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Abstract: A novel direct probabilistic inversion using seismic pre-stack data as input to characterize
a wedged chalk reservoir prospect was demonstrated from the Upper Cretaceous unit, Danish North
Sea. The objective was to better resolve the lateral extent and pinch-out of the chalk prospect in a
frontier exploration setting and compare the results with a more traditional deterministic inversion
and geostatistical reservoir modeling. The direct probabilistic inversion results provided additional
reservoir insights that were challenging to obtain from the more traditional workflows and are also
more flexible for associated uncertainty assessments. Hence, this study demonstrates the usefulness
of such direct probabilistic inversions even with suboptimal data availability.

Keywords: reservoir geophysics; Direct Seismic Inversion; interpretation; Bayesian inference problem;
Danish Central Graben

1. Introduction

In seismic reservoir characterization, there is a continuous push toward improving
quantitative interpretation accuracy through innovative inversion tools [1]. Seismic reflec-
tion data are the result of elastic contrasts between different layers, whereas, for reservoir
characterization, we are interested in the reservoir parameters within the individual layers.
Transforming the relative interface properties (two-way travel time, amplitude, reflectivity)
from seismic data into the absolute layer properties (acoustic impedance, Vp/Vs, lithology,
porosity, fluid) represents the underlying objective for seismic inversion workflows. Going
from interface to layer properties via seismic inversion can provide more detailed and
high-resolution subsurface images for reservoir characterization by better balancing the
seismic frequencies and compensating for geophysical artefacts, such as seismic tuning.

Traditionally, seismic prediction of lithology and fluid has been defined as a two-
step approach. First, the seismic data are inverted to elastic properties, and then the
reservoir properties are estimated through a rock physics inversion or lithology/facies
classification step [2–5]. More recently, several new inversion methods have combined these
two steps into a one-step (or direct) inversion to be able to integrate more geological and
geophysical spatial information in a Bayesian (or probabilistic) framework (Figure 1) [6–8].
Moreover, because there is more than one possible solution to practical inversion problems
(i.e., non-uniqueness), using probabilistic inversion methods allows for assessing a broader
range of solutions, and thereby obtaining better control of associated uncertainties in the
risk assessments.

In this paper, a novel direct probabilistic inversion (DPI) method using seismic am-
plitude vs. offset (AVO) data is presented to characterize a wedged chalk prospect in the
Danish Central Graben (Figure 2). The prospect is located on the northern flank of the
Pollernes Ridge and is a potential stratigraphic trap within the Upper Cretaceous to Earliest
Paleocene Chalk Group, where highly porous reservoir facies (Ekofisk and Tor formations)
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are wedged between a basal seal (low-porosity Hod Formation) and upper seal (Paleocene
clays) (Figure 2). The objective of this study was to test whether the DPI results could
better resolve the lateral extent and pinch-out of the chalk prospect. We first review the DPI
method and study area before presenting the DPI setup and results, which are compared
with the acoustic impedance and Vp/Vs properties derived from a deterministic AVO
inversion. Then we compare the DPI results that are driven by seismic AVO data with a
more traditional geostatistical reservoir model that is mainly based on nearby well log data.
Finally, some conclusions are stated.
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2. Method: Direct Probabilistic Inversion

This section provides a description of the direct probabilistic inversion (DPI) tool, as
described in Hansen and Jakobsen [10] and Mutual et al. [11]. The DPI is a single-step
inversion process that inverts pre-stack seismic data directly for facies or litho-fluid classes
through integration of seismic AVO data, well logs and geological information of spatial
facies distribution. The seismic AVO inverse problem can be formulated as a Bayesian
inference problem, where the Bayes rule can be written as follows [12]:

σ(m) = cρ(m)L(dobs − g(m)), (1)

where m represents the subsurface model parameter (e.g., facies, porosity, saturation, etc.).
Here, the information about m is described by a probability density function (pdf). In the
initial state of the inference, before taking seismic data into consideration, the information
is described by the prior pdf, ρ. The prior pdf is updated with the information provided by
seismic AVO data via the likelihood function, L, which measures, in terms of probability,
the misfit between forward modeled g(m) and measured seismic AVO data, dobs. The c is
a normalization constant, and the Bayesian (or posterior) pdf, σ, represents the updated
state of inference of the subsurface model parameters, m, assimilating the prior, the AVO
data and the forward modeling, g. The problem of non-uniqueness disappears when
solving for a pdf and resolves many of the associated problems when interpreting standard
inversion attributes, including correctly propagating uncertainty and spatial dependencies.
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In general, the posterior pdf cannot be solved analytically, and the inverse problem must
therefore be approached by brute-force sampling or some approximation, with DPI taking
the latter approach.

Markov chain Monte Carlo sampling methods [12] can be demonstrated to provide an
ensemble of samples which will converge on the posterior pdf. However, efficiency is very
problem-dependent and may be difficult to achieve. In addition, required sampling density
in a high dimensional model space (such as seismic volumes) means that these methods,
in general, are computationally demanding and time-consuming. However, a number of
approximations can be made to make the inversion problem computationally manageable
by solving for the pointwise posterior, using a localized and approximated likelihood
model [13]. The DPI method has very few requirements on spatial facies model, rock physics
model, seismic forward model, etc. In the following we use a first-order Markov process
to model key geologic information of facies [14]. This is used to encode geological rules
from prior knowledge and statistics from well data directly into the inversion problem. The
statistical rock physics (RPM) prior model for each facies is implemented as a Gaussian pdf
in the elastic domain estimated from well logs (or prior rock physics knowledge/modeling).
Hence, information such as layer ordering, facies thicknesses, mean and standard deviations
of elastic properties for each facies, intra property correlations and any meaningful data
that can be described as a probability can be implemented into the inversion problem.
Combining the rock physics likelihood model with a seismic convolutional AVO forward
model from elastic properties [15,16] of our defined facies yields a localized likelihood
model that can answer how likely a localized piece of seismic is centered on a given facies
window. Adding prior information from different domains directly into the inversion can
potentially resolve beyond the seismic bandwidth. See Hansen and Jakobsen [10] for more
conceptual DPI details. A schematic workflow of the DPI inversion is shown in Figure 3,
where the inputs are given as the prior framework (stratigraphical/geological information
and well data) and seismic AVO data, whereas the main output is the marginal (pointwise)
posterior probability.
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3. Study Area, Data Coverage and Reservoir Model

The wedged chalk play is a hydrocarbon prospect with the Tor and Ekofisk Formations
as reservoir targets within the Upper Cretaceous and earliest Paleocene chalk successions,
located 10 km northwest from the Siah-NE-1X well and approximately 5 km east from the
Nora-1 well (Figure 4). It represents a wedge of potential high-porosity reservoir chalk
between a lower low-porosity Hod Formation and upper Paleocene marlstone and clay
(Figure 4). The reservoir facies onlap the northern flank of the Pollernes Ridge inversion
structure, thereby resulting in a pinch-out in the southern direction (see Chalk Group
thickness map in Figure 2). The main geological challenge that was investigated with
the DPI tool is related to distinguishing the reservoir formation from the overburden and
underburden formations, as well as better resolving the reservoir pinch-out.
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Figure 4. Upper: prospect cartoon section showing the main elements of the hydrocarbon chalk
prospect. Tor and Ekofisk reservoir pinch out against the Top Upper Hod and are charged with
hydrocarbons via faults. Lower: 2D seismic crossline section through the prospect area with the
corresponding Top Chalk surface in MapView showing nearby wells. TWT: two-way time.
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A static reservoir model of the chalk prospect was constructed by first performing 3D
seismic interpretation of the main chalk events to map out the large-scale architecture of
the Chalk Group (Table 1). The top and base of the Chalk Group form the top and base
of the static model, while the Top Lower Hod forms the basal surface upon Upper Hod,
Tor and Ekofisk formations are onlapping upon. The top Upper Hod marker forms the
base of the porous reservoir chalk intervals, or top of the low-porosity sealing unit. The
layering architecture is set such that it follows the seismic geometries (e.g., conformable,
erosional and onlapping) and can be recognized in Figure 5. Four wells (Hanne-1, Elin-1,
Nora-1 and Siah-NE-1X) were included in the static model to provide initial porosity
distributions in three defined zones (Tor/Ekofisk, Hod and Hidra) and used to define
the vertical variability of porosity (how rapidly the porosity change) (Figure 2 for well
locations). Then a simplified porosity–depth dependency was implemented to account
for increasing burial compaction with increasing depth, which is a simplification, since
differences in overpressure could offset this trend, but it was decided for the current study
to be an adequate approximation [18]. The trend surface was constructed by using the
minimum and maximum burial difference of the three zones, and the maximum decrease
in porosity (as a result of increasing burial depth) was calculated from the porosity–depth
curves. For the Ekofisk-Tor, this difference was 12%; for Hod and Hidra, the difference was
13% between top of the static model and the deepest level of each zone.

Table 1. Seismic interpretation parameters.

Name Seismic Marker Architecture Element Horizon Type

Top Chalk Group/Top Ekofisk Fm. Top Reservoir Erosional

Top Upper Hod Base Reservoir Conformable

Top Lower Hod Base onlapping surface Conformable

Base Chalk Group/Base Hidra Fm. Base lower seal Base
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modeled porosity values. Note that the reservoir units have a finer layering and the highest porosities,
and they pinch out to the south. Note also the decrease in porosity in the deeper northern part of the
model as a result of increased burial compaction.
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4. Inversion Setup

Two different seismic inversion approaches were performed: (1) deterministic AVO
inversion (the traditional approach) [19,20] and (2) the improved direct probabilistic in-
version (DPI) approach [10,17,21]. The basic workflows for the inversions are outlined in
Table 2.

Table 2. Inversion workflow.

Preparation phase (input)

Conditioning of input seismic CDP gathers
Angle stacking
Preparation of well database
Seismic well ties
Wavelet estimation

Inversion phase (Output)

Deterministic AVO inversion
Output:
Acoustic impedance (AI) and Vp/Vs
(elastic properties)

Direct probabilistic inversion (DPI)
Output:
Probabilities of facies classes: shale,
high-porosity chalk with oil, high-porosity
chalk with brine, medium-porosity chalk with
oil, medium-porosity chalk with brine,
low-porosity chalk

Comparison phase

The main challenge in the inversion workflow for the chalk prospect was related to
the lack of nearby shear sonic log data to generate rock physics likelihood models (RPMs).
NW-Adda-1X was the only well that contained a reliable shear sonic log through the Upper
Cretaceous interval and was therefore used for this purpose, although it is located far away
from the chalk prospect (Figure 2) and is 150 ms TWT shallower. The three closest wells
(Siah-NE-1X, Nora-1 and Elin-1) were used for quality control of the DPI results against the
available petrophysical log data (water saturation, volume of clay and porosity).

The first step for the DPI setup is to define the facies classes that we suspect can be
present within the target chalk prospect interval. In this study, the facies were defined by
petrophysical cutoffs within the following main zones:

• Shaly overburden (ShOvb);
• Ekofisk-Tor (Zone of interest: Zi);
• Upper Hod (UHod);
• Lower Hod (LHod);
• Shaly underburden (ShUb).

The facies definitions are shown by the color scheme in Figure 6. The defined set of
facies classes include variations in porosity (high, medium and low), whether the chalks are
clean or marly (tight and shaly chalks) and whether brine or hydrocarbon saturates the pore
volume. For the low-porosity scenario, only a brine saturation scenario was considered.
Each facies is subdivided in accordance with which zones the facies are mainly relevant
for. This leaves us with 26 distinct facies, represented by each circle slice in Figure 6. For
example, the Upper Hod (UHod) zone is expected to be brine-saturated chalks. Hence,
the prior probability for oil is set close to zero, so the UHod is not included in any of the
oil-saturated-facies scenarios. Constraining the number of facies from prior geological
knowledge is important to reduce the non-uniqueness of the inverse problem.

An a priori probability model for the facies was defined from regional interpreted
horizons, assuming equal proportions of the relevant facies classes inside the various zones.
The a priori local spatial structure of the facies was formulated as a 1D Markov process [22]
sampled from the facies thickness distributions from well observations (Figure 7).
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thicknesses larger than a given thickness. The linear trend indicates that thicknesses are exponentially
distributed in line with a vertical Markov spatial model [10].

Another important inversion setup is the definition of a robust prior probability model
for the various facies classes. For example, if we anticipate high-porosity brine-saturated
chalk to be more likely present within a specific depth interval, we assign a higher prior
probability to that facies within that interval. For the vertical ordering (or stacking) of the
facies classes in the prior model, we want the facies classes to obey some certain physical
and geologically consistent rules. In this study, these were rules as follows:

• Thickness distributions are estimated to be exponential;
• Facies vertical ordering follows a first-order Markov process (Figure 7);
• The ordering statistics vary between all intervals;
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• Fluid gravitational ordering is assumed;
• Older sequences are always located below younger sequences;
• The elastic properties (acoustic impedance, Vp/Vs and density) within each facies can

be modeled with Gaussian distributions;
• The correlations of elastic properties within a given facies are modeled with an expo-

nential correlation model.

Figure 8 shows the Markov model transition probability matrix from which short
facies windows (typically 5 to 15 samples) are generated to build likelihood models. The
matrix describes, in terms of probabilities, all the vertical combinations of facies classes
within the various zones (Ekofisk-Tor, Upper Hod and Lower Hod) in accordance with
the listed rules. The matrix represents the probability of a facies (row index) at a given
location having facies (column index) in the sample below. Notice that the observed facies
classes are chronologically defined along each axis, starting with the uppermost shale
overburden (shOvb) in the first row/column and then stepwise through all the facies
scenarios (Figure 6) toward the lowermost shale underburden (shUb). For example, a
zero-transition probability in row chpbZi (water-saturated highly porous clean chalk) and
column chpoZi (oil-saturated highly porous clean chalk) is due to the fact that water is
not allowed to occur above oil (Figure 6). The corresponding prior probability models are
shown for the Siah-NE-1X, Nora-1 and Elin-1 wells in Figure 9. Notice also that smooth
prior probability transitions at the horizons’ surfaces are due to their assigned uncertainties.
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(v/v); shOvb and shUb are shale overburden and underburden, respectively. The information in the
matrix is used locally when generating facies windows for generating likelihood models.

Figure 10a shows resampled AI vs. Vp/Vs data from the NW-Adda-1X well within
the target interval, and Figure 10b shows the corresponding statistical rock physics models
(RPMs) as dashed ellipses (Gaussian probability density functions) [8,24]. The RPMs ex-
tends upon the observed distribution of elastic properties in each facies within reasonable
ranges to incorporate plausible facies variations. Notice that the in situ data in the target
interval do not represent all the facies classes that we want to investigate. For example,
because the NW-Adda-1X is a dry well, a Gassmann fluid substitution [25] was performed
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to model different oil saturated scenarios in different porosity (high, medium and low)
and lithology (clean and marly) settings, as well. In addition, some of the RPMs that
were underrepresented in the NW-Adda-1X data were edited to give them more mean-
ingful elastic properties in accordance with established rock physics models [26]. Notice
the overlap of the various RPMs (Figure 10b). Sufficient separation between the RPMs
is crucial for the inversion to be able to distinguish between the corresponding facies
classes when only weak spatial information exists, as it is linked to the seismic expression
(i.e., amplitudes). Therefore, the more overlap we observe between two different RPMs in
Figure 10b, the more difficult it is for the inversion to discriminate between them if there is
not prior strong spatial information.
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Figure 10. Acoustic impedance (AI) versus Vp/Vs: (a) data from the NW-Adda-1X that contain shear
sonic measurements; (b) the corresponding rock physics model likelihoods (RPMs) defined from the
data and fluid substitution modeling. The large gray ellipse represents the over- and underburden
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To approach RPMs at a seismic scale, some realizations were performed based on
the well log elastic data. The standard deviation of the Gaussian RPMs (Figure 10b) is
approached by matching the observed and realized reflectivities. Figure 11 shows the
estimated reflectivity distributions for the acoustic impedance (AI) and Vp/Vs to the
left from the NW-Adda-1X data in the top row and the corresponding cross-plot to the
right. The middle and lower rows represent Gaussian simulated data for the various facies
classes’ testing variance factors of 0.3 and 0.5, respectively. The histograms from using a
variance factor of 0.3 (middle row) seem to better match the estimated reflectivities from
the well (upper row). In this way, AI and Vp/Vs data are simulated based on the statistical
information from the NW-Adda-1X well data to populate the dataset used for defining
the RPMs.
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Upper row: estimated reflectivities and well data from NW-Adda-1X. Middle and lower rows:
simulated reflectivities and elastic data. Refer to Figure 6 for the facies colors.

Statistical wavelets for seven partial angle stacks (0–40◦) were extracted from the
seismic (Figure 12). These were used together with the Aki and Richards [15] AVO forward
model and an uncorrelated noise model.
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5. Inversion Results

Figure 13 shows a seismic composite line intersecting the Siah-NE-1X, Elin-1 and Nora-
1 wells and through the prospect area in the north. Figures 14 and 15 show the deterministic
AVO inversion results for AI and Vp/Vs, respectively, and Figure 16 shows the correspond-
ing DPI results. Both inversions used similar estimated wavelets and horizon surfaces as
input. The DPI results showed that the facies’ inverted for is geologically consistent and in
line with geological expectations and thereby reduced geological uncertainties associated
with the chalk prospect. The high-porosity brine features seen toward the outermost left of
the section (Figure 16) were difficult to interpret both on the seismic (Figure 13) and using
the traditional deterministic AVO inversion approach (Figures 14 and 15).

In Figure 17, the posterior probabilities are shown for the wells. Notice how the prior
probabilities in Figure 9 were transformed to posterior by using the DPI. In general, if
the prior and posterior probabilities are similar, the seismic AVO data do not contain any
useful information about the various facies classes. In this case, however, the significant
deviation between the prior and posterior probabilities in each of the wells implies that the
seismic AVO data drive the inversion. Comparing the inversion results with the observed
facies in each well, we see that the classification seems to distinguish the clean and marly
chalks reasonably well, whereas it misclassifies some higher-probability anomalies for
hydrocarbons in Siah-NE-1X and Nora-1 in the Lower Hod Formation. However, given
that the inversion relies on limited and distant well-log data from NW-Adda-1X (Figure 10)
and the prominent overlap of the RPMs (Figure 10b), the results are acceptable.
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Well trajectories intersected by the composite line are plotted with AI log data where available. The
four seismic surfaces used are plotted in black.
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intersected by the composite line are plotted with Vp/Vs log data where available. The four seismic
surfaces used are plotted in black.
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Figure 16. Direct probabilistic inversion result along the composite line. The individual colors
represent the most likely geological facies’ inverted for (see Figure 6) and is from left to right:
(1) shale, (2) high-porosity chalk with oil, (3) high-porosity chalk with brine, (4) medium-porosity
chalk with oil, (5) medium-porosity chalk with brine and (6) low-porosity chalk. Well trajectories
intersected by the composite line are displayed as black lines. The four seismic surfaces used are
plotted in black.
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Figure 17. Inversion results for the Siah-NE-1X (left), Nora-1 (middle) and Elin-1 (right) wells. For
each well, from left-to-right, shale volume (vclay), porosity (por) and water saturation logs; observed
(or reference) facies profile; and the posterior probabilities as a function of time/depth. The four
seismic surfaces are plotted: Top Chalk, Top Upper Hod, Top Lower Hod and Base Chalk.

The interesting element of the DPI results are the prediction of potential highly porous
reservoir chalks that are onlapping the inversion structure and therewith also the pinch-out
position, which affects the potential in situ hydrocarbon volumes. The traditional reservoir
modeling workflow uses internal chalk surfaces, geostatistical extrapolation of log data
and a simple porosity–depth relationship to obtain the porosity distribution and pinch-
out position (Figure 18a). The DPI results show the probability of high-porosity chalks
(Figure 18b), and it looks fairly similar to the distribution from the geostatistical reservoir
modeling workflow. The main difference between these two approaches is that the DPI
results rely on actual remote seismic measurements covering the prospect area, in contrast
to the geostatistical modeling that is exclusively based on the propagation of well log data,
using specific variogram settings (e.g., until what lateral and vertical distance are porosity
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values still related to one another). The DPI results are therefore more data-driven than the
geostatistical model and can be used to refine the static reservoir model to better reflect the
actual seismic data.
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6. Implementing DPI Results into Reservoir Modeling

There are different applications for the results obtained from the DPI tool that are
useful in the reservoir modeling/characterization workflow (Figure 19). For each defined
facies, the DPI tool takes in a prior probability 3D model and transforms it to a posterior
probability 3D volume that can aid reservoir characterization in multiple ways. First, high-
probability anomalies for specific facies (for example of high porous chalks) can guide the
interpretation of boundary/interfaces of various reservoir zones, for example, by adjusting
the reservoir top or base horizon to better match the high-probability anomalies from
the DPI results and, thus, the structural framework. This can be particularly useful in
areas where it is challenging to accurately map specific reservoir targets with conventional
seismic interpretation techniques, for example, due to limited seismic resolution in the data.
Secondly, by populating the reservoir zones with depositional facies, the 3D probability
volumes of each facies can be inserted as a 3D probability constraint in geostatistical
methods (sequential indicator simulation or Truncated Gaussian simulation). Another
possibility is to extract 2D probability maps for each facies in specific zones and insert those
as 2D constraints in the same geostatistical methods. An alternative avenue is to use the
Most Probable Facies 3D volume, which is constructed from selecting the facies exhibiting
the highest posterior probability at each point within the 3D volume (Figure 19). This
volume contains discrete facies definitions that can directly be used to constrain the static
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reservoir model. Another important contribution from the inversion is the higher resolution
obtained for the various facies classes that can resolve thin layers below tuning thickness
to obtain a more accurate and detailed reservoir model. Thus, these workflows allow
for the better delineation and definition of reservoir zones and geometry and improved
construction of 3D facies models through seismic constraints obtained from the DPI tool.
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7. Conclusions

A novel direct probabilistic inversion using seismic pre-stack data was formulated as a
Bayesian inference problem and demonstrated on a wedged chalk reservoir prospect on the
Upper Cretaceous Chalk Group in the Danish North Sea. The results provided additional
reservoir information in a probabilistic manner that was challenging to resolve based on
more traditional workflows, such as conventional seismic interpretation, deterministic
seismic inversion and geostatistical reservoir modeling. Although nearby well log data
were limited, using more distant well data gave a more quantitative seismic interpretation
useful for prospect derisking. The quantitative accuracy and potential of the inversion is
proportional to the availability and quality of both seismic and well data, although this
study also demonstrates the usefulness in frontier exploration settings as a reconnaissance
tool. The direct probabilistic inversion tool can also be used for other applications, such as
screening for geological CO2 or hydrogen storage sites or geothermal resources.
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