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Abstract: The determination of the current and past recharge sources, as well as the reconstruction
of the timing of the recharge in geothermal reservoirs, is required in order to correctly assess the
resource potential of these systems. Theistareykir is a newly developed geothermal field close to the
well-known exploited fields of Krafla and Námafjall in NE Iceland. In this study, the 87Sr/86Sr ratios
measured in deep geothermal fluids are presented and, together with the Cl and noble gas signatures,
are used to place constraints on the fluid sources. The Cl/Sr and 87Sr/86Sr ratios show a peculiar
and unique composition among Icelandic geothermal fluids. The 87Sr/86Sr ratios range from 0.70355
to 0.70671, suggesting the presence of a significant seawater component—possibly marine aerosols
added to rain or snowfall—as well as an additional source of Sr leached from local basalts. Moreover,
a correlation between the atmospheric noble gas (ANGs) elemental ratios Ne/Ar, Kr/Ar and Xe/Ar,
and the 87Sr/86Sr ratios is observed. The latter results from the mixing of meteoric water with Sr
leached from local basalts, meteoric water containing unrelated Sr from seawater, and recharge
water with ANGs derived from trapped air bubbles in snow. We suggest that the combined ANGs
and Sr seawater signatures are representative of a glacial water source derived from the melting of
compacting snow.

Keywords: 87Sr/86Sr; atmospheric noble gases; geothermal fluids; seawater; glacial water;
Theistareykir; Iceland

1. Introduction

The radiogenic Sr isotope ratio (87Sr/86Sr) is a robust tracer of surface water, ground-
water and geothermal fluid sources [1–7]. Studies on the isotopic signature of the radiogenic
Sr in hot and mineral springs [2] and geothermal wells [1,3,7] have evidenced a direct re-
lationship between the 87Sr/86Sr ratios in the spring waters and the surrounding rocks,
indicating that the main source of dissolved strontium is the leaching of Sr-bearing minerals
such as plagioclase, feldspar or micas contained in volcanic, metamorphic or sedimentary
country rocks. The relationships between 87Sr/86Sr ratios and elemental ratios such as
Ca/Sr or Cl/Sr in fluids were helpful to identify the presence of at least three sources of Sr
in geothermal fluids: local bedrock [2,3,7]; seawater, especially in coastal areas’ geothermal
fields (e.g., Taupo, New Zealand [7] and Reykjanes, Iceland [1]); and a hydrothermal source
with 87Sr/86Sr ratios similar to those observed in local bedrock, but displaying high Ca/Sr
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and Cl/Sr ratios, possibly indicating hydrothermal calcite precipitation, which is a sink for
dissolved Sr [7].

Noble gases—He, Ne, Ar, Kr and Xe—are also excellent tracers of geothermal fluid
sources. They are inert, and have distinct isotopic signatures among the terrestrial reser-
voirs: the mantle, the crust, and the atmosphere [8–13]. Meteoric waters, which are
generally assumed to be the most abundant fluid in a magmatic–hydrothermal system [14],
contain atmospherically derived noble gases (or ANGs hereafter). The ANGs enter the
reservoir at the recharge, where they are dissolved at the solubility equilibrium of the
water table (the Air Saturated Water component, or ASW [15]). The isotopic signatures are
those of the atmosphere, but their elemental ratios (e.g., Ne/Ar, Kr/Ar, Xe/Ar) are those
expected for the ASW, although Byrne et al. [16] have recently suggested that ANGs could
be fractionated by boiling processes taking place in the reservoir. Magmatic fluids acquire
mantle-derived noble gases such as helium, which shows an enrichment in solar 3He over
4He, with a 3He/4He or “R/Ra” (where Ra = 1.384 × 10−6 is the atmospheric ratio) ratio
value of 8 ± 1 for the depleted mantle [17], and 45–60 for the primitive mantle [18]. It
should also be common for hydrothermal fluids to contain Ne, Ar and Xe mantle-derived
isotopes [19], but they are often diluted by the meteoric-ASW component beyond recogni-
tion [20]. Finally, crustal fluids are dominated by the radiogenic 4He and 40Ar* (* stands for
the radiogenic fraction of Ar) produced in the reservoir rocks by U, Th and K decay [21].

Strontium and noble gas isotopes (mainly He) have traditionally been measured and
analyzed together in magmatic rocks [22] but rarely in associated geothermal fluids, as Sr
and He are often decoupled by secondary processes such as boiling, which affects volatiles
but not the dissolved Sr [23] or different transport mechanisms and sources [2]. As an
example, Notsu et al. [2] observed a decoupling between the measured 3He/4He ratios and
87Sr/86Sr in the mineral springs of Japan because the former is mainly transported from
mantle melts to the surface by degassing through faults, whereas Sr is extracted from local
rocks. Sr–He systematics in geothermal fluids have been primarily analyzed to determine
the contributions of subducting sediments in volcanic-arc settings [20,24,25], and—in some
successful cases—to identify magmatic heat sources [26].

Here, the 87Sr/86Sr composition measured in geothermal fluids collected from produc-
tion wells of the high-enthalpy geothermal field of Theistareykir, in northeastern Iceland is
presented. This is a newly operating geothermal field for which the noble gas geochemistry
was studied in detail by Saby et al. [27]. To our knowledge, however, Sr isotopes were
previously unavailable in these fluids. Our goal is to take advantage of the observed
correlations between Sr isotopes and ANGs in order to investigate the presence of past
and modern glacial water, and to reconstruct the glacial recharge history of this geother-
mal reservoir. This is a departure from the traditional use of the ANGs as a tracer of
multi-phase partitioning processes such as boiling or injectate invasion in geothermal
reservoirs [8,16,26,28].

2. Geological Background

Theistareykir is a high-enthalpy liquid-dominated field located at the intersection of
the Northern Volcanic Zone (NVZ, Figure 1a)—corresponding to the northeastern branch
of the Mid-Atlantic oceanic ridge—and the WNW–ESE-oriented transform zone known as
the Tjörnes Fracture Zone [29,30]. It is ~30 km NW of the Krafla and Námafjall geothermal
fields, the latter being the oldest producing geothermal fields in Iceland. The exploitation of
the Theistareykir field began in 2017, with a total of 18 wells, with depths varying between
1723 m and 2799 m. The plant currently has two generating units of 45 MWe, and is the
fourth largest geothermal power station in Iceland in terms of power produced.
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Figure 1. (a) Iceland, with the locations of the main geothermal sites cited in the text, and the location 
of the Iceland Highlands with major glaciers. Abbreviations: NVZ = Northern Volcanic Zone; WVZ: 
Western Volcanic Zone; EWZ = Eastern Volcanic Zone. (b) Detailed map of the production area of 
the Theistareykir geothermal field, with the sampled wells and the subareas defined by [31]. 

Theistareykir is a volcanic fissure system that includes the Theistareykjarbunga 
shield volcano. The volcanic products are mainly tholeiitic basalt lava flows. These include 
the Skildingahraun (>14.5 ka) lava shield; Stóravíti, a widespread (30 km3) post-glacial 
lava shield that erupted approximately 10.5 ka ago [32]; the picritic Borgarhraun (10–8 ka); 
and the youngest Theistareykjahraun lava shield (2.4 ka) [33]. The bedrock is composed 
of basalt hyaloclastite ridges formed by subglacial eruptions during the Ice Age, intergla-
cial lava flows, and the recent lava flows mentioned above. Olivine-tholeiites with MgO 
contents higher than 7–8 wt% and picrites (MgO > 9–13 wt%) are the main lithologies, 
with a few silicic rocks of andesitic and rhyolitic composition found on the western side 
of the field.  

The reservoir is cross-cut by dykes and sills filling fractures and fissures that mainly 
strike N-S and NNE-SSW but also WNW-ESE and E-W [30]. These intrusive bodies, to-
gether with fractures and alteration zones, are the main permeability areas of the reservoir 
[29], and act as aquifers [34]. A broadband 2-D MT survey indicated that the hydrothermal 
reservoir consists of two parts: one shallower, down to 1000-m depths and water-domi-
nated with average temperatures of 205 °C, and one deeper, down to 5000 m and boiling, 
with temperatures of 300–350 °C or higher [34]. 

The average porosity of the reservoir is ~10%, while the average permeability (k) is 1 
× 10−15 m2 (ca. 1 md [35]). Variable degrees of alteration from shallower clays and zeolites 
(50–200 °C) to deeper epidote (>250 °C) are observed in the reservoir [36]. The heat is pos-
sibly sourced by an E-W trending intrusive magmatic source [37] located at minimal 
depths of 4000–8000 m [34]. A detailed petrographic study on the picritic Borgarhaun lava 
flow at Theistareykir suggests that these magmatic products were transported from near-
Moho depths to the surface in days, with little to no interaction with the crust [38]. 

Figure 1. (a) Iceland, with the locations of the main geothermal sites cited in the text, and the location
of the Iceland Highlands with major glaciers. Abbreviations: NVZ = Northern Volcanic Zone; WVZ:
Western Volcanic Zone; EWZ = Eastern Volcanic Zone. (b) Detailed map of the production area of the
Theistareykir geothermal field, with the sampled wells and the subareas defined by [31].

Theistareykir is a volcanic fissure system that includes the Theistareykjarbunga shield
volcano. The volcanic products are mainly tholeiitic basalt lava flows. These include the
Skildingahraun (>14.5 ka) lava shield; Stóravíti, a widespread (30 km3) post-glacial lava
shield that erupted approximately 10.5 ka ago [32]; the picritic Borgarhraun (10–8 ka); and
the youngest Theistareykjahraun lava shield (2.4 ka) [33]. The bedrock is composed of basalt
hyaloclastite ridges formed by subglacial eruptions during the Ice Age, interglacial lava
flows, and the recent lava flows mentioned above. Olivine-tholeiites with MgO contents
higher than 7–8 wt% and picrites (MgO > 9–13 wt%) are the main lithologies, with a few
silicic rocks of andesitic and rhyolitic composition found on the western side of the field.

The reservoir is cross-cut by dykes and sills filling fractures and fissures that mainly
strike N-S and NNE-SSW but also WNW-ESE and E-W [30]. These intrusive bodies, together
with fractures and alteration zones, are the main permeability areas of the reservoir [29],
and act as aquifers [34]. A broadband 2-D MT survey indicated that the hydrothermal
reservoir consists of two parts: one shallower, down to 1000-m depths and water-dominated
with average temperatures of 205 ◦C, and one deeper, down to 5000 m and boiling, with
temperatures of 300–350 ◦C or higher [34].

The average porosity of the reservoir is ~10%, while the average permeability (k) is
1 × 10−15 m2 (ca. 1 md [35]). Variable degrees of alteration from shallower clays and
zeolites (50–200 ◦C) to deeper epidote (>250 ◦C) are observed in the reservoir [36]. The heat
is possibly sourced by an E-W trending intrusive magmatic source [37] located at minimal
depths of 4000–8000 m [34]. A detailed petrographic study on the picritic Borgarhaun
lava flow at Theistareykir suggests that these magmatic products were transported from
near-Moho depths to the surface in days, with little to no interaction with the crust [38].
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The Theistareykir geothermal area covers 30 km2, but the production zone is restricted
to an 11 km2 area around the 533 m-high Mt. Bæjarfjall, which would be the nearest area
of meteoric water recharge in the field (Figure 1b). The chemical, isotopic and temperature
differences measured in the surface manifestations (fumaroles, mudpots) during the initial
exploration phases lead to the subdivision of the Theistareykir field into five zones, from east
to west: A = Mount Ketilfjall; B = Bóndhólsskarð; C = Theistareykjagrundir; D = Tjarnarás,
and E = the Western Margin [29,31] (Figure 1b).

The geochemistry of the fluids produced is dominated by Na-K-Cl with a TDS value
of about 350 mg/L and a pH range of 7.8–9.1. The dry gas phase accompanying the fluids
is dominated by CO2 (45–81%), followed by H2S (7–78%), N2 (1–8%), H2 (0.2–3.8%) and
CH4 (0.01–0.03%) [39].

The water-stable isotopes (δ2H and δ18O) and noble gases were analyzed in the
Theistareykir production well fluids by Saby et al. [27]. These fluids display some of the
lowest recorded δ2H and δ18O values in Iceland’s geothermal fluids [40]. This depletion
is thought to be the result of glacial water recharge, possibly from the Holocene age, in
the geothermal reservoirs of the NVZ (Theistareykir, Krafla and Námafjall) [41]. Saby
et al. [27] identified at least four sources of fluids based on noble gases and water-stable
isotopes: (1) local modern meteoric water, (2) sub-modern meteoric water from the southern
highlands, (3) pre-Holocene glaciated meteoric water with calculated U-Th/He and K-Ar
fluid residence times from 57 ± 20 ka to 160 ± 80 ka, and (4) a 3He-enriched magmatic fluid.
Saby et al. [27] highlighted the ubiquitous presence of atmospheric and ASW components
in both the deep fluids and surface manifestations, but the origin of these atmospheric
components was not investigated.

3. Materials and Methods

Ten production wells (ÞG-1, 3, 4, 5, 6, 7, 12, 13, 16, 17) were sampled at Theistareykir
in the summer of 2017, shortly after production began. All of the samples were analyzed
for their Sr isotopic composition, as well as their noble gas concentrations and isotopic
composition. The chemical composition of these fluids is determined yearly during summer
surveys by the National Power Company of Iceland, Landsvirkjun, and the data reported
in this study refers to the summer 2017 survey. The water samples were obtained at the
wellhead using a portable field water/steam separator. The water samples were filtered
(0.45 µm) during collection, acidified with nitric acid (Suprapur, Sigma-Aldrich, Darmstadt,
Germany), and analyzed for Sr concentrations by ICP-MS at the ALS laboratories, Luleå,
Sweden. The water samples for the determination of the Cl concentration were filtered
(0.45 µm) during collection, and were analyzed by Ion Chromatograph (IC) at the geochem-
ical laboratory that the Landsvirkjun company owns at the Krafla geothermal field. The
sampling details and analysis procedures can be found in [42].

The fluid samples were collected at the wellhead in pre-cleaned Nalgene 250 mL bot-
tles without chemical treatment using a portable fluid/steam separator for the Sr isotopic
measurements. The bottles were rinsed three times with well fluids prior to collection. Fluid
was removed through evaporation until a residual salt containing at least 20 ng total Sr was
left. Classic Sr-resin (Eichrom, Lisle, IL, USA) ion chromatography (double-pass) was used to
ensure the purification of the Sr from potential Rb isobaric interference. All of the reagents
were double distilled within class 100 enclosures in DST-1000 sub-boiling stills (Savillex, Eden
Prairie, MN, USA), and were diluted with Milli-Q ultrapure water (MilliporeSigma, Burling-
ton, MA, USA). Measurement by multi-collector plasma mass spectrometer (Nu Plasma II,
Nu Instruments, Wrexham, UK) with an Aridus II desolvating membrane (Teledyne CETAC
technologies, Omaha, NE, USA) was carried out at the Radiogenic and Non-traditional Stable
Isotopes laboratory of Geotop, Montreal. ‘’On-peak-zero” gas blank measurements were
carried out in order to account for imperfect small residual washout and krypton interferences
(coming from the plasma’s argon gas supply; Praxair, QC, Canada). The mass bias was
corrected by normalizing to 86Sr/88Sr = 0.1194. The NBS987 Sr standard was measured during
the analytical sessions, and yielded an 87Sr/86Sr ratio of 0.71024 ± 0.00002.
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Noble gases were sampled from the gas phase separated at the wellhead using a
portable fluid/steam separator. The gas was collected in a 14 cm3 standard refrigeration-
grade type K 3/8” copper tube. The copper tube was directly installed at the gas exit of the
portable fluid/steam separator using all stainless-steel Swagelok® NPT connections. After
letting the gas flow for several minutes, the tubes were sealed using stainless steel pinch-off
clamps, and were closed using an electric drill to minimize air contamination [27].

Except for samples ÞG-7 and ÞG-17, all of the other samples were analyzed for noble
gases at the Noble Gas Laboratory of the University of Michigan. Samples ÞG-7 and ÞG-17
were analyzed at the Noble Gas laboratory (GRAM) of Geotop, Montreal. At the University
of Michigan, gas samples connected to a stainless-steel purification line were dried on
a molecular sieve trap, and their reactive gases were removed using three Ti-getters at
600 ◦C for three minutes each. The noble gases were quantitatively extracted using a
computer-controlled cryo-separator at temperatures of 49 K (He), 84 K (Ne), 225 K (Ar),
280 K (Kr), and 320 K (Xe) respectively, and sequentially were allowed to enter a Thermo®

Helix SFT mass spectrometer for He and Ne isotope analyses, and a Thermo® ARGUS VI
mass spectrometer for Ar, Kr, and Xe isotope analyses. The typical blanks were 0.04 to 0.15%
of the measured sample value, respectively. The quantitative analyses were obtained by
calibrating the two mass spectrometers with a known aliquot of standard air. The calculated
standard errors for concentrations ranged from 1.3 to 2.2% of the measured values. See [21]
for further details.

At Geotop, the gases from the copper tubes were collected in a pre-evacuated 12cc
stainless-steel finger equipped with a bellow valve. The finger was connected to a stainless-
steel extraction line, and the reactive gases were removed onto two Ti-getters at 600 ◦C for
15 min each, and a SAES ST-707 getter at 100 ◦C for 15 min. The gases were then adsorbed
onto an ARS® cryogenic trap containing activated charcoal, and released sequentially at 40 K,
110 K, 210 K, and 280 K for He, Ne, Ar, and Kr-Xe, respectively. The noble gas isotopes
were measured on a Thermo® HELIX-MC Plus. Blanks were routinely measured, and were
typically on the order of 0.01% for 4He to 0.15% for 132Xe. The quantitative analyses were
obtained by calibration with a known aliquot of standard air. The calculated standard errors
for the concentrations ranged from 1 to 3% of the measured values. See [43] for further details.

4. Results

Table 1 reports the Sr and Cl concentrations in ppm in the volume (mg/L) measured
in the residual fluid phase sampled at the wellhead by the Landsvirkjun company, together
with the 87Sr/86Sr measured at Geotop, as well as the F-value fractionation factors for the
atmospheric noble gas ratios 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar, normalized against
their atmospheric ratio, as follows:

F(i) = [i/36Ar]/[i/36Ar]air (1)

The resulting values are defined as the F-values for each “i” noble gas isotope of
atmospheric origin. These F-values are fractionation factors that provide a measure of en-
richment or depletion of noble gases relative to the atmospheric air composition (e.g., [44]).

The Sr and Cl concentrations and 87Sr/86Sr ratios are original (this study), and the
noble gas F-values are from Saby et al. [27], except for sample ÞG-7, which was reanalyzed
due to the abnormally low 36Ar concentrations.

The chlorine and Sr contents in the residual water range from 52 to 105 ppm, and from
0.001 to 0.005 ppm, respectively (Table 1). The 87Sr/86Sr ratios range from 0.70355 ± 0.00004
in sample ÞG-5 to 0.70671 ± 0.00008 in sample ÞG-6. Finally, F(20Ne), F(84Kr) and F(132Xe)
range from 0.451 to 0.667, from 1.458 to 2.293, and from 2.473 to 3.508, respectively (Table 1).
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Table 1. Cl, Sr, 87Sr/86Sr and ANG F-values for Theistareykir geothermal fluids and fluid endmem-
bers.

Well Cl
(ppm)

Sr
(ppm)

87Sr/86Sr ± F(20Ne) ± F(84Kr) ± F(132Xe) ±

ÞG-1 96.26 0.005 0.70376 0.00003 0.520 0.020 1.721 0.068 3.240 0.166
ÞG-3 80.2 0.005 0.70358 0.00003 0.546 0.020 1.719 0.068 3.097 0.158
ÞG-4 59.71 0.002 0.70466 0.00015 0.480 0.018 1.667 0.066 3.176 0.162
ÞG-5 61.08 0.002 0.70355 0.00004 0.451 0.016 1.659 0.066 3.508 0.180
ÞG-6 173.03 0.004 0.70671 0.00008 0.521 0.020 1.789 0.072 3.337 0.170
ÞG-7 18.52 0.005 0.70564 0.00004 0.667 0.012 1.458 0.029 2.473 0.063

ÞG-12 86.88 0.002 0.70602 0.00004 0.509 0.018 1.590 0.064 3.169 0.162
ÞG-13 70.94 0.002 0.70452 0.00009 0.596 0.011 1.678 0.033 3.068 0.078
ÞG-16 52.53 0.001 0.70650 0.00007 0.533 0.010 1.658 0.033 2.926 0.075
ÞG-17 85.09 0.001 0.70467 0.00007 0.587 0.018 2.293 0.068 3.171 0.102

Seawater
1 18980 13 0.709225 0.00005 0.298 - 1.865 - 3.381 -

Basalt 2 45 141.42 0.70320 0.00005 - - - - - -
Air - - - - 1 - 1 - 1 -

ASW 3 - - - - 0.249 - 2.027 - 4.009 -
1 87Sr/86Sr ratio from [45]. 2 Cl and Sr from [46]; 87Sr/86Sr ratio from [1]; F-values calculated following [47] at 15 ◦C
and a salinity of 35 g/L. 3 F-values calculated following [48] at 3.7 ◦C and a salinity of 0 g/L.

5. Discussion
5.1. Strontium Origin in the Theistareykir Fluids

The measured 87Sr/86Sr ratios in the Theistareykir fluids range from 0.70355 to 0.70671
(Table 1). The lowest value is slightly higher than those measured in the Holocene tholeiitic
basalts of Theistareykir (0.702847–0.703215 [49], Table S1), while the highest value has rarely
been observed in the geothermal fluids of Iceland [1]. The 87Sr/86Sr ratios measured in deep
geothermal fluids vary from 0.70327 to 0.70457, with high values being found primarily
in the geothermal fields of the Reykjavik peninsula (e.g., Reykjanes, Svartengi; Figure 1a
and [1]). The geothermal fluids sampled at Krafla and Námafjall, the two geothermal fields
closest to Theistareykir, have 87Sr/86Sr = 0.7040 ± 0.0003 [1].

There are two notable exceptions: Kasthvammslaug (87Sr/86Sr = 0.7058 [1]), a cold
spring (24 ◦C) 18 km SW of the Theistareykir field, and a cold spring named Helgavatn
(87Sr/86Sr = 0.70654 ± 0.00006 [1]), in Northwest Iceland, significantly far away from the
region of interest. These springs were sampled in the 1970s, and their data were included
in internal reports of the Iceland National Energy Authority (Orkustofnun). The origin of
the radiogenic 87Sr/86Sr ratios, however, was not provided.

The probabilistic density distribution histograms of 812 values of 87Sr/86Sr measured
in Iceland fluids, mineral and rocks (Table S1, Supplementary Material for the compiled
data) suggest that the sole plausible source of high-87Sr/86Sr Theistareykir fluids is seawater
(Figure 2). However, even in Reykjanes, where the geothermal fluid is 100% seawater,
the 87Sr/86Sr ratio is 0.7040, closer to that of local basalt rather than that of seawater
(0.709225). This is the result of water–rock interactions at very high temperatures, which
produce the alteration minerals epidote and chlorite, which are important sinks for Sr [50].
Consequently, epidote would have high 87Sr/86Sr ratios, as measured in Reykjanes (up to
0.7073 [51]), while the residual geothermal fluid would be depleted in radiogenic 87Sr, and
would reach a close equilibrium with the local hosting basaltic rocks [1]. The exceptions
are the hydrothermal fluids of the submarine sediment-hosted Grimsey hydrothermal field,
located in the Tjörnes Fracture Zone, with 87Sr/86Sr ratios very close to those of the local
seawater (0.709225). Here, seawater penetrates the shallow levels of the basaltic seafloor at
low temperatures, and mixes with a 250 ◦C hydrothermal effluent to be rapidly discharged
from the smokers, without reaching equilibrium with the hosted sediments [45].
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S1 for the values. The bibliographic references for the geothermal fluids are [1,52]; groundwater
are [53,54]; non-glacial, partially- and glacial rivers are [52,53]; TAG Grimsley fluids and anhydrite
is [45]; hydrothermal calcite is [53]; epidote are [51,55]; and mafic, intermediate, and felsic igneous
rocks are [49,51,56–73].

In Theistareykir, epidote also occurs such that any seawater infiltrating the reservoir
and exchanging Sr with epidote should have reached nearly equilibrium with the local
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basaltic rocks with respect to 87Sr/86Sr. However, this is not observed and Theistareykir
fluids show rather high 87Sr/86Sr values up to 0.70672 (Table 1). Because the exchange of
Sr between the fluid and the epidote depends on the temperature and the duration of the
exchange, at Theistareykir we should assume that the seawater-derived Sr was introduced
recently or at low temperatures.

Seawater infiltration into geothermal reservoirs is not suggested for high-temperature
geothermal fields in Northeastern Iceland, and the Cl-contents of the fluids are low. The
chemistry of the geothermal fluids at Theistareykir is Na-K-Cl, but the Cl contents in the
reservoir are thought to be related to the condensation of acidic magmatic vapor [31].

Figure 3 shows the 87Sr/86Sr ratios versus the Cl/Sr mass ratios for all of the Icelandic
geothermal fluids [1,7,74], including those measured at Theistareykir (this study). Icelandic
geothermal fluids other than Theistareykir are either a mixture between water which has
interacted with local basalt (Cl/Sr = 0.318, [46,75]; 87Sr/86Sr ≤ 0.7032 [58]) and seawater
(Cl/Sr = 2559 and 87Sr/86Sr = 0.709225); or a mixture of water that has interacted with local
basalt (labeled “WRI” for water-rock interaction in Figure 3) and an endmember characterized
by a very high Cl/Sr ≈ 1.1 × 105 (from data extrapolation) and 87Sr/86Sr = 0.70337 [53]. This
endmember (here labelled “magmatic fluid”) is present in other geothermal systems, such as
Taupo (New Zealand), and is interpreted as representing a pristine deep geothermal fluid,
which is affected by seawater to a lesser extent [7]. In Theistareykir, the high Cl/Sr ratio of
this geothermal endmember can be the result of two concomitant processes: the enrichment
of Cl through magma degassing [76], and the depletion of Sr trapped in hydrothermal calcite
during high-temperature reactions in the reservoir (e.g., [7]).
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represents the subzones of the field, see Section 2 for details), compared to the literature data from
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white dots are data from Figure 5 of [7], redrawn (data unpublished).

The Sr content of Theistareykir fluids shows a pattern which is different from that
of other fields (Figure 3), resulting from a mixture of all three sources (Figure 3). Their
respective contributions can be estimated from data reported in Table 1 using equations
from [77]:

87Sr/86Srsample = 87Sr/86Srhydrothermal × H + 87Sr/86Srbasalt × B + 87Sr/86Srseawater × S (2)
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(Cl/Sr)sample = H × (Cl/Sr)hydrothermal + B × (Cl/Sr)basalt + S × (Cl/Sr)seawater (3)

H + B + S = 1 (4)

where H, B and S are the fraction of Sr in the magmatic, seawater and basalt endmember in
the mixture. The relative proportions of each source to Sr in the Theistareykir well fluids
are reported in Table 2.

Table 2. Proportions (in %) of each source of Sr in the Theistareykir fluids.

Well Magmatic-Fluid (%) Seawater (%) WRI (%)

ÞG-1 17.30 8.77 73.93
ÞG-3 14.44 5.88 79.68
ÞG-4 26.60 23.38 50.02
ÞG-5 27.65 5.01 67.34
ÞG-6 38.00 56.95 5.05
ÞG-7 2.43 40.26 57.31

ÞG-12 38.43 45.53 16.04
ÞG-13 31.76 20.93 47.31
ÞG-16 46.77 <0.01 53.23
ÞG-17 76.84 22.14 1.02

Krafla 1 2.08 2.75 95.17
Námafjall 1 0.69 16.84 82.47
Reykjanes 1 1.57 16.65 81.78

1 Estimated from Sr and Cl data reported by [1], for comparison.

It is worth noting that these mixing proportions are related to the Sr content of the
fluid, not the mass of the fluid itself. In other words, e.g., sample ÞG-6 contains nearly
57% Sr derived from seawater, but 57% of the fluid is not seawater (which would give a Cl
content of 10,818 ppm, nearly 60 times that of the measured value; Table 1).

There is, in the mixture, a fourth fluid devoid of both Cl and Sr, which is local meteoric
water (which, in northeastern Iceland, seems not to contain seawater arerosols), leading to
the dilution of the Cl and Sr concentrations while leaving the elemental or isotopic ratios
unchanged. Icelandic rainwater is impacted by seawater salt spray, as is evidenced by the
identical element ratios and a systematic decrease in the concentrations and element ratios
with distance from the ocean (e.g., [78]). It is estimated that typical Icelandic rainwater
contains 1‰ seawater [79], which would give a Cl content of ~19 ppm and 0.007 ppm Sr.
In contrast, pristine rainwater away from the oceans is estimated to contain only 0.18 ppm,
and essentially no Sr [80]. The Cl and Sr of a pure atmospheric meteoric component is thus
negligible compared to the seawater input.

Compared to the neighboring Krafla and Námafjall fields, Theistareykir has a major
contribution of Sr from the magmatic and seawater sources. The Theistareykir seawater com-
ponent is higher than the seawater-dominated Reykjanes field (Table 2). Interestingly, among
the samples of [1], the closest in terms of chemistry (Cl/Sr ratio) and Sr isotopic composition
to the Theistareykir fluids is Kasthvammslaug, 18 km to the SW, possibly suggesting similar
sources of Sr and mixing ratios to those of the Theistareykir reservoir fluids.

Figure 4 shows the water-stable isotopic ratio δ18O vs. the 87Sr/86Sr ratio, which
suggests that Theistareykir fluids might represent a mixture of several sources enriched in
radiogenic 87Sr.

In Figure 4, a hypothetical mixing line is drawn (blue dashed line) between seawater
(δ18O = 0‰ by definition and 87Sr/86Sr = 0.709225 [45]) and a meteoric recharge component
from the southern Highlands of Iceland (δ18O = −13.2‰ [27]), which has likely acquired
Sr from the leaching of local tholeiitic basalts (87Sr/86Sr ≤ 0.7032 [49,58]). Except for ÞG6,
ÞG12 and ÞG16, all of the samples plot on a mixing trend (within the 95% confidence
interval, i.e., the light-grey dashed lines of Figure 4) of a seawater–highlands water mixture.
However, it is worth noting that sample ÞG-16, which Figure 3 would suggest is a mixture
of seawater and the magmatic endmember, here points to an 87Sr/86Sr ratio intermediate
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between that of fluid–rock interaction and seawater. On the other hand, the δ18O of
−13.58‰ measured in ÞG-16 does not indicate an interaction with seawater. The latter is
very similar or just slightly depleted compared to the expected value for the Highlands
recharge (δ18O = −13.2‰). Sample ÞG-16 could therefore represent a meteoric water
component entering the geothermal reservoir, with its δ18O signature being progressively
shifted (see the arrow in Figure 4) towards values of −8‰, or possibly higher, by water–rock
interactions with tholeiitic basalts (δ18O = −6.5‰ [27]). This modified water component
could subsequently mix with meteoric Highlands water, creating the trend represented by
the dashed orange straight line of Figure 4.
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The question arises of which water source may have a “seawater” Sr content while
displaying the stable isotopic composition characteristic of meteoric water. In Iceland,
non-glaciated rivers show relatively high 87Sr/86Sr ratios of up to 0.70659 (Table S1). This
is because seawater aerosols are transported and introduced into the Iceland river network
through rainfall or snowfall [52]. For example, Hindshaw et al. [52] measured the 87Sr/86Sr
in ice samples from the southern glacier Langjökull, and obtained a value of 0.70919,
which is very similar to that of the local seawater value (0.709225). If sample ÞG-16 is
representative of glacial water, either modern or of Holocene-Quaternary age from the
southern Highlands [27,81], it may contain a dominant seawater Sr source. The stable
isotopes, however, would reflect those of the main water mass, i.e., glacial water. The
Sr and H2O would be decoupled due to mass-balance constraints. Because seawater is
significantly higher in Sr, the sole addition of a small seawater component will impact both
the Sr content and the isotopic signature disproportionately.

Newly observed correlations between atmospheric noble gases and Sr isotopes may
provide additional independent evidence of this glacial water recharge in the Theistareykir
field. This is discussed below.
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5.2. Correlations between ANGs and Sr in Theistareykir Geothermal Fluids

The calculated atmospheric noble gas ratios 20Ne/36Ar, 84Kr/36Ar and 132Xe/36Ar
are higher than those expected for equilibrium solubility at recharge conditions (a Mean
Annual Air Temperature (MAAT) of 3.7 ◦C [27]), using solubility data from [48] (Figure 5).
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values in the vapor phase after fluid boiling in the reservoir (after data from [16]).

Recently, Byrne et al. [16] suggested that the variability of ANG concentrations in
geothermal reservoirs, including Theistareykir, is controlled by boiling, which can fraction-
ate the ANG ratios following their respective solubilities, as illustrated in the calculated
curves reported in Figure 5a,b for the vapor phase. However, there are several lines of evi-
dence showing that the predicted elemental fractionations proposed by [16] only partially
affect the Theistareykir fluids.

Figure 6 shows that the observed variability of the ANG elemental ratios is controlled
by several processes, in particular leaching Sr from basalts and mixing with ANGs and
seawater via meteoric fluids. From Figure 5a,b, it is apparent that the F(20Ne) and F(84Kr)
values (except for sample ÞG-17) might be either the result of mixing between meteoric
water at 3.7 ◦C and atmospheric air, or alternatively, the mixing of a vapor phase boiled at
200 ◦C and atmospheric air. Air is ubiquitously present in all of the fluids of Theistareykir,
both in well fluids sampled at the wellhead and surface fluids sampled at mudpots and
fumaroles ([27] and Figure 5a,b). However, the F(132Xe) value does not follow the boiling
fractionation curve of Byrne et al. [16]. Instead, it seems to result from a mixture between
ASW (at 3.7 ◦C) and the atmospheric air. If we replace F(132Xe) with F(130Xe) (132Xe is
also produced by 238U fission in rocks, while 130Xe is only of atmospheric origin), the
trend remains unchanged, and the resulting values remain significantly different from
those predicted by boiling. In order to explain this shift, Byrne et al. [16] suggested the
possible addition of a sedimentary source of xenon (Xe can be adsorbed in clays and organic
matter [82,83]).

The calculated F(20Ne) values correlate with the 87Sr/86Sr ratios measured in the
Theistareykir fluids (Figure 6a). The data suggest two linear trends. However, in an isotope–
isotope plot, mixing leads to an hyperbola, not a straight line, unless the curvature factor
“r” (r = [Sr/Ar]Basalt/[Sr/Ar]Atm) is 1 [84]. Here, the best fits for the two mixing hyperbolas
have “r” values of 0.8 and 0.13, respectively (Figure 6a). In our calculations (Figure 6a), the
“glacial” endmember has a seawater 87Sr/86Sr ratio of 0.709225 and atmospheric F(20Ne)
composition (i.e., F = 1). The second endmember has an 87Sr/86Sr ratio typical of that of
the tholeiitic basalts of the Theistareykir reservoir (≤0.7030 [49,58]). The corresponding
F(20Ne) of the basaltic endmember is much higher than that calculated for ASW at 3.7 ◦C
(0.249 [48]), with a value of ~0.42, corresponding to an ASW component affected by boiling
at 200 ◦C (Figure 5a).
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The F(132Xe) and F(84Kr) values also display a trend between the two above-defined
endmembers, although it is not as clearly defined, in particular for F(84Kr). Similarly to the
F(20Ne) findings, the F(84Kr) value is too high (2.027 [48]) compared to that of a basaltic
endmember value of ca. 1.85 (Figure 6b), and also corresponds to a fluid undergoing boiling
at 200 ◦C (Figure 5a). However, the F(132Xe) ASW value calculated at 3.7 ◦C is plausible for
the basaltic endmember (Figure 6c), as is also suggested by the trend observed in Figure 5b.
It is possible that the Fernández-Prini et al. [85] experimental solubility data for Xe may
have been underestimated for geothermal reservoir conditions. Such a shift between the
expected solubilities of xenon in geological reservoirs and what is really measured has
already been observed in other situations (e.g., [86]). This underestimation would explain
the observed discrepancies between Ne and Kr (Figure 6a,b) as opposed to Xe (Figure 6c).

Figure 6a,b shows two mixing hyperbolas using the same curvature factors as those
obtained from the F(20Ne) trends (the values are inversed here: r = [Sr/Ar]Atm [Sr/Ar]Basalt).
The two trends encompass all of the data, except for the F(84Kr) of sample ÞG17, which is
more heavily impacted by a magmatic fluid endmember (Figure 3). This larger magmatic
fluid impact is thought to be at the origin of the observed deviations from the expected
trends for sample ÞG17 (Figures 5b and 6b).

5.3. ANGs and Sr: A Tracer of Glacial Meltwater Recharge

The ubiquitous presence of ANG with an atmospheric air composition in both the
surface and well fluids of Theistareykir (Figures 5 and 6) could be explained by a partial
recharge of the Theistareykir field by glacial water derived from snowfall. The glaciers and
rainfall of Iceland contain Sr with an isotopic signature indistinguishable from seawater,
which is caused by the presence of marine aerosols (the so-called “atmospheric deposition”
of [53]). This is observed in the signature of non-glaciated rivers, which are replenished
by these two sources of water (Figure 2). However, rainfall cannot be the source of Sr
seawater in the Theistareykir geothermal fluids. Indeed, noble gas studies in rainfall
(e.g., [87–89]) have highlighted the presence of different patterns for ANG other than
simply atmospheric air. By contrast, ice bodies which originate from the compaction
of snow (buried snowbanks, glacial ice) have ANG ratios close to those of atmospheric
air because they trap air bubbles, while ice that forms from the freezing of liquid water
(i.e., pingo ice) is expected to have ANG ratios similar to ASW because ANG are mainly
dissolved at solubility equilibrium [90,91]. This is confirmed by the experimental data of
Amalberti et al. [92], who measured the noble gas signatures in snow. This showed ANG
ratios with values between those of ASW and atmospheric air, while the concentrations
are strongly dependent on the snow structure. The lighter He and Ne isotopes can be
accommodated in the snow crystal lattice due to their smaller atomic radii, while Ar, Kr
and Xe may be hosted in inclusions of quenched water within the ice crystal because of
their larger atomic radii [92].

Overall, the correlations illustrated in Figure 6a–c may result from the mixing of at
least two fluids circulating in the Theistareykir geothermal reservoir. The first fluid, likely
meteoric water in nature, labeled “WRI-B 200 ◦C”, interacts with the basaltic reservoir
from which Sr is extracted from plagioclase and pyroxene. The ANGs of this fluid have
elemental ratios close to ASW conditions, or slightly fractionated during boiling at 200 ◦C
in the reservoir. The second fluid is glacial meltwater from snow or compacted-snow ice,
carrying into the reservoir two unrelated sources: Sr from seawater aerosols and ANGs
contained in atmospheric air bubbles trapped in the snow. The question arises whether
this meteoric water component is local or distal. Most non-glaciated rivers and ice with a
seawater Sr contribution (Figure 2 [52,53]) are found in S–SW Iceland. It is thus reasonable
to speculate that the glacial recharge water carrying a Sr seawater component and an
ANG signature in the Theistareykir is the far-south glacier recharge water from the Iceland
Highlands, as suggested by [81]. The presence of large amounts of glacial water might also
explain the observed differences in the Sr isotopic composition compared to the nearby
Krafla and Námafjall geothermal systems. These display 87Sr/86Sr of 0.7040 ± 0.0003 [1].
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These fields have water-stable isotopic compositions which are less depleted than those of
Theistareykir, with values of δ2H = −87‰ and δ18O = −12.3‰ corresponding to the local
groundwater [93].

6. Conclusions

The first Sr isotopic compositions of the Theistareykir geothermal fluids in Iceland
were reported and compared with those of noble gases. In particular, the Ne/Ar ratios
show a clear correlation with the 87Sr/86Sr ratios, a pattern that has not been previously
observed in other geothermal areas studied using these two families of fluid tracers. Deep
Theistareykir geothermal fluids have an unusual Sr isotopic and elemental composition,
suggesting the presence of three sources: magmatic fluids, fluids resulting from interactions
with local basaltic bedrock, and seawater. If these three sources are effectively common
for all Icelandic geothermal fluids, the Sr seawater component found in Theistareykir is
particularly rich. Of relevance is the observed seawater Sr signature, which appears to be
related to atmospheric noble gases (ANGs). The latter display an atmospheric composition
rather than an equilibrium solubility composition or ASW, as expected in meteoric water
recharging geothermal reservoirs. This is thought to reflect the impact of meteoric water
derived from snowpack or compacted snow ice, and may trace its recharge source to the
southern glaciers of Iceland. In conclusion, we suggest that ANGs have the potential to
trace meltwater recharge in geothermal fields located in glaciated areas such as Iceland.

Supplementary Materials: The following supporting information can be downloaded at https:
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