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Abstract: Knowledge of permafrost structure, with accumulations of free natural gas and gas hy-
drates, is indispensable for coping with spontaneous gas emission and other problems related to
exploration and production drilling in Arctic petroleum provinces. The existing geophysical methods
have different potentialities for imaging the permafrost base and geometry, vertical fluid conduits
(permeable zones), taliks, gas pockets, and gas hydrate accumulations in the continental Arctic
areas. The synthesis of data on cryological and geological conditions was the basis for a geophysical–
geological model of northern West Siberia to a depth of 400 m, which includes modern permafrost,
lenses of relict permafrost with hypothetical gas hydrates, and a permeable zone that may be a path
for the migration of gas–water fluids. The model was used to model synthetic seismic, electrical
resistivity tomography (ERT), and transient electromagnetic (TEM) data, thus testing the advantages
and drawbacks of the three methods. Electrical resistivity tomography has insufficient penetration
to resolve all features and can run only in the summer season. Seismic surveys have limitations
in mapping fluid conduits, though they can image a horizontally layered structure in any season.
Shallow transient electromagnetic (sTEM) soundings can image any type of features included into
the geological model and work all year round. Thus, the best strategy is to use TEM surveys as the
main method, combined with seismic and ERT data. Each specific method is chosen proceeding
from economic viability and feasibility in the specific physiographic conditions of mountain and
river systems.

Keywords: Arctic; permafrost; gas hydrates; seismic surveys; resistivity surveys; electrical resistivity
tomography; transient electromagnetic soundings

1. Introduction

Permafrost in the Russian Arctic regions, including northern West Siberia, formed
through the Quaternary under changing climate conditions, with intermittent cooling and
warming stages, ice-sheet glaciation, and the transgression and regression of Arctic seas.
Therefore, the Arctic permafrost has a layered structure and includes widespread ground
ice and unfrozen (talik) zones [1]. More complexity has been the result of the lithological
heterogeneity and permeability of deformed freezing sediments: neotectonic deformation
of such sediments produced conduits for gaseous and aqueous fluids as a prerequisite for
the formation of intra- and sub-permafrost gas hydrates.

Many gas fields in the permafrost areas of West Siberia store gas hydrates, both at the
depths of hydrate stability [2,3] and in shallow permafrost, where gas hydrates formed
under the pressure and temperature conditions that were favorable in the past, but are
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metastable at present [4–6]. The metastable relict gas hydrates may cause an emergency,
associated with gas emissions during drilling and the operation of wells in the Arctic
petroleum provinces [7]. The emission of pressurized gas can be explosive and produce the
craters found in northern West Siberia [8,9].

The extent and geometry of the Arctic permafrost can be imaged by geophysical
surveys, in addition to direct sampling by geological and geocryological methods. The
importance of geophysical surveys, as a major tool in permafrost mapping, was recognized
long ago [10–14], but their application in the previous years was limited to direct current
(DC) resistivity and shallow seismic surveys. Nevertheless, those data were the basis for
models that image permafrost to depths of a few tens of meters [15,16].

Investigating the complex permafrost structure, with free gas and gas hydrate ac-
cumulations till depths of 500 m, is challenging. Using seismic [17–21] and resistivity
(CSEM) [22–26] exploration geophysics for detecting gas pockets and gas hydrates in
unfrozen rocks are rewarding experiences [27], but these methods can hardly discrimi-
nate between the permafrost and gas hydrate zones, which have similar resistivity and
acoustic signatures.

Thus, it is critical to choose the optimal techniques for mapping the continental Arctic
permafrost that may enclose the lenses of the relict permafrost with hypothetical gas
hydrates and intricate fluid migration paths. We are testing the potentialities of seismic
and resistivity surveys, in this respect, by modeling the synthetic data based on well logs
and previous field results.

2. History of Permafrost in Northern West Siberia

The complex structure of permafrost in northern West Siberia [1] formed during the
Quaternary warm and cold events [28], in four major stages (Figure 1).
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Stage 3–mainly Middle Holocene (QIV

2); Stage 4–Late Holocene to present (~3.0–4.5 kyr).

Stage 1, latest Pliocene (N2pl) through earliest Late Pleistocene (QIII
1): prolonged

cooling of sediments and permafrost origin. The Middle Pleistocene permafrost in West
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Siberia was apparently as thick as 600–800 m in the north [29] and 300–400 m south of the
W–E Ob River segment. Gas hydrates possibly appeared in the freezing sediments during
that period [30].

Stage 2, Early Zyryanian (Yermakovian) cryochron (QIII
2) through Early Holocene

(QIV
1): main event of permafrost formation during the Zyryanian glacial [31,32], the last

ice-sheet glaciation in the northern West Siberian Plain [33]. The permafrost thickness
reached hundreds of meters, judging by the 200 m depth to the base of the relict permafrost
within the region. The conditions in thick permafrost were favorable for the formation of
gas hydrates over a large depth range.

Stage 3, mainly Middle Holocene (QIV
2): permafrost degradation, both from above

and from below, during the warming event, which culminated at 10–11 kyr BP (Holocene
climate optimum) and was prominent in northern West Siberia between 9.0 kyr and
4.5 kyr BP [34]. In that period, the 400 m thick permafrost thawed from above for 100–200 m
and became warmer, though still preserved, below that depth. As a result of permafrost
degradation, the zone of hydrate stability moved to greater depths and gas hydrates became
partly decomposed. However, some permafrost remnants may have survived in zones
cooled down by the heat-consuming hydrate dissociation (complete or partial).

Stage 4, Late Holocene to present (~3.0–4.5 kyr): expansion of permafrost during
cooling to its modern configuration. The permafrost that formed during the cooling period
coalesced with the paleo permafrost in the northern areas, but penetrated to only 130–150 m,
leaving the older relict permafrost as another layer below in the south. At that period,
cryogenic landscapes were shaping up by surface and subsurface processes.

The climate cooling caused the freezing of gas-saturated pore fluids, which produced
a growing permafrost screen. Gas, which is insoluble in ice, became expulsed from pore
water toward the deepening permafrost base. Thus, gas accumulation occurred throughout
the sedimentary sequence [35].

The pressure and temperature in thick permafrost, both on the shore and in the shelf,
correspond to the conditions of gas hydrate stability [30]. Meanwhile, the mere presence of
permafrost is a necessary, but insufficient, condition for the existence of large gas hydrate
accumulations, which require sufficient amounts of gas, water, and space in permeable
sediments, besides the special PT conditions.

Permeable permafrost contains paths for gas migration, which produced pingo-like
features in northern West Siberia [36,37]. The resistivity patterns of sediments beneath the
pingoes were modeled [38–40], proceeding from the hypothesis that the Arctic cryogenic
landforms, such as pingoes, are related to the subsurface fluid dynamic processes and
can trace potential gas emission sites as indicators of degassing. The modeling revealed
resistivity and seismic anomalies that recorded changes in the permafrost and highlighted
the sites of pending gas emission events.

Thus, data from the northern West Siberian petroleum province provide evidence that
zones of thick metastable permafrost may store gas hydrates that originated from biogenic
or sediment maturation (catagenic) processes.

3. Geophysical–Geological Model of Northern West Siberia

The physical fields of northern West Siberia were simulated in a basic geophysical–
geological model, with reference to sonic and resistivity well logs and core analysis [38,40–42].
Seismic and resistivity surveys are applicable to permafrost imaging because ice-rich rocks
stand out in high seismic velocities and high resistivity [43]. Thus, distinct contrasts between
frozen and unfrozen rocks allow for the mapping of permafrost-talik interfaces and, possibly,
resolving gas hydrates and vertical fluid conduits [39,41]. This hypothesis was checked using
a basic geological model (Figure 2), which then provided reference for further modeling.
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Figure 2. Geological model. 1 = layer numbers and boundaries; 2 = inferred boundaries of permafrost
and cryotic sediments; 3 = sandy loam and loam with sand, gravel, pebble, and organic detritus
intercalations; 4 = sand with clays and gravel lenses and layers; 5 = montmorillonite and diatomaceous
clay with diatomite; 6 = fine kaolinized sand; 7 = diatomaceous opoka clay; 8 = gas hydrates.

The model consists of six layers (four layers of similar physical properties), with a total
thickness of 480 m and a length of 5000 m. The model includes a pingo-like feature (a mound
on the surface), with a thick layer of high-velocity and high-resistivity rocks underneath.
The increase of permafrost thickness may be evidence of a gas hydrate accumulation in a
metastable zone [40,44]. The existence of gas hydrates in the Arctic permafrost has been
confirmed in many studies [2,3,6,45–47].

The resistivity pattern used in the model is based on data collected between 2017 and
2022 [38–40]. The P-wave velocities are according to sonic logs from the region (Figure 3).

Layer 1: A pingo, ice-rich, modern permafrost (−5 ◦C) and remnant lenses of paleo
permafrost, possibly with gas hydrates. The modern permafrost is composed of Quaternary
lacustrine-alluvial, alluvial-marine, and glacial-marine sediments. The P velocity and
resistivity assumptions are, respectively, 4000 m/s and 2000 Ohm·m.

Layer 2: Taliks, within −0.5 ◦C; montmorillonite and diatomaceous clay with di-
atomite; low P velocity (2600 m/s) and resistivity (15 Ohm·m). The interface between
layers 1 and 2 produces the strongest anomalies. The layer additionally includes lenses of
paleo permafrost with gas hydrates marked by higher P velocity (3800 m/s) and resistivity
(350 Ohm·m).

Layer 3: Paleo permafrost in the lower part of the Eocene-Paleocene sequence of
alternating fine to medium sands and diatomaceous opoka clay (−2 to 0 ◦C), as well as a
clay layer below. The P velocity and resistivity are, respectively, 3200 m/s and 30 Ohm·m.

Layer 4: Cryotic sediments, −1 to 0 ◦C; dark-grey micaceous silty clay with sand and
silt layers. The P velocity and resistivity are, respectively, 3500 m/s and 20 Ohm·m.
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4. Methods

The near-surface is most often studied by seismic, radar, and DC resistivity surveys,
as well as by frequency- and time-domain electromagnetic soundings [48].

Shallow engineering seismic surveys can cover a depth range from a few meters to a
few hundred meters [49–51] and can image the Arctic permafrost, due to strong acoustic
anomalies from interfaces, such as that between unfrozen and frozen rocks [15,16]. Shallow
seismic surveys are commonly accurate to a few meters, though the resolution can be
higher, if the rocks are acoustically contrasting.

Resistivity methods include vertical electric soundings (VES), modified electrical resis-
tivity tomography (ERT), ground penetrating radar (GPR), and transient electromagnetic
(TEM) soundings [52], which are applicable to a wide scope of targets. DC resistivity meth-
ods, including VES and ERT, have been used broadly for many decades [53] to measure
the electric field on the surface controlled by subsurface resistivity [54,55]. DC methods
allow mapping resistivity layers of a few meters thick, provided that the resistivity contrast
is sufficient.

Ground penetrating radar (GPR) data are responses of shallow earth to the induced
electromagnetic field at frequencies from 50 to 2000 MHz [56,57]. In the Arctic conditions,
GPR can image the permafrost top, as well as faults and other permeable zones [58].
However, the penetration is insufficient to reach the permafrost base, and it becomes
further reduced in clayey sediments, where the radar signals attenuate rapidly. ERT
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requires grounding (galvanic contact with the earth) and can be less efficient because of the
screening effect from high-resistivity layers, e.g., permafrost [39,59].

TEM soundings yield transient responses of the earth (decaying voltage) to control
turn-off of pulse transmitter current [60–62]. The physical background of the method,
acquisition systems, and approaches to data processing and interpretation received a lot
of literature, e.g., [63–67]. The use of a controlled source and ungrounded square loops
ensures higher resolution and better signal-to-noise ratio, relative to the data from natural
electromagnetic fields. TEM signals propagate by induction and can cover large depths,
irrespective of array geometry (cable length), due to the skin effect. TEM soundings are
applicable to highly resistive rocks, including frozen ground [68,69]. Inversion of TEM
signals yields high-resolution models of shallow sediments, with layers thicknesses from
5 m to tens of meters at depths of 300–400 m.

TEM soundings with various advanced systems can penetrate to 500 m [38,39,41,44,70].
Ungrounded loops are advantageous in permafrost conditions and permit running the
surveys in any season. For details of the methods and instruments see, e.g., [59].

In this study, we have obtained images of permafrost in northern West Siberia to a
depth of 500 m by processing synthetic data with three methods:

1. Common mid-point seismic reflection profiling (CMP);
2. DC electrical resistivity tomography (ERT);
3. Shallow transient electromagnetic sounding (sTEM).

GPR data, which are limited to the upper 10 m of the near-surface, are inapplicable in
our case and remain beyond the present consideration.

The CMP data were processed using the Tesseral Pro software for full-wave modeling
(Tesseral Technologies Inc., Calgary, province of Alberta, Canada). Elastic waves were
excited by a shot source; a 100 Hz Ricker wavelet, within a 200 Hz bandwidth, was used
as a probing pulse. This frequency was chosen to achieve a resolution sufficient to image
local anomalies associated with fluid conduits and gas hydrate accumulations. The vertical
resolution was calculated using the Widess equation:

Rv = λ/4; (1)

λ = V/f, (2)

where Rv is the vertical size of the target; λ is the wavelength; V is the seismic velocity;
f is the predominant pulse frequency. According to this equation, the vertical resolution
at 100 Hz is about 10 m in the given geological conditions, which is enough for detecting
local features.

The signals were from a symmetrical 48-channel system with 8 m receiver spacing,
chosen as a trade-off between the lateral resolution and computing time required for each
iteration in the modeling. The maximum record length was 350 ms at a stepsize of 0.2 ms,
which provided a depth coverage of 500 m. The total profile length was 5000 m.

The system for ERT data was of dipole–dipole configuration, with a cable length of
1280 m, a total profile length of 5400 m, and an electrode spacing of 20 m; the data were
processed in ZondRes2D [71].

The TEM data represent a 5000 m long profile, collected with a system of square
ungrounded loops: a 100 m × 100 m transmitter and a 10 m × 10 m receiver, offsets from
zero to 100 m, and a station spacing of 100 m. The transmitter pulse duration was 0.02 s,
and the cutoff was specified at 7 × 10−6 s. The data were processed using software for 1D
TEM modeling [72].

The modeling aimed at testing the potentialities of the methods for imaging (i) the
base of ice-rich permafrost; (ii) the base of interval with lenses of paleo permafrost and
hypothetical gas hydrates; and (iii) steep to vertical fluid conduits.



Geosciences 2022, 12, 389 7 of 15

5. Results

The processing of the generated CMP, ERT, and sTEM data led to the following results,
considered separately below.

5.1. CMP Seismic Data

The wave patterns were modeled with reference to the starting velocity model (Figure 4),
implying a high (35%) velocity difference between layers 1 and 2 and a minor (5%) difference
between layers 1 and 3, which hardly would show up in the seismic images. The steep conduit
stands out against the host rocks, with up to 100% P-wave velocity contrasts, though steep
faults are hard to map from CMP reflections. Thus, the reference velocity model looks quite
favorable for mapping permafrost in northern West Siberia.
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The performed seismic modeling yielded an intricate wave pattern (Figure 5), with
multiple reflections from the interfaces.
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accumulations. The high-velocity anomaly in the central profile segment, at times, until
40 ms, with a deeper permafrost base, may be due to the presence of a pingo. The steep
fluid conduit interferes with the reflection event and disturbs the wave pattern, along with
ghost waves. The data allow for detecting the permeable zone, if not the conduit itself.

5.2. ERT Data

The electrical resistivity tomography (ERT) data were processed to obtain an apparent
resistivity pattern using a starting model (Figure 6) on a 10 × 10 m grid, with high-resistivity
layer 1 (2000 Ohm·m). The layer thickens up on account of a 350 Ohm·m local zone, which
may accommodate gas hydrates and stand out against low-resistivity (15 Ohm·m) layer 2.
Therefore, the boundary between layers 1 and 2 must be well-resolvable by DC resistivity
methods. The 30 Ohm·m layer 3 is easy to discriminate from the sediments above and
below. The fluid conduit is a permeable zone, with resistivity as low as 15 Ohm·m.
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of ERT data yielded a pattern with smoothly changing resistivity (Figure 7).
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central segment of the profile are thicker, due to the effect of paleo permafrost lenses with
hypothetical gas hydrates. The conductor, possibly associated with a fluid conduit, divides
the high-resistivity zone into halves, but the conduit itself remains unresolved. Note that
the cable length (1280 m) provides penetration within only 200–250 m, according to the
geometry of the DC soundings.

5.3. TEM Data

The starting model for obtaining an apparent resistivity pattern from transient re-
sponses (Figure 8) had parameters similar to those in the model for ERT, with a lateral grid
spacing of 100 m.

Geosciences 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

Figure 6. Starting model for ERT modeling. 

Thus, the permafrost intervals of different thicknesses, with hypothetic gas hydrates 
and paleo permafrost, have higher resistivity than cryotic and unfrozen rocks. The in-
version of ERT data yielded a pattern with smoothly changing resistivity (Figure 7). 

 
Figure 7. Apparent resistivity cross-section obtained from ERT data. 

Since the transitions are very smooth, the interface between frozen and unfrozen 
sediments is traceable only from the resistivity gradient. High-resistivity rocks in the 
central segment of the profile are thicker, due to the effect of paleo permafrost lenses with 
hypothetical gas hydrates. The conductor, possibly associated with a fluid conduit, di-
vides the high-resistivity zone into halves, but the conduit itself remains unresolved. 
Note that the cable length (1280 m) provides penetration within only 200–250 m, ac-
cording to the geometry of the DC soundings. 

5.3. TEM Data 
The starting model for obtaining an apparent resistivity pattern from transient re-

sponses (Figure 8) had parameters similar to those in the model for ERT, with a lateral 
grid spacing of 100 m. 

 
Figure 8. Starting model for TEM modeling. 

The imaging results, based on TEM data, are shown in Figure 9. 

Figure 8. Starting model for TEM modeling.

The imaging results, based on TEM data, are shown in Figure 9.

Geosciences 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. Apparent resistivity cross-section obtained from TEM data. 

The resistivity cross-section perfectly reproduces the boundary between ice-rich 
layer 1 and the talik, but the boundary of thickened permafrost, with hypothetically en-
closed gas hydrates, is less prominent, except for a small gradient zone of medium resis-
tivity (100–200 Ohm·m). The reason is that the TEM method has low sensitivity to 
high-resistivity targets: it is almost impossible to discriminate between 300 Ohm·m and 
2000 Ohm·m rocks in TEM curves. The boundaries between layers 2, 3, and 4 are almost 
mute in the apparent resistivity pattern because the resistivity difference is small. 
Meanwhile, the steep conduit shows up distinctly, i.e., TEM surveys can detect such features 
quite well. 

Figure 10 shows the synthetic curves generated from the TEM data. 
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The resistivity cross-section perfectly reproduces the boundary between ice-rich layer
1 and the talik, but the boundary of thickened permafrost, with hypothetically enclosed
gas hydrates, is less prominent, except for a small gradient zone of medium resistivity



Geosciences 2022, 12, 389 10 of 15

(100–200 Ohm·m). The reason is that the TEM method has low sensitivity to high-resistivity
targets: it is almost impossible to discriminate between 300 Ohm·m and 2000 Ohm·m rocks
in TEM curves. The boundaries between layers 2, 3, and 4 are almost mute in the apparent
resistivity pattern because the resistivity difference is small. Meanwhile, the steep conduit
shows up distinctly, i.e., TEM surveys can detect such features quite well.

Figure 10 shows the synthetic curves generated from the TEM data.
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Figure 10. Synthetic TEM curves: voltage (emf) decay (A), apparent resistivity (B), and EMF anomaly
(C), relative to the reference model with permafrost.

The curves corresponding to the background conditions (station 5) represent per-
mafrost of a stable thickness without a fluid conduit. The responses from station 25 show
local permafrost thickening with hypothetical gas hydrates, but no fluid conduit; the latter
is evident in the data from station 20, which are otherwise similar to station 25.

The TEM curves differ markedly, depending on conditions, e.g., the anomaly, relative
to the background setting, exceeds 50% (Figure 9). Note that the effect from gas hydrates
appears in a 0.01–0.5 ms interval, while the conduit shows up at later times (0.1–1.0 ms).
Thus, all these features can be reliably imaged by TEM soundings (Figure 11), as it was
shown in our recent paper [41].
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6. Discussion

The modeling and field results allow some inferences on the potentialities of different
geophysical methods, as to the mapping of the permafrost base and possible changes in
its geometry in the presence of paleo permafrost or gas hydrate accumulations. Shallow
CMP seismic profiling provides reliable images of the near surface, provided that the
layers have contrasting acoustic properties. However, the wave pattern can be distorted by
various features in permafrost, which interfere with data processing and the interpretation
of the results. Steep to vertical interfaces, especially fluid conduits, are hard to identify
in CMP data.

DC resistivity methods (VES and ERT) are broadly used in northern West Siberia, due
to the simplicity of acquisition and processing. They are efficient in imaging the upper
30–50 m of the section, but are of low performance for depths below 100 m, which makes
these methods poorly applicable to the mapping of permafrost that may reach hundreds
of meters thick. Penetration to 500–600 m requires cable lengths of at least 3000 m, which
is unreasonable. Moreover, the surveys are unfeasible in the winter season in the Arctic
conditions, as the source and receiver units have to be grounded.

In this respect, TEM surveys are advantageous for imaging the Arctic permafrost.
Indeed, the induction principle of field propagation and the dependence of the penetration
(skin) depth on the duration of the transient process and on the resistivity allow for seeing
depths below 500 m, even with small loops [59]. Furthermore, the surveys with ungrounded
transmitter and receiver loops can be run in any season irrespective of the frost depth
and temperature. According to the modeling results, the TEM method resolves well the
permafrost base, the paleo permafrost lenses with hypothetical gas hydrates, and the steep
fluid conduits, which were reported from the field campaigns, as well [38–40,59,73,74].

The three methods are compared in Table 1.

Table 1. Different geophysical methods for mapping Arctic permafrost.

Method Base of Ice-Rich
Permafrost

Base of Relict Permafrost
Lenses with Hypothetical

Gas Hydrates

Vertical Fluid
Conduits

CMP + + −
ERT + − −
TEM + + +

Further work to develop the suggested approaches and to corroborate the exis-
tence of the inferred anomalies may consist of field experiments, checking the model-
ing results against well logs, and the joint inversion and interpretation of geological and
geophysical data.
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7. Conclusions

The Arctic permafrost, with frozen and unfrozen rocks, lenses of paleo permafrost that
may enclose gas hydrates, and steep permeable zones as possible conduits of gaseous and
aqueous fluids, can be modeled using different geophysical data.

The permafrost of northern West Siberia has had a complex history. Gases released
in the course of sediment maturation or microbial metabolism migrated along permeable
zones (steep to vertical conduits) and possibly induced the formation of gas hydrates and
pingoes. The fluid conduits, zones of thick permafrost, and pingoes were detected during
geophysical surveys in the region and were included in a geophysical–geological model,
which was used for reference in further modeling of synthetic seismic and resistivity data.

The modeling results demonstrated that geological targets in the Arctic permafrost
areas can be better revealed by seismic and, especially, transient electromagnetic surveys.
The sTEM data highlight all three types of features, while DS resistivity and GPR methods
have limited penetration. Seismic reflection profiling can be used jointly with other methods,
mainly for mapping a horizontally layered earth. Thus, TEM soundings can be considered
as the leading method for permafrost mapping to a depth of 500 m.

The modeling results are consistent with the field data from northern West Siberia. The
high performance and economic viability of the TEM method were demonstrated earlier in
the permafrost studies. High-density sTEM surveys are currently used for exploration in
the Yamal Peninsula, where they cover more than 4000 km2.

The reported results have implications for the optimal ways for geophysical inves-
tigation of the Arctic permafrost, with regard to climate, river networks, and surface
topography. The best strategy is to use sTEM surveys as the leading method, combined
with the methods of seismic profiling (any season) and ERT (only summer). The geophysi-
cal data can additionally be checked against well logs and laboratory modeling, which will
improve the quality of the final inferences, due to the more precise linkage of geophysical
and geological features.
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