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Abstract: Sinkholes are a widespread geological hazard, typical of karst lands, where they generally
originate as collapse features related to presence of underground voids. Nevertheless, other types of
sinkholes can be formed through solution, suffusion and sagging processes. Sinkholes can also be
originated in relation to artificial cavities, excavated by man in past times. In Italy, sinkholes interest
large sectors of the country, given the very long history of Italy with an intense utilization of the
underground. They cause serious damage to infrastructures, economic activities, and human health
every year. We present a catalogue on natural and anthropogenic sinkholes in Italy, as the first step
toward evaluation of the sinkhole hazard. After introducing sinkholes, which is definitely a highly
underrated type of disaster in Italy, we point out their occurrence in the country. We illustrate the
methodology used to build the database, with particular focus on accuracy and reliability of the data.
Collecting information from different types of sources, a catalogue of some 1190 sinkhole events is
built. Database structure and data analysis are then illustrated. Eventually, we draw some conclusions
on the likely uses of our work by providing recommendations for environmental management on
this very delicate issue.
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1. Introduction
1.1. Sinkholes, an Often Underrated Geohazard

Between 1980 and 2019, climate-related extremes caused economic losses totaling an es-
timated EUR 446 billion in the European member countries [1]. In Italy, EUR 72.534 million
in losses and 20.735 fatalities were registered. Italy is a geologically fragile territory where
a great variety of geohazards are present, but most of the attention is generally focused on
landslides and floods, the most commonly occurring geological events [2–4]. Nevertheless,
these extremely high numbers could increase even further if considering other natural
hazards that are typically underrated since they are limited to certain natural settings, or
to particular conditions and/or situations. Among these, sinkholes definitely have to be
included: they are well-defined depressions in the landscape and can be ascribed within the
most diagnostic features of karst [5–9]. When compared to other geo-hazards, sinkholes are
typically underrated and go unreported for a number of reasons, including the decisions of
landowners to keep these occurrences hidden in the fear that the economic value of their
lands and properties will be decreased. Produced by a variety of processes, sinkholes are
difficult to predict, and the issue of identifying possible precursory evidence of the phenom-
ena is still open in the scientific community [10–13]. In this regard, an important issue is
the assessment of the degradation of rock masses surrounding the caves and analysis of the
weathering conditions, eventually leading, through a decrease in the physical properties
of the rocks [14–19], toward instability, collapse and sinkhole development [20–23]. In
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addition, several recent papers have been dedicated to the spatial analysis of sinkholes and
GIS-based multi-criteria predictions [24–27].

The importance of the sinkhole hazard in Italy is further increased due to the fact
that, besides the regions with a presence of soluble rocks, the long historical and cultural
vicissitudes of the country led to the development of thousands of man-made cavities. All
these underground voids, often extending well below the urban areas, represent a real
danger to society and are worth being examined in detail.

Taking into account all of the above, we present in this contribution the result of years
of data collection and analysis about sinkholes in Italy as a first step in the production
of susceptibility and hazard maps. We describe a chronological catalogue of natural and
anthropogenic sinkholes in Italy, maintained by the Earth and Environmental Sciences
Department at the University Aldo Moro of Bari and by CNR-IRPI. After illustrating the
scopes of the database and its main structure, including the sources used for its data
population, we move to discuss the preliminary results about the documented sinkholes in
Italy, their distribution over the territory and the quality of the data. Eventually, we present
some considerations about the utility of such a catalogue in land planning management
and its possible contribution toward mitigation of the sinkhole risk.

1.2. Sinkholes, Not Only a Karst Feature

Sinkholes are defined as closed depressions with internal drainage [6]. Known as
one of the main diagnostic landforms of karst, they can originate from different types of
processes [28–31] and can be related to natural or anthropogenic cavities [32–34]. Their
formation often occurs through a rapid, catastrophic collapse, in most of the cases without
any precursory sign [10], which strongly increases the potential risk. Instability occurring
in karst caves may move upward, through progressive failures from both the vault and the
walls [35–37], until reaching the ground surface in the form of a sinkhole.

Besides their diffusion in karst settings, sinkholes may also occur in inhabited areas or
in sectors characterized by the presence of rocks different from carbonates and evaporites.
In these cases, their formation is related to the presence of underground cavities realized
by man, for a variety of purposes and in different historical ages [38,39]. They repre-
sent the peculiarity of certain contexts, and very often the instability of the subterranean
voids might have severe repercussions on the topsoil. For these reasons, exploration and
surveying of the caves is necessarily the first step to carry out toward knowledge of the
underground [40–43] and is mandatory to the census and cataloguing of the cavities and
to later studies as well.

All types of artificial caves may potentially originate subsidence and/or sinkhole
problems; however, certain categories, such as underground quarries and mines, are more
prone to ground instability than others [44–47], threatening the above built structures with
very high possibility of sinkhole formation [48–54] and sometimes even predisposing the
slope above them to landslides [55]. Further, abandoned hydraulic works such as wells and
underground aqueducts or qanats are at the origin of potential sinkholes [56–58]. Recent
developments and expansions of urban settlements and activities over areas occupied by
underground cavities resulted worldwide in an increasing number of events in the last
decades [59,60].

Sinkholes are therefore not limited to karst but might potentially affect any urban area
where an extensive network of underground cavities is present. This makes the analysis of
sinkholes and of their effects at the surface even more important.

1.3. The Need of a Good Knowledge of Past Events

In order to manage the hidden and very dangerous hazard related to sinkholes, knowl-
edge about past events is mandatory. Given the difficulties in accessing the underground
(especially in the case of abandoned cavities, the memories of which got lost), documen-
tation about sinkholes is of primary importance and is necessary for a correct approach
toward risk mitigation [61–63].
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Knowledge about sinkholes should start from the location of the underground cavities
and their present conditions. In addition, the origin of the caves (natural vs. anthropogenic)
must be ascertained. With reference to natural caves, knowledge of their presence depends
on the nature of the terrain and on the techniques used to investigate the subsoil. As
regards artificial cavities, many Italian cities are affected by anthropogenic sinkholes, and
particularly in the last 20 years, a massive increase in their number was recorded [64–66].
Sinkhole occurrence in built-up areas or in rural hamlets is certainly one of the hazards
mostly affecting the urbanized areas. They concentrate where urbanization has been
more massive and where practices of excavation of the subsoil for different purposes have
developed over the centuries. These phenomena pose serious problems for land protection
and planning and have recently been repeatedly brought to the attention of public opinion
through a number of catastrophic events.

In Southern Italy, many rock settlements, going back to the so-called rupestrian civi-
lization [67], are present within the gravine [68], that is, ravines or deep incisions of Apulia
and Basilicata, where hundreds of cavities of variable size have been excavated along the
valleysides. They are a peculiarity of these territories but may often represent a serious
hazard due to instabilities within the subterranean cavities and the likely repercussions at
the surface. In such situations, one of the most difficult issues is the multi-level arrangement
of the cavities, which determines a sort of chain, with each cavity depending on the stability
conditions of the nearby ones [34].

2. Sinkholes
Natural vs. Anthropogenic Sinkholes

The origin of the sinkholes has to be related to various typologies of processes, as
reported in the international literature [29–31,69–72]: they can be generated either by col-
lapse of subsurface voids or of overburden deposits, or even by subsurface erosion, sagging
or suffusion (Figure 1). Gutierrez and co-workers [31] describe the main classification of
sinkholes. The effect at the surface may vary from mild depressions, slightly lower than the
surrounding terrain [73,74], to abrupt features with steep walls and high depth (even > tens
of meters). In areas particularly affected by sinkholes, these may originate as individual
features, and with time become coalescent, giving origin to more complex landforms, or to
wide marshland, especially near the coastlines [75,76].

In addition to karst sinkholes of natural origin, in the last decades, anthropogenic
sinkholes—related to presence of cavities excavated by man in the subsoil in the past—have
become increasingly important (Figure 2). Artificial cavities are extremely widespread in
Italy, especially in some regions where the historical and cultural events, combined with the
geological and morphological characters of the territory, greatly favored the development
of cave-dwelling civilizations.

The analysis, cataloguing and management of data related to the different typologies
of artificial cavities therefore represent elements of primary importance for their safeguard.
In order to standardize the collection of data about artificial cavities, a codification has been
established which groups all known types according to the scope of their first realization.
This classification, produced by the National Commission on Artificial Cavities of the
Italian Speleological Society [38] and illustrated by a typological tree (Figure 3), was later
adopted at international level by the International Union of Speleology (UIS) [39].
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Figure 1. Examples of natural sinkholes from Apulia and Calabria. The sinkholes involve carbonates 
(a,d,e,h), evaporites (b,f,g) and alluvial deposits (c) and belong to the categories of collapse (a,d,h), 
cover-collapse (f,g) and suffusion sinkholes (b,c,e). 

Figure 1. Examples of natural sinkholes from Apulia and Calabria. The sinkholes involve carbonates
(a,d,e,h), evaporites (b,f,g) and alluvial deposits (c) and belong to the categories of collapse (a,d,h),
cover-collapse (f,g) and suffusion sinkholes (b,c,e).
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In this classification, each category is indicated by a capital letter: A—hydraulic works;
B—civilian dwellings; C—religious works; D—military/war works; E—mines; F —transit
works. Eventually, letter G covers all works not included in the previous categories. Each
category is then subdivided into classes (indicated by a progressive number following
the capital letter) in order to define more precisely the purpose/use for which the cavity
was made.

3. Materials and Methods: The Chronological Catalogue of Sinkholes
3.1. Idea of the Database

The first mandatory step in the process of evaluating susceptibility, hazard and risk
is the collection of information about the phenomena dealt with. Knowledge of when
and where a certain type of geohazard occurred, as well as the intensity and frequency
of past events, are crucial elements to start the analysis and eventually contribute to
risk mitigation.

We collected information about sinkhole occurrence in Italy, covering both sinkholes
of natural and anthropogenic origin. Even if the frequency of sinkholes over the Italian
territory is not as high as for landslides or floods, there are many regions significantly
prone to this danger. In some regions, this is related to the widespread presence at the
outcrop, or in the first meters of depth, of soluble rocks (carbonates and subordinately
evaporites) [65,75,77–82]; in many others, the high propensity to sinkholes is linked to the
complex history of Italy, where a high number of underground cavities have been built
for different uses during the long history of the country [83–87]. Nevertheless, sinkholes
are generally poorly taken into account in Italy when dealing with geohazards, despite
that many cities and villages periodically suffer from sinkhole damage. The main goal in
building and populating a chronological catalogue of these phenomena is thus to establish
the basis on which to work for a first evaluation of the sinkhole hazard in Italy. To this
purpose, knowing the temporal and spatial occurrence of the sinkholes to include in the
catalogue is mandatory.

3.2. Definitions

The quality of data plays an important role in business analysis and decision making.
A necessary task for data quality management is to evaluate the accuracy of the data [88].
The data quality problem has been studied in different areas such as statistics, management
science and computer science. Dirty data with uncertainty, duplication or inconsistency
may lead to wrong evaluations and ineffective results. The consequence in managing dirty
data may be severe; hence, it is extremely important to evaluate data quality before these
are being used [88]. In building the chronological catalogue of sinkholes in Italy, great
attention was given to this aspect and particularly to the temporal and spatial occurrence
of the events. To evaluate the level of knowledge of these parameters, we adopted the
concepts of accuracy, certainty and reliability.

Accuracy in safety concepts, based on reliable data, provides legal and economic
confidence [89]. In forecasting, it is the degree of fit (matching) between the predictions and
the actual data [90]. In mathematics, it is a measure of the precision of a numerical quantity,
usually given to n* significant figures (where the proportional accuracy is the important
aspect) or n* decimal places (where absolute accuracy is more important; [91]). In the fields
of science, engineering, industry and statistics, the accuracy of a measurement system is
the degree of closeness of measurements of a quantity to that quantity’s true value [92].

We considered accuracy for the time of sinkhole occurrence. In our case, the true value
is represented by the exact and complete knowledge of the time of occurrence of an event,
which should ideally include: hour, day, month and year. Hence, when all these data are
available, the accuracy is high, whereas it decreases when the data move away from the
complete knowledge (Table 1). Temporal accuracy represents the extent of the time interval
to which the event occurrence can be [93]; thus, the level of accuracy may also change after
the initial entry in the database.
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Table 1. Temporal accuracy ranges.

Temporal Accuracy Available Information Examples

High Hour-day-month-year 8:10 am, 20 February 2020
Middle-high Day-month-year 20 February 2020

Middle Month (or season)-year February 2020, or Winter 2020
Middle-low Year 2020

Low Range of years Between 2019 and 2020, or after 2020

As concerns certainty, from a linguistic standpoint, it is the state of being completely
sure about something [94]. In business science, certainty is the theoretical condition in
which decision making is without risk, because the decision maker has all information
about the exact outcome of the decision before he/she takes the action [90]. In statistics,
uncertainty is the estimated amount or percentage by which an estimated or calculated
value may differ from the true value.

In our sinkhole database, certainty is linked to the location of the event and shows
a high value when the details given by the source (or obtained through direct surveys)
allow us to be sure about the site affected by the sinkhole. This happens when geographic
coordinates are available, when exact data about the sinkhole site are provided, or when
specific studies and field surveys have been performed. Nevertheless, the certainty is
always related to the trustworthiness of the information source (see later on).

Reliability is defined as the overall consistency of a measure: a measure is said to
have high reliability if it produces similar results under consistent conditions [95]. For
this purpose, the reports used should be as clear and detailed as possible, but this is often
a problem when the event under study is not the main focus of the report or article. In
our specific case, the presence of an underground cavity at the origin of the sinkhole, for
instance, should be documented without any reasonable doubt.

The robustness of the used source is the base to reach a high level of reliability [96,97];
thus, if the presence of an underground cavity is reported, either of natural or anthropogenic
origin, it must be unambiguous. Reliability for our database is a latent rule that helps to
make sure that records are the most accurate information available.

Databases on geohazards should consist of verified information, to build a robust and
reliable amount of data to use for statistical and probabilistic analysis [98,99]. Building a
large but inconsistent database, full of inaccurate and unreliable data, will result in incorrect
conclusions, due to wrong inputs and propagation of the error. Further, these could be
used in land planning decisions, potentially leading to further problems rather than acting
toward mitigation of the risk.

3.3. Structure of the Database

The database of the catalogue contains information about sinkholes, derived from
accurate scrutiny and analysis of a variety of information sources. Data are stored in a
.xls file that contains all the information listed above. In addition, we used ©Google Earth
(Google, Mountain View, CA, USA) and ©Qgis version 3.24 (Gispo Ltd., Helsinki, Finland)
software to record the geographical location of phenomena and perform statistical analysis.
Different types of documents have been consulted, which allowed for collecting detailed
and variegated information about sinkholes, including the origin of the phenomenon, the
size and other morphometric parameters, and the effects on the anthropogenic environment,
including the damage produced, triggering factors, etc. The main types of information are
described in this section.

3.3.1. Time of Occurrence

Each sinkhole in the catalogue is identified by an ID, an identification code that
includes information about the region where the event is located, followed by a progressive
number. As mentioned previously, the main constraints for including an event in the
database are represented by the availability of information at the time of occurrence of
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the sinkhole and its location. Information about the time occurrence is divided into five
columns, with four fields being numeric (hour, day, month, year) and one alphabetic. If
information about sinkhole occurrence is reported as a time period, without a precise date,
the data are recorded only in an alphabetic way (for example: “in the time span from 1 to
5 of March” or “during Spring”); this also applies in all those cases where the date is not
explicit. As regards time information, a very important field is represented by the temporal
accuracy, as previously defined (Table 1).

3.3.2. Origin of the Cavity

The nature of the underground cavity is key information to collect for every sinkhole.
Sinkholes can be produced in relation to natural caves or anthropogenic cavities, and
depending upon the origin of the underground void, there will be a significant difference
in terms of approach to the problem, as well as for prevention and susceptibility analysis,
and eventually for the choice of the engineering works necessary to stabilize the site. As
concerns the sinkhole origin, we defined three distinct categories: natural, anthropogenic
and unknown origin, with this latter being applied when no clear information about the
nature of the underground cavity responsible for the sinkhole is available.

3.3.3. Location

Information about the spatial occurrence of sinkholes is recorded in the catalogue
through many fields, which cover, with increasing details: region, province, municipality,
street and locality. Each sinkhole is located using Google Earth, reporting in the cata-
logue the relative coordinates. As for the level of certainty in location, three classes were
considered (Table 2).

Table 2. Geographical certainty range.

Geographical Certainty Available Information

High The locality has an accuracy of less than 100 m

Middle The locality is known but not attributable to a
precise point or it is generically located along a street

Low Locality is expressed in general terms

The Italian Territory is divided, for civil protection issues, into 134 Alert Zone by
the National Department for Civil Protection; these represent homogeneous areas for the
weather−hydrological response of the territory to geo-hydrological phenomena [100]. This
information is included in the catalogue as well, since it might be useful for coordinating
emergency actions in case of necessity.

3.3.4. Sinkhole Typology

Regarding natural sinkholes, the mechanism of formation of the event is recorded
in the catalogue, following the classification of [31]. As for artificial cavities, it is very
important to define the typology in accordance with the aforementioned typological tree
(Figure 3). Further, other data include morphometry (size, diameter, depth) and state of
activity of the phenomenon (first-time sinkhole or re-activation; Figure 4). Moreover, if the
sinkhole is included in the national cadastre of caves (managed by the Italian Speleological
Society), we also added the number of the cadastre, pulling it out from [101] if the cave is a
natural karst cave or from [102] if it is of anthropogenic origin.
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3.3.5. Triggering Factors

Sinkholes may be triggered by different factors, including, but not limited to, the
following ones: rainfall, earthquake, human actions, rupture of underground utilities,
collapse of cavity and infiltration. These factors operate individually or in some cases
simultaneously. A field evaluating the list and the reliability of information about triggering
factor(s) is included in the catalogue, even though in many cases there is a high uncertainty
about these factors.

3.3.6. Damage

Many events in the database caused damage to private buildings or to communication
routes. To include all these data that are necessary for evaluating the vulnerability and thus
the risk, damage information was included according to the EU Floods Directive specifica-
tion (Directive 2007/2/EC) by considering 5 categories and 11 types of consequences of
damage (Table 3).

Table 3. Damage classification (from Flood Directive 2007/2/EC).

Category Code Category Description Type of Consequences EU-CODE

1 Human Health Social B10
1 Human Health Human health B11
1 Human Health Community B12
1 Human Health Other B13

2 Environment Environment B20
2 Environment Water body status B21
2 Environment Protected areas B22
2 Environment Pollution sources B23
2 Environment Other B24

3 Cultural Heritage Cultural heritage B30
3 Cultural Heritage Cultural assetts B31
3 Cultural Heritage Landscape B32
3 Cultural Heritage Other B33
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Table 3. Cont.

Category Code Category Description Type of Consequences EU-CODE

4 Economic Activity Economic B40
4 Economic Activity Property B41
4 Economic Activity Infrastructure B42
4 Economic Activity Rural land use B43
4 Economic Activity Economic activity B44
4 Economic Activity Other B45

5 Other Other

Particular attention was given to the consequence of human health by considering
the following categories: evacuees, homeless, injured and deaths. In particular, we dis-
tinguished among certain and estimated numbers, since in many cases the number of
casualties is not expressed as a single value but simply as the number of families affected
by the event.

3.3.7. Sources

Sinkhole phenomena have been dealt with in the international scientific literature for
many years in terms of classification processes, occurrences and analyses of specific case
studies. Daily newspapers and other types of magazines, together with the widespread
use of videos and their diffusion through the web, often report news regarding sinkholes,
especially for those that have caused damage to society. For this reason, recently, sinkholes
have been increasingly considered by the population due to a growing emphasis on this
type of geohazard. This has also been true for Italy since the 1990s as a consequence of
several events in Tuscany (Camaiore in 1995 and Grosseto in 1999 [103–105]), in addition to
recurrent episodes in towns such as Rome and Naples [83,106,107].

To collect documentation about sinkhole occurrences in Italy, we considered different
types of sources with the aim of putting together the highest number of well-documented
events and cross-checking the related information, whenever possible, in order to increase
the levels of certainty and reliability: scientific literature, bachelor’s theses, newspaper clips
(at national, regional and local levels), historical books and technical reports. To all these
sources, direct investigation and field surveys were also added.

The most used information source was scientific literature, from which about 60% of
the documented events were derived, while the remaining 40% mostly came from chronicle
sources and technical reports.

The scientific literature has examined both sinkholes that have caused damage to
people and infrastructures, and sinkholes unknown to the population. Due to the specific
details typically included in scientific research, in most cases comprising direct investi-
gation, information about the triggering factors and the dimensions of the sinkholes are
generally provided, together with data concerning the nature of the underground cavity.
The temporal accuracy of sinkholes reported in the scientific literature is middle-high on
average. It has to be noted that many ancient (historical) sinkholes have been studied, or at
least mentioned, in this type of source.

Newspaper clips represent a very important source of information on geohazards,
especially when considering local daily newspapers or magazines [108–110]. As proved by
several previous studies about natural hazards [96,111–113], this category of source often
provides data that otherwise would be lost. The main problem, however, is finding and
scrutinizing the huge number of local newspapers, especially for countries with a very long
history such as Italy. Nevertheless, newspaper clips supply many details in terms of the
temporal occurrence when compared with other documentation sources and are generally
more reliable at this regard. Most of the events with high temporal accuracy derive, as a
matter of fact, from chronicles. As a drawback, newspapers often report only sinkholes that
caused damage; further, in many cases, the chronicles do not highlight the nature of the
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underground cavity at the origin of a sinkhole, leaving some degrees of uncertainty about
this aspect.

In addition to traditional daily newspapers, press and mass media, in the last decades,
a huge source of information is represented by the internet and social networks [114,115].
Much information about geohazards can be drawn, almost in real time, from such sources,
but we must be extremely careful when assessing the reliability of the extracted information,
which definitely needs a detailed cross-check among as many sources as possible.

In Italy, some databases on sinkholes are already available, and these were also in-
cluded in our sources of information. Vennari and co-workers [116] published a geospatial
database containing data on geo-hydrological processes (Landslides, Floods, Sinkholes)
and related damage that occurred between 2008 and 2019 in the Apulia Region (South-
ern Italy). The Institute for the Protection and Environmental Research (ISPRA) collects
sinkhole events occurring over the Italian territory in an online database [117]. Further,
the University of Rome Tre built “IWSD”, the Italian Web Sinkholes Database [118]. There
are also some regional databases of natural sinkholes, such as in the Campania region,
created by the Regional Soil Defense Department [119]. All these databases, however,
present several drawbacks. First, they are not focused on the time occurrence of the events.
Then, they include many events where the link with an underground void (either natural
or anthropogenic) is not proved. As a consequence, many entries deal with holes in the
streets due to leakages from pipelines (that is, urban management problems, not karst or
underground cavities). Many events are described without a chronological reference, since
the goal of these databases is a collection of events and their spatial distribution, but not
the definition of the sinkhole hazard (which necessarily requires information about tem-
poral occurrence). Notwithstanding the above limitations and drawbacks, all mentioned
databases were carefully scrutinized to identify events that fulfilled the requirements for
inclusion in our chronological catalogue and to cross-check data from different sources.

Accurate scrutiny, aimed at evaluating and ascertaining the certainty and the reliability
of the information, was carried out in order to be sure to reach a consistent database and
not to analyze other types of phenomena as sinkholes. In this way, we aimed at building a
robust and reliable catalogue to be used for statistical and probabilistic analyses.

For instance, it is interesting to report in this regard the case which occurred in the
historic center of Florence on May 25, 2016, when the failure of the riverbank at Lungarno
Torrigiani, between Ponte Vecchio and Ponte alle Grazie, resulted in dozens of parked cars
buried and in the evacuation of a historical building. The event was initially considered
as a sinkhole but actually cannot be ascribed to this type of geohazard. A few days
later, The Guardian published an article in which the title—“When is a sinkhole not a
sinkhole?”—clearly remarks the possibility of wrongful attribution of the phenomena [120].
This example effectively highlights the problems existing in scrutinizing mass media and
managing data from this type of source [121].

4. Results

About 1190 sinkholes that occurred over the Italian territory are included in the cata-
logue at the time we are writing (February 2022). As mandatory entries, for all these events,
temporal and spatial information are available. With respect to temporal distribution, the
oldest documented sinkhole took place in 276 B.C. in Campania. Looking at the temporal
distribution (gray bars in Figure 5), it can be noted that few documented events occurred
before year 1000 and that until 1800, the number of documented sinkholes is relatively low.
A data increase occurs between 1800 and 1900, with many events in Campania, Latium,
Apulia and Sicily documented by specific studies.
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From 1900 to 2021, the temporal distribution in the histogram is subdivided into
decades, and a progressive increase in the number of events in the catalogue must be
highlighted. This is due not only to growing interest from the scientific community, but
above all to the availability of further information sources (chronicles and technical reports).
This is also confirmed by the most represented decades in the database, covering the time
spans of 2001–2010 (222 sinkholes) and 2011–2021 (395 sinkholes). The boom of the internet
and the wider distribution of news allowed for more basic information about sinkholes
to be found more easily. Furthermore, the possibility to compare different information
sources allowed for reaching a greater accuracy in the temporal documentation of the
events, or at least finding some information on their time occurrence. The final bar in the
histogram covers the last decade (2011–2021), where it can be noted that the sinkholes in
Italy slightly increased compared to the previous decade. This is due also to specific case
study performed for the anthropogenic sinkholes in the city of Naples [87].

Figure 5 also reports the distribution, over the years investigated, of the temporal
accuracy, following the classification reported in Table 1. Temporal accuracy has improved
considerably in recent years, with a progressive increase for sinkholes with high accuracy
(H) since 1980. These data are certainly related to the wide use of the web, which allows for
immediately reporting on sinkhole occurrences. In addition, online blogs and newspapers
usually report information about the time of the events, especially for those that caused
damage. Sinkholes with High temporal accuracy represent 8.2% of the database.

Sinkholes characterized by Medium-High accuracy (MH in Figure 5) represent the
majority in the catalogue, about 69%. This is a very important aspect that strongly makes
our catalogue significantly different from the other sinkhole databases in Italy. The database
contains especially events with Medium-High and High temporal accuracy (76.8%). The
data mainly derive from scientific papers and regard events that occurred mostly after
2000. Sinkholes characterized by Medium-High temporal accuracy (MH in Figure 5) have
increased since 1960, except for a peak corresponding to the 19th century. An increase in
correspondence of the last decade (2010–2021) is shown for the High accuracy class (H).
Sinkholes with Medium accuracy (M in Figure 5) are about 8.4% of the documented data.
Despite the high availability of information sources, they are still present in the last decades,
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which points to the difficulty in obtaining the day of occurrence for some phenomena (even
though few).

Sinkholes with Low or Medium-Low temporal accuracy are very few if compared
to the total amount of documented events, namely only 6% and 8.8%. They particularly
concentrate between 1970 and 1990 and are typically of medium-low certainty also for
location. Considering that these sinkholes did not generally affect the urbanized areas,
they could have destroyed property values. Many property owners typically do not report
occurrences of sinkholes, being afraid to have a loss in the value of their lands [122],
so information about time of occurrence in rural areas may be very poor. Once again,
Campania, Apulia and Latium are the regions where sinkholes with High to Medium-High
accuracy are mostly located, due to their high propensity to both natural and anthropogenic
sinkholes and the availability of specific studies [9,107,123–127].

Regarding the certainty in localizing a phenomenon, for most of the sinkholes (79%),
we know with certainty the precise location (Figure 6A) with specific geographic coordi-
nates or detailed information about the site provided by the source. This information is of
remarkable importance for the future use of the catalogue and in particular for carrying out
hazard and risk analyses. Many of the sinkholes with high certainty in location occurred in
Southern Italy and are linked primarily to anthropogenic cavities. In Figure 3, it is possible
to note that almost all Italian regions show the presence of documented sinkholes, their
distribution being naturally related to the presence of soluble rocks, or to alluvial deposits
covering soluble rocks, or to the history of the site as concerns the presence of anthropogenic
cavities. Each Italian region is present in the catalogue, with the exception of Valle d’Aosta
(Northwestern Italy); this does not mean that sinkholes did not occur in that region, but
simply that we did not have news about their occurrence, or that information were not
sufficient to include the event in the catalogue. Therefore, Figure 6 is not a snapshot of the
sinkhole distribution in Italy, but rather a spatial distribution of the documented sinkholes
in our catalogue.

When documentation about a sinkhole is included in technical reports, it is also
typically presented in scientific papers, but this is not always the rule as concerns news pro-
vided by chronicles. The most detailed information about certainty in location is typically
supplied by the scientific literature, often providing precise geographical coordinates.

Each sinkhole is classified considering the origin of the underground cavity causing
its occurrence. Figure 6B shows their distribution over the Italian territory. Most of the
sinkholes in the catalogue are of anthropogenic origin (58%), indicating a direct connection
to artificial cavities. About 100 out of these are in the town of Palermo, Sicily, deriving
from [128], while about 160 have been extracted from the works of [83,87] in the town of
Naples, one of the most well-known sites for sinkhole problems. About 90 anthropogenic
sinkholes of the Apulia region have been extracted not only from scientific papers, but
also from technical reports. The certainty in location of anthropogenic sinkholes is high for
more than 79% of events.

The typology of artificial caves at the origin of sinkholes is known for 25% of the
events: they mainly belong to categories E (mines—4%), A (hydraulic underground works—
22%) and B (hypogean civilian dwellings—10%). Underground mines and quarries are
definitely the most worrying typologies of man-made cavities, possibly evolving in time to
instability and sinkhole problems [129]. To these categories, also the collapses related to salt
mines, with a number of events worldwide [130,131], have to be included. In Italy, the 1984
event at Belvedere di Spinello, in Calabria, must be recalled, which caused environmental
degradation of many hectares of land [132,133].

Natural sinkholes represent 18% of the data recorded. They are due to the presence
of soluble rocks, or alluvial overburden above a soluble bedrock, and are widespread in
Central and Southern Italy, particularly in Latium, Campania and Apulia. In the sinkhole
classification [31,71], they mostly belong to the categories of collapse or cover-collapse
sinkholes, with subordinate suffusion sinkholes. If the information source only provides
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information about the presence of an underground void, without indicating its nature, the
sinkhole is classified as of “unknown origin” (24% of the data).
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The primary triggering cause for sinkholes is represented by rainfall, followed by
seismic shocks and then by damage in underground facilities. This is most likely due to the
fact that scientific papers mainly analyze rainfall events, which are able to trigger simulta-
neously different types of phenomena, while lesser is the information about earthquakes.

In the long time period considered, sinkholes did great harm, but it is not easy to have
a complete figure of the damage resulting from them. In most cases, the information is
qualitative, especially for the oldest events, or for those that caused damage to private
properties. Based upon the documented events, private buildings and roads appear to be
the most damaged classes by sinkholes, especially of anthropogenic origin. The central and
southern parts of Italy are the most hit as they have the highest occurrences of sinkholes.

In order to classify damage, we used flood directive specifications (Table 3). Figure 7
reports a percentage of damage in each category: sinkholes mainly caused damage to the
category of “economic activity” (83.6%), and in greater detail, negative consequences to
infrastructures and properties were registered.
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Concerning damage to human health, especially for the oldest events, the information
sources provide generic information, such as “some victims” or “several victims”. This
is certainly an issue which needs to be better examined since it is crucial for assessing
the effects on the built-up environment. Further, the resulting data might be used for
delineating different scenarios for further sinkholes, as well as in the case of re-activations
of those already existing. To our knowledge, all casualties occurred in Southern Italy, with
the highest number of injured, homeless and evacuees in Campania. Overall, sinkholes
caused 146 casualties, 94 injured, 5701 homeless and 1808 evacuated.

The categories of sources used to collect information for the chronological catalogue of
Italian sinkholes can be classified in three many categories: (i) scientific papers, (ii) chroni-
cles, (iii) institutional reports or databases.

Source analysis reveals that more than 60% of data derive from scientific papers, about
17% from chronicles and about 14% from institutional reports and databases (Figure 8).
Approximately 5% of data recorded in the database derive from multiple sources and
in particular, the majority from merging information contained in scientific papers and
institutional reports or databases (3.4%).
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5. Use of the Database and Future Perspectives

Management of geological hazards is highly difficult, especially when multiple haz-
ards may occur in response to specific triggers, such as intense rainstorms, in complex
environmental settings [134–136]. Knowledge of the most susceptible sites, as well as
data about the occurrence of past events, always represent precious information aimed
at providing land managers with the minimum amount of data on which to build their
decisions and the consequent actions [137–140]. These data should necessarily include in-
formation about the geological conditions at the site, the likely effects of potential sinkholes
on society (in terms of damage to infrastructures and other man-made works), integrated
by detailed topographic surveys of the underground spaces and their interaction with
the built-up environment. In this regard, availability of catalogues built on sound data
with good reliability is a fundamental step in the process of gaining a correct knowledge
about geohazards, which is in turn necessary to move toward actions aimed at mitigating
the risks. The possibility, through multi-temporal analysis of aerial photographs or maps
and orthophotos, to evaluate the evolution in time of the sinkholes [76,141,142] has also
to be pointed out, especially because in the last decades, the wide use of remote sensing,
including LIDAR and UAV, has made possible a significant increase in the availability
and quality of data [143–147]. This type of approach may lead to understanding the way
sinkholes evolve over time and provide precious information for land planning and man-
agement [148–152]. Further, a good knowledge of the history at the sites is fundamental
in order to correctly plan and design engineering works, which typically in karst areas
have to face a variety of problems due to dissolution of the soluble rocks and difficulties in
ascertaining the groundwater flow [8,153–156].

Sinkholes, despite being underrated when compared to other types of geo-hazards in
Italy and in many other countries, represent the main hazard in several geological settings
(including, but not limited to, karst), and their analysis is worth being carried out in the
attempt to mitigate related risks (Figure 9).

To this aim, the catalogue we presented here offers a scientifically sound basis for
developing susceptibility and hazard analyses, at least for those portions of the Italian
territory where there is a sufficient number of documented sinkholes with data derived
from both surface and subsurface surveys [34].

Further, other specific research such as, for instance, analysis of the relationships
between ground shaking related to earthquakes and sinkhole development (Figure 10)
might be more deeply investigated [123–125,157–161] in the light of the collected entries in
the catalogue. This is an issue which is raising increasing interest also in other countries in
the aftermath of recent earthquakes such as the sequence in Croatia [162,163].

A crucial issue to point out regards the potential importance of caves, especially those
of cultural and historical value, and their valorization: in many Italian towns, artificial
caves in good stability conditions might be used and exploited for tourism or for cultural
events. They represent, as a matter of fact, sites of high value whose history should be
transferred to the young generations, as has already been done in many cases and in several
other countries [164–169]. In other words, karst caves and artificial cavities are worth being
studied, but they should not be seen only as a hazard; when in good condition, once stability
has been carefully evaluated [48,170–172], they may represent a social and economic value
for local communities and offer good opportunity of work and development.
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