achieved strength and stiffness for organic soils is crucial
for practical applications in engineering design and construction, a topic not yet fully
addressed in the existing literature. This study presents a novel application of ML methods
to develop robust, nonlinear predictive models for mechanical properties of stabilized
organic soils and to evaluate the impacts of control variables such as soil, binder, and
mixture parameters, and other relevant experimental and environmental factors on these
properties. The most influential parameters were identified, and the nonlinear trend of
stiffness and strength with these parameters were developed through highly accurate
ANN models.

Ensembles of RBF, MLP, and MLR models were developed to predict the stiffness and
strength of stabilized organic clays, with a wide range of organic content and a variety
of binder mixes. RBF networks showed the highest predictive accuracy, followed closely
by MLP. As anticipated, the linear regression method demonstrated a significantly lower
prediction accuracy than both ANN methods. ANN models predicted E and UCS with a
high accuracy level (R2 > 0.8 for E and R2> 0.9 for UCS). The most relevant input parameters
for ANN models were identified through the stepwise parameter selection method, and
the redundant parameters were eliminated.
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The impacts of input parameters on the stiffness and strength and each parameter’s
optimum range were evaluated through ANN sensitivity analyses. The generated response
graphs showed how ANNs could account for the nonlinear relations between the mechani-
cal properties of stabilized organic soils and the control variables. The input parameters
were ranked using both the stepwise selection and the sensitivity analysis method. Grout
to soil ratio/quantity of binder, binder mix type, organic content, water to binder ratio,
temperature, and time (aging) were identified as the most influential parameters. The
specimen size barely affected UCS, with a slight influence on E. Therefore, for application
in design (where there is no specimen size), any values between 0.5 to 1 can be assumed,
or the specimen size can be removed from the list of input parameters. Carbonation and
relative humidity showed less impact on both E and UCS, indicating the need to study the
long-term behavior of stabilized organic soils in more detail. ANNs significantly outper-
formed the conventional linear regression methods, which are often used in practice to
estimate the stiffness and strength of stabilized soils.

Compared to other existing studies that have applied ML for investigating the stabi-
lized soils (see Section 2), the novel contributions of this study are summarized below:

• Part I and II of this study together provide comprehensive details and descriptions of
both experimental and computational investigations. Unlike most of the other studies,
the experiments were designed to generate a well-populated database suitable for
application of ML. This is essential for developing robust, reliable predictive models
on any experimental database. Full access to the database and descriptive statistics
are provided in Part I.

• The mechanical behavior of stabilized organic soils has not been comprehensively
addressed by other studies. In this study, using a hybrid experimental and ML
approach, the stiffness and strength as the two critical engineering design parameters
were investigated, and the impacts of the relevant factors on the stiffness and strength
of stabilized organic soils were evaluated.

• This study investigated various types of soils (low and high plasticity clays) and
binders (both cement and non-cement based).

• Using a novel ML approach, the most influential parameters (control variables) were
identified, the trends of strength and stiffness variation with these parameters (with
50% CI) were developed, and the optimum ranges were identified, allowing for an
optimal mixture design.

• The two most prominent ANN algorithms were successfully applied to predict the
stiffness and strength, and the full details of the architecture development and train-
ing methods were provided. Comparing their performance with other ML meth-
ods recently applied in other studies showed that these ANN algorithms are still
highly competent.

Overall, the proposed ML approach can be instrumental for optimal mixture design
and minimizing the experimental cost of implementing DSM in engineering projects
involving organic soils. Additionally, this paper can serve as a guideline for rigorous
predictive modeling and parametric analysis using ML based on experimental data.
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