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Abstract: Risks posed by sea-level rise and cyclones are becoming more prevalent along the world’s
coastlines. In recent years, tsunamis have had devastating impacts on communities in different
ocean basins. Although storms and tsunamis can be clearly distinguished when they occur in the
present, this does not apply to the past, from which only their traces in the form of sedimentary or
geomorphologic features provide clues about their occurrence. Following a short review of research
on tsunamis from the last decades, this study uses the example of coastal boulder deposits to highlight
where knowledge gaps exist. This report focuses on the spatial distribution of sediment patterns
and how these may provide clues to the transport processes. However, the history of these deposits
and related sea-level records during the same time span must also be recorded and contextualized.
Theoretical modeling results without including these parameters will remain fuzzy, if not inaccurate.
This contribution points to the need for consideration of both data and nature’s reality (which are
complementary and interdependent) in this field.
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1. Introduction

Advances in scientific knowledge are fostered by consistent debate, deep inquiry, and
dispute to find the best answers to scientific questions. The Earth sciences have an important
advantage in this regard; they study natural phenomena and processes that occur at any
place and time through the interplay of innumerable parameters and conditions under
indisputable laws of nature. This haptic reality of nature is, therefore, in all dimensions the
testing ground for the correctness of scientific hypotheses or an indicator for the degree
of approximation to nature’s reality and thus, at the same time, the arbiter in a dispute.
Disputes about the method and meaningfulness of artificial replicas of nature through
calculations, experiments, and models are, therefore, disputes about these methods, but
they do not touch the natural realities in any way. This article argues for a better integration
of field evidence in hydrodynamic models that describe tsunami or storm processes.

2. Paleo-Tsunami Deposits—Origin, Appearance, and Scientific Challenges of
Interpreting Deposits

2.1. Tsunami Sources, Distribution, and Risks

Until recently, tsunami phenomena have mostly been known in regions of the Earth
with more frequent occurrences (e.g., East and Southeast Asia) and rather overlooked and
unknown for others with less frequent events. The Andaman-Sumatra tsunami of 2004 and
the Tokoku-Sendai tsunami in Japan in 2011 changed this perception by scientists and the
wider public [1]. Today, we know through collections of eyewitness accounts or evaluation of
historical sources that tsunamis have multiple causes and can potentially occur worldwide
along all coasts [2-24]. In addition, there is geoscientific research on the forms and deposits
left by paleo-tsunamis. Broad accounts of geomorphic signatures of tsunamis can be found
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in [10,23-28], among others, and summarized reviews in [11,28-39]. Worldwide and regional
catalogues of tsunami occurrence back to prehistoric times (including assessment of source
reliability) can be found in [40-57].

More than 2000 events have been documented since the Bronze Age, e.g., explosion
and caldera formation of the Santorini volcano north of Crete around 1628 BCE [58,59] and
the collapse of the Krakatau volcano in the Sunda Strait of Indonesia in 1883 CE with over
36,000 deaths [22,60-62].

Tectonic plate boundaries around the Pacific Ocean, characterized as the “Ring of Fire”,
have continued to be the sources of about 80% of all tsunamis in any longer period of time.
More than 600 events from the 19th century and more than 900 events from the 20th century
can be found in the catalogues. This increase is certainly due to a constantly improving
observation and measurement network. Casualty figures of more than 10,000 were recorded
for, among others, the Enshunada tsunami in 1498 CE (>26,000 victims), the Nankaido tsunami
in 1707 CE (>30,000), the Sanriko tsunami in 1896 CE (approximately 27,000), and the Ishigaku
(Meiwa) tsunami in 1771 CE (approximately 13,000 victims); all these tsunamis were in Japan.
A total of 116 tsunamis of the aforementioned >2000 tsunamis had a run-up value of >10 m,
38 of >20 m, and 11 of >50 m above sea level. Even tsunamis that cross the coastline with waves
2 m high are among those with considerable destructive potential. Transoceanic tsunamis
(such as those in the Pacific from the Aleutian Islands in 1946 and 1957, from Kamchatka in
1952, from Alaska in 1964, and from Chile in 1960) still had a run-up of at least 5 m 5000 km
from the point of origin. The recurrence intervals for large Pacific tsunamis with severe
destruction are between about 20 and 150 years.

Numerical dating of initially unrecognized tsunamis supports the correct assess-
ment of ancient sources and provides evidence for the large number of these “extreme
events” [48-51,63-72]. A valuable compendium of individual events and local and regional
impacts, together with theoretical approaches and attempts at interpretation, can be found
in the dedicated journal “Science of Tsunami Hazards”, founded in 1982, which is now in its
40th year.

From these sources, we can establish the most important causes of tsunamis: earth-
quakes and seaquakes (often with submarine mass slides) and volcanic eruptions or vol-
canic explosions (e.g., the collapse on Santorini ca. 1628 BCE and Krakatau 1883 CE).
The impact of cosmic objects is known from older geological periods (e.g., at the Creta-
ceous/Tertiary boundary 66—65 million years ago recorded in Mexico’s Yucatan region).
Since tsunamis of great magnitude can overcome entire oceans (such as the Indian Ocean
in the 2004 Andaman-Sumatra tsunami or the Pacific Ocean in the 2011 Tohoku-Sendai
tsunami), we cannot completely eliminate the potential for tsunamis along any segment of
the Earth’s coastline, not even for the short geological period of postglacial sea-level rise
since about 7000 years ago.

On-time and near-time documents of strong tsunamis distributed worldwide have raised
awareness of their risks on the coasts, and protective measures, or at least immediate warnings,
have been and continue to be developed. Their necessity is clear by examining existing data:
32 stronger and more powerful tsunamis have been recorded in the 20th century alone, with
a total of over 249,000 victims (including 7 with over 2000 deaths each), and there have
already been 13 powerful tsunamis reported in the first 20 years of the 21st century, with
>247,000 victims, including over 230,000 victims in Indonesia’s 2004 Andaman-Sumatra
tsunami and over 18,000 victims in Japan’s 2011 Tohoku-Sendai tsunami.

2.2. Scientific Approach to the Tsunami Phenomenon, Based on Field Work to Identify Past Events

Owing to the frequent occurrence of moderate to extreme tsunamis and the connection
to nature caused by religion and philosophy, Japan is not the only country experiencing
this natural phenomenon; it is familiar to all inhabitants through historical facts and
memory temples of large coral blocks (“tsunami ishi” = tsunami stone, see Figure 1) in the
importance for safety and infrastructure. Research on paleo-tsunamis and on understanding
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the processes involved in current events also originated in Japan. This knowledge facilitates
the acceptance of precautionary measures but does not protect against new disasters.

Figure 1. Examples of exceptional large individual boulders deposited by tsunamis in the younger
Holocene (a—d) and the Eemian period (e f): (a) Tonga, about 2000 tons (Frohlich et al., 2009);
(b) Tsunami block (“Tsunami-ishi”) from Japan, >1000 tons; (c) Western Australia, about 700 tons
(Playford, 2014); (d) Quobba, Western Australia, about 90 tons, dated 1060 cal BP; (e) “Bull”, Eleuthera
(Bahamas), about 950 tons; (f) “Cow”, Eleuthera (Bahamas), about 440 tons.

Although only less than one-third of the Earth’s coasts are composed of sandy beaches
and other unconsolidated material or shallow sedimentary areas, more than 90% of all
work on coastal research has been and is still devoted to these types of coastlines [71]. One
reason is certainly the comparative simplicity of the landscape (vastness and overview,
modest relief, and little variation in surface material); another reason is the well-developed
methodology of sedimentological laboratory techniques applied to predominantly fine
material. In addition, there seems to be a widespread belief that results obtained in one
region can be easily and reliably transferred to others [10,73].

Examples for initial guidance to detect tsunamis in fine sedimentary deposits can
be found in several published work (including [4,29,30,44,64,73-78]). Rocky coasts, in
contrast, are extraordinarily heterogeneous in relief type, elevation, slope angles, rock
types, weathering material, and other characteristics. However, they also offer advantages
for scientific inquiry as it is considerably easier to obtain three-dimensional impressions
and determine the (potential) range of marine processes. Moreover, with respect to po-
tential littoral /marine-influenced deposits, coarse material provides direct access to its
character, microstructure, quantity, size, shape, and other qualities [79-151]. However, this
easy accessibility gives rise to a number of problems that are often neglected, e.g., inter-
site comparability of findings, both in terms of effectiveness/intensity of hydrodynamic
processes involved and material properties. In addition, coarse material is considerably
more exposed to change (such as weathering and re-deposition) than buried fine material
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strata. Dating is also more difficult, as important stratigraphic references and clarity on
older/younger relationships are more difficult to obtain. Finally, boulder evidence, as with
any sedimentary proxy for paleo events, should be treated in conjunction/combination
with the broader range of sedimentary evidence available.

The incorporation of theoretical approaches (e.g., calculations, experiments, and mod-
els) is increasing significantly, although often detached from field studies. They dominate
the focus of tsunami studies in the last decade, while in the first decade of the 21st century,
about 75% still relied on fieldwork or discussed field findings exclusively; nevertheless,
they were often limited to very local areas or limited questions. Publications with a broader
view tended to be found in reviews.

Although it has been known since the Krakatau eruption and its 1883 CE tsunami
that huge boulders can be transported ashore by tsunami waves-similar examples can be
found for Tonga [17], among others, boulders have been given little attention in coastal
research, and especially those related to tsunamis. Bryant [22-24] pioneered the research on
boulder deposits and the shaping of rocky coasts by tsunamis. Dawson and Stewart [27-29]
emphasized that coastal coarse material research is significant and needs to be further
developed, yet the interpretation of coastal boulder deposits (and their storm vs. tsunami
origin) remains controversial as studies often lack a coherent data acquisition approach;
for example, absolute/relative dating, reference to petrography, and sea-level history are
almost always related to fine material deposits nearby.

2.3. Coastal Boulder Deposits as a Young Branch in (Paleo)-Tsunami Research—Origin,
Appearance, and Interpretation

The scientific challenge today remains as urgent as stated by Dawson and Stewart [27],
namely, that little progress has been made in the field of coastal boulder deposits in
the course of the past decadal debate. We argue that one cause lies within the lack of
integration between field studies and theoretical modelling. Another factor is related
to the fact that studies of coastal boulder deposits and their underlying processes are
highly site-specific and transferability from local to regional scales and inter-site variability
can greatly differ. It must be noted that boulders of all sizes, whether small or mega-
size, can indicate extreme marine wave events; size and mass alone do not matter, but
many other geoscientific arguments need to be carefully examined. The important context
to environmental geomorphology for coarse coastal sediments is emphasized in several
publications [51,63,73].

In the case of coastal boulder deposits, a comparison of the state-of-the-art results in
publications first requires differentiating the extent to which the particular area and region
in which they were compiled is taken into account.

Arguments for evidence that tsunamis were most likely causal or significantly con-
tributory can be found in the following publications [4,5,18,19,23-25,82-91]. Statements
and advocacy for a storm-wave cause are discussed in the following publications [92-117].
Studies that contrast and evaluate both storm wave and tsunami origin and the likelihood
of each process are provided in [10,33,65,121-123,125,140,142,143]. While many publica-
tions present regionally limited findings, there are also others focused on the approach of
comparing diverse regions with different environmental settings and, most importantly,
evaluating as many indicators as possible, (for example [33,65,71,123-135,142,145-151]).

One of the most important landscape features for distinguishing which process carried
boulders far and high landward becomes conspicuous and assessable only when one can
compare particularly extreme current processes and their range of effects with pre-existing
deposits. However, their age (or age range) must be known with sufficient precision and,
perhaps more importantly, knowledge of sea level over the age-range of coastal boulder
deposits being established (Figure 2). It can then be shown that the strongest current
storms, such as Category 3 and 4 hurricanes in the winter of 2013/2014 on the west coast of
Ireland or the most extreme tropical cyclone ever recorded (Hayan, Philippines, 2013) with
sustained winds up to 315 km/h, have left an envelope of their own impact radius in the
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pre-existing deposits. Kennedy et al. [110] call this a mass—elevation envelope using Samar
Island in the Philippines as an example, which can be equated with a distance envelope of
boulder deposits, as studied by Goto et al. [105] and others using fringing reef platforms in
southern Japan. As an example, Goto et al. [148], p. 23, stated the following: “if we can
estimate the transport limit as envisaged by the largest storm waves in the past at the study
area, then it is possible to say that the boulder, which is deposited far beyond this limit, was
not transported by the storm waves, but could have been transported by the waves with
much longer period, such as the tsunami.” The Aran Islands off Galway Bay West, Ireland,
(Figure 2) show this envelope at a maximum height of 24 m a.s.l. and mostly much lower
within deposits for which their uppermost sections reach +37 m a.s.l. [65,121,122,152].
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Figure 2. Localities and methods for mid-Holocene sea-level reconstruction at —5 m mhw in Galway
Bay and at the Aran Islands, central west coast of Ireland. 1—by micropaleontology in karst lake;
2a,b—by drowned soil with charcoal; 3—by drowned sand deposit for a now-inactive dune field;
4—by Bronze Age tomb in surf level; 5—by drowned freshwater peat with birch and oak and
Neolithic canoe. Insert shows extension of boulder deposits (yellow lines) along the Aran Islands
and the southeast coast of Galway Bay altogether for about 35 km.

Accordingly, there are some distinguishing features that are rather trivial but should
nevertheless be kept in mind when making an assessment.

Coral reefs are a special case (in particular, fringing reefs) because of the sequence of
forms from sea to land; the outer edge of the reef usually forms a step. Here, the surf breaks
and can dislodge large fragments during extreme events. The production of boulders on
the reef platform itself is rather low or mostly limited to coral rubble. The reef platform has
a very low, often absent slope; its surface is rough with high friction (due to coral fragments
or rubble, and less so with sand cover). With sufficient width (well over 1 km in many
cases), all boulders can be deposited on this platform, no counter-slope has to be overcome
during their transport, as is the case with almost all other coastal forms; thus, the setting is
simple [10,19,33,73,83,116,148,149,153-156].

In this setting, calculations of energy turnover and the transport distance are usually
strikingly large (by global standards). Moreover, transport against gravity is insignificant
in models trying to replicate this setting. Particularly in recent storms, the landward
decreasing size of boulders on reef platforms is highlighted as a key feature. This feature
does not occur in recent tsunamis and is also usually absent on coastal slopes or cliffs rising
from the sea (Figure 3).
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Figure 3. Low and intermediate rock platforms of the Aran Islands usually are bare of sediments
(aspects from Inishmore’s south coast).

A special feature of coral reef boulders is their irregular shape. Thus, spheres and
platy boulders, which play a significant role in transport physics, are usually missing.

Time is always a crucial quantity in geology and geomorphology. In practical investi-
gations, it must be considered in at least two relations, namely as the period of investigation
with respect to extreme events, and the period of time covered by the deposits as a whole.
The following considerations are important:

- Is there a mention of on-time or near-time?

- Is this recent (in the geological sense, Holocene) or related to “modern times” or a
historical time span? The age question is often not mentioned at all.

- If sealevel is mentioned (mean high water or mean spring tide high water), its stable
position for the younger Holocene is assumed, whereby an error of some meters can
already occur. With a tidal range of 4.2 m, as is around the Aran Islands, there is already
more than 2 m difference in elevation between mean sea level (usually the basis for
elevation data in topographic maps) and the mean high-water line, which can be easily
determined on rocky coasts by precisely measurable levels in the life zones, which
already causes significant differences for transport processes and wave run-up.

- Isthe view and statement on the process clear, or is it using different terms—typically
unclearly defined—such as normal storms, hurricane storms, “superstorms”, tsunamis,
historical, or “paleo”? In relationship to the impact range of the hurricane storms off
Ireland in the winter of 2013/2014, which clearly did not reach wide and high Coastal
Bolder Deposit (CBD) formations at all, Cox [95] and Cox et al. [100,101] also refer to
storms being much stronger “in the past”. Comparing the Aran boulders with Eemian
giant boulders in the Bahamas [101], even “superstorms” are considered.

- Is the aspect of the age of the boulder deposits addressed, and in what precision or on
what data basis?

- Does the question of a sea-level change during this period (quantitative, qualitative,
significant, or unknown) arise from the chronology?

The development of publications as a reflection of research directions clearly proceeds
in one direction: calculations vs. nature’s reality; that is, calculations tend to be favoured
over nature. Calculations refer (if at all) to very limited scenarios (e.g., coastal slope, with or
without platform, single blocks according to size/mass/orientation, etc.). In nature, such
conditions can be traced for miles over changing topography, reliefs, exposures, deposits,
etc., in all conceivable modifications of natural environments, including a comparison of
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boulders and blocks and fine sediments, for example. For the latter, there are typical and
undoubted tsunami clues, including an erosional base, grading /upwards fining, mud cap,
and/or mud clasts and chaotic structure, e.g., “swimming” boulders in finer matrix.
Along rocky coastlines, scenarios are variable but offer several aspects for process
reconstruction. These study area scenarios and considerations include the following:

1. The area is well protected relative to wave action (storms, tsunamis, etc.), obstructed
(e.g., in an island archipelago), or (strongly) exposed;

2. Lower to higher gradients (straight, convex, concave, etc.) of a few degrees to about
25-30°, a shallow foreshore area, with or without significant amounts of sediment in
the littoral zone;

3. A cliff situation (e.g., deep water/plunging cliff, with or without basal platform, see
Figure 3), with moderately steep cliff (>30° to >45°);

4. A pronounced cliff situation up to vertical (or even overhanging);

5. Certain fragments are made available to the incoming transport force, such as irreg-
ularly randomly shaped, rounded/massive fragments (e.g., from weathered crys-
talline rocks or a former ground moraine), or platy and erupted fragments from
well-stratified sedimentary rocks on-site.

For accumulations of coarse material (boulders, Figure 4), only a few deposit types
are listed in the literature: single/individual, groups, or cluster and ridges, which usually
exhausts the list, although several are missing here because the geomorphological point of
view on these deposits disappears far behind sedimentological questions: boulder ridges
may have developed, e.g., from planar deposits by activation or erosion of the seaward
sections (ABC islands of the Caribbean, Aran, and Galway Bay).

Figure 4. (a,b) Boulders up to 40 tons in mass, activated and partly shifted by hurricane storm waves
2013/2014 at the south coast of Inishmore; (¢,d) rounded boulders up to 20 tons from the tidal fringe (see
Lithophaga borings in (d)) at the northwest coast of Inishmaan, where only refracted waves may impact.

Imbrication (Figures 5 and 6) is occasionally mentioned; imbrication trains with a
completely different genesis that is mostly overlooked—invoking the state of research
so far—and ripple-ridges or boulder tongues seem to occur only in one place on Earth
(Aran and Galway in the west of Ireland). Cox et al. [101] claim that there have been no
direct observations of imbrication in recent tsunamis (documented in [137], among others,
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for the 2011 Japan tsunami) nor do tsunamis leave behind boulder ridges and boulder
clusters. This is to support the claim that tsunamis have never occurred in the west of
Ireland. Apparently, the authors are not aware that large submarine slides, which are
possible tsunami triggers, were mapped in the past and partially dated in the 3000 m deep
and steep Rockall Trough west of Ireland (compare [152]).

Figure 5. Relation of boulder forms to transport energy: (a,b) lifting and overturning from hurricane
waves 2004 on Bonaire (southern Caribbean); (c) imbrication train from partly overturned boulders
(axes up to 9 m) at +10 m during the 1755 CE Lisbon Tsunami in Morocco; (d,e) platy boulders of
50+ tons at +9-11 m mhw and up to 200 m from the coastline at the SE coast of Inishmaan.

Any study that uses coastal boulders as evidence for the reconstruction of a specific
transport process must evaluate their properties, origin, and age amongst other environ-
mental parameters. As long as this transport is dominated by a downward movement, even
if it happens slowly on a very small gradient, it may be gravitational for an extended time.
Such boulders are unsuitable for any kind of calculation of storm wave or tsunami trans-
port. The term “moved boulders” is equally imprecise and, therefore, useless. If one takes
these as an argument for the essentially unlimited transport capacity of storm waves to
exclude tsunamis as an alternative process, they can be found in any size (e.g., [34,96,101]).
Regrettably, this also introduces misconceptions into the media.

If, according to the terrain situation, it is undisputed that there has been a landward
movement, the quantities for distances and against gravity are indispensable for any
calculation, test runs, models, etc. A prerequisite for this, however, is the determination of
the origin of a boulder, either originally, or before the last active movement (Figure 7).
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Figure 6. (a—c) Massive imbrication of boulders up to 50 tons about 15 km inside Galway Bay along
limited water depth where all storm waves >5 m today lose energy by ground touching. Incorporated
boulders go back to 6000 cal BP, when sea level was 5 m lower as was wave energy; (d) landward
dipping imbrication from backwash at around +10 m mhw and >100 m inland from the south coast
of Inishmore.

Figure 7. (a-h): Bio-erosional signatures on bedrock and boulders allow for identification of their
origin precisely: (a) sea urchin home places; (b) limpet (Patella sp.) home place; (c,d) sponge borings
(Cliona sp.); (e,f) boring bivalves (Hiatella arctica); (g) rock pools with barnacle cover at mhw; (h) rock
pools in supratidal position with 1-2 m diameter. The intensity of bio-erosion on dense limestone
has been estimated at 1 mm/year. Calibration of weathering/dissolution intensity on limestone
in a terrestrial environment is about 0.02-0.03 mm/year (=1 mm during 30-50 years). Tests may
come from dimension of “karst tables” under glacial erratics (exposed for about 15,000 years, see (j))
or from archaeological sites such as the Chevaux de Frise from a Bronze Age fortification dated to
2800 cal BP (see (i)).

This is both possible for boulders originating from the littoral or sublittoral belt
(rounded /with organic attachments or bio-erosion traces) or for sedimentary rocks due to
their subtle differences in stratigraphy. In most cases, this evidence is not available or even
considered, making calculations of boulder dislocation type, character, and performance
questionable. Herterich et al. [153] shed light on boulder production by hydraulic fracturing
on cliffs and platforms. They hardly qualify as delivery areas for the extensive and high
lying boulder deposits of the Galway and Aran Islands region; corresponding outcrops
were only found at a few points after the 2013 /2014 hurricanes (Figure 8), and the fragments
mostly fell into the sea. Irregularly stepped rock formations, on the other hand, were injured
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somewhat more frequently, but most of the material was activated from existing block
walls and, at heights above 10 m MHW, quite predominantly eroded and landed in the sea
so that the cliff platforms are almost block-free (Figure 3). Moreover, they show hardly any
traces of block movement even directly after the storms [122].

Figure 8. Individual boulders from the tidal belt up to several tons in mass, covered by calcareous
algae and balanids (all examples (a—d) from the coastal section inside Galway Bay, SE coast).

The seemingly simple question, how many steps a boulder has moved from its origin, is
either to be recognized by chance or remains unknown. A relatively good overview of the
total age of deposits or individual steps in them and the movements of sea level from which
the acting forces started offer approaches to an estimate and should then be mentioned.

Little consideration is generally given to the source material (i.e., rock type) in boulder
deposits, although it can provide very valuable insight into the environment of origin
(e.g., from existing terrestrial deposits as an in situ product; from glacial, periglacial,
fluvial sediments; from littoral or sublittoral sources) or weathering intensity and, thus, the
(relative) age overall or at the last emplacement (see examples in [121]). Solid limestone
in particular provides many approaches for inferences, including quite precise relative
age dating as the difference in ablation intensity by rainwater solution on the one hand
(around 0.02-0.03 mm/year) and biogenic ablation by littoral organisms (around and
>1 mm/year) on the other (see Figure 7). Typical littoral forms at/on boulders such as rock
pools or biogenic traces such as boreholes, habitats, and attachments also allow a precise
determination of the area of origin and, thus, the transport path and especially against
gravity. All coastal deposits are subjected to simple laws for their preservation, addition,
or disappearance. These are variations in sea level, availability of (additional) material,
and conditions for preservation. These may lead to different results between flat and low
coastal landscapes and those sloping toward the sea.

Each extreme event has a spatially unusual wide range landward of the coastline
(compared to frequently occurring process strengths). To infer the process from a boulder
distribution, especially the difference between storm and tsunami, is therefore risky for a
very limited space (e.g., a small low island), because there is no test possibility to check
how the water would have moved and spread with the event in question and provide
higher relief. In diverse coastal landscapes, topography and relief (such as the Aran Islands
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and Galway Bay) make it possible because terrain features can be traced and tested in any
direction for more than 40 km.

In contrast to most depositional storm- and tsunami-induced mechanisms described,
the 2013/2014 hurricanes in the Galway/Aran area, as a paradox, have overall been
destructive in nature (Figure 9), mostly along an envelope of existing boulder formations,
which are rare at cliffs and on platforms.

Old deposits and modern extreme events

Google earth

Figure 9. South coast of Inisheer after the hurricane storms of winter 2013/2014, the strongest storms
on registration and in living memory, at highest postglacial sea level. Black frames mark activation
(mostly erosion) at the seaward ridge slope; white frames mark boulder clusters remaining immobile,
although in full storm wave attacks. All elevations shown are below +10 m mhw (compare with
Figure 10). (a)—southwest exposure; (b)—southeast exposure.

Google Earth, 2015

Figure 10. Main boulder “ridge” on Inisheer with landward slopes of low or no inclination and fields
of boulders strewn inland. Along its seaward base, enrichments of large, mostly immobile boulders
document the slow erosional tendency of the main formation (compare Figure 11).

Few individual boulders have been broken from bedrock and moved inland against
gravity; existing small boulders locally were activated at ridge bases and seaward slopes,
but the larger boulders are often left immobile in the storm-wave attack zone (Figure 10),
and no fine sediments can be detected. As a result, these strongest storms on record at the
central west coast of Ireland are hardly identifiable after decades and certainly not after
centuries, meaning that they will not obtain their orderly place in paleo-event catalogues.
The main reason is that they did not leave geomorphologic signatures in hard rock.
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Google Earth
2015

Figure 11. “Envelope” of strongest storms on registration (hurricanes of winter 2013/2014) at the
highest Holocene sea level along the southwest coast of Inishmaan, marked in boulder deposits
emplaced during past extreme events from a significant lower sea level.

If the opportunity arises for a direct before-and-after study or there is an eyewitness to a
process that undoubtedly unleashes an energy unprecedented in a particular location/region,
such as the hurricanes in western Europe in late 2013 /early 2014 or Hurricane Hayan 2013 in
the Philippines [110,141], the boulder distribution requiring a significantly higher energy level
(as in the Aran/Galway region) and a higher sea level at times of older dislocation can be
safely excluded; the conclusion on the tsunami effects is, thus, not only obvious, the boulder
distribution compellingly extends significantly beyond the hurricane’s range [102].

Tsunamis as a relevant factor (in addition to storm waves) must be considered, if
deposits occur outside the strongest storm wave envelopes of the last centuries or modern
times (Figure 11), based on the age of deposits, sea-level position during past events,
and other observations from a wider landscape such as tsunamigenic key features in fine
sediment archives (Figures 12 and 13) close to boulder sites.

Rare and tiny but important archives

Galway Bay: Galway Bay: South coast of Inisheer:
base unit: loamy silt with angular 1 m deep chaotic sand, shell and rounded and angular stones
clasts (scale 0.5 m); coarse sand and (1.20 m high)
upper unit: coarse sand and shell cobbles with mud clasts
with stones and shell (2700 cal BP)

Figure 12. Chaotic (non-sorted) coastal deposits that are unusual in storm-wave dominated
environments.
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Figure 13. Strata with basal erosional unconformity that are graded with upward fining. Ages point
to different events (about 20 km inside Galway Bay at its southeast coastline) [65,125].

All these points and numerous others need to be examined whenever theories, models,
tests, generalizations, etc., are presented, either as a theoretical approach without refer-
ence to a case from reality or in relation to a natural situation as the basis for a global
judgment [157-169].

Moreover, under no circumstances should natural evidence be overlooked or dis-
regarded in the setting that clearly contradicts the conclusions drawn from calculations
for a very limited space. Thus, as Oetjen et al. [166] wrote, “authors found an astonish-
ing difference in transport distance, transport modes, and relation to boulder forms and
velocities from published tests”, although nature’s varieties have been strongly reduced
and simplified. In their test device, and “in the present study, overturning of the boulder
occurred only in three of over 600 experimental runs, and even in those cases the boulder
was overturned only once and then transported further by sliding”.

Watanabe et al. [137], in Conclusions, p. 633, observe that “hydraulic parameters esti-
mated from boulder-transport models entail much uncertainty because the models have been
developed based on numerous assumptions related to simplifications of actual phenomena”.

2.4. Main Points Remaining for Further Discussion

1.  There is no accepted/general methodological approach to study coastal boulders in
terms of their relocation process, not even agreement on what easily ascertainable
parameters of arguments, statements, facts, and data sets could yield, such as size,
mass, shape, rounding, altitude, distance to water, horizontal and vertical transport
routes, determination of origin, bedding type, bedding pattern (Figure 14), age indi-
cations and age determination, influence of coastal shape, bathymetry, coastal relief,
rock type, and others.
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Figure 14. Left: 130 m long overwash boulder tongue 22 km inside Galway Bay, dated to about
5000 cal BP, with sharp outer contours, pushed ashore almost instantaneously during a lower sea
level from a (littoral to sublittoral) deposit of well-rounded cobbles and small boulders (total mass
about 10,000 tons). Right: 500 m long section of rhythmic crossway ripple ridges (height of 2-3 m)
decorating the main boulder belt on a cliff top platform at +10 m mhw from the southern entrance to
Galway Bay at Doolin Point northwards.

2. For fine sediments, stratigraphy and chronology are standard. For coarse material,
stratigraphy mostly does not exist, and chronology is difficult to ascertain for single
events, which may leave a mixture of fragments of very different ages. A chronology
of transport events is even difficult to establish in coral rubble, as almost certainly the
age will reflect its first dislocation from the living position, which mostly is not the
age of the last storm- or tsunami-induced movement to landward.

3. For boulders, stratigraphy seems to be missing (but is certainly present in the type of
imbrication) in relation to the fine material character in close proximity or at least by
relative and numerical ages determined for the units of the deposits (almost never
studied in parallel).

4. The question of the exposure of the coast is often not asked, the relief is rarely taken
into account, and the water depth in the critical near-shore area not checked.

5. Injudging the main process—storm waves or tsunamis as extreme events—there is
often a lack of focus on the effect of recent times (e.g., the effect of the strongest young
storms to date) as a data provider for known process and effect variables.

6.  Since the age of the deposits has only been sufficiently determined in a few cases, there
is also a lack of information on sea levels (associated with the deposits through time).

7. Inthe case of a statement for or against only being a storm or tsunami, there is usually
no cross-check to ascertain whether this statement remains valid or is supported when
examining closer surroundings (e.g., in different exposure/relief/bathymetry).

3. Conclusions

In geosciences, securing facts according to quantity and quality and their validation on
the basis of process relationships with each other is needed; these are supplied by nature itself.
Substantive criticism must address the arguments presented, prove them to be false
or erroneous, or offer further convincing correlations. This requires a view of a somewhat
larger and, in terms of natural endowment, rich area, which is especially true concerning
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extreme processes, because these are not limited to small localities. The natural processes
of the past have their own fixed reality, whether we recognize and acknowledge them or
misinterpret or deny them. They remain what they have been (as far as we can recognize).
Contradictory views in scientific debates often drive progress and enrich the search for
new knowledge of reality because they could lead to new methods of conducting research.
The reality in nature alone decides whether a finding, an idea, or an assumption comes
close to it or even represents it completely or just remains an attempt of approximation.
An approximation in these ways can, therefore, be successful, even in small steps, as long
as the conclusions drawn from it stand up to scrutiny in nature. In a natural landscape,
there are no majority opinions, but only the reality onsite (with site and time documented),
which is verifiable at any time. Subjective preconceptions and prejudices do not help. The
reality of nature in all its diversity can hardly be reproduced to scale in experiments or
models, because these experiments and models have simplifications and, thus, margins of
error in every single step.

As long as the conclusions can be combined without contradiction, there is the greatest
probability of correctly identifying the responsible processes or of having progressed towards a
path to the solution. If important parameters of nature are replaced by simplified assumptions,
at best, artificial border statements result in a standard synopsis of nature, however, and not
for its reality in space. Thereby, changes of nature during time are not yet recorded.

Scientific originality and progress in geosciences are hardly the elucidation of further
calculation steps and imitations but involve the ability to see, recognize, classify, and com-
pare reality in nature and to draw conclusions that must not contradict each other at any
point, especially when carrying out paleo-tsunami research as a basis for safety and protec-
tion measures against this force of nature. In short, there needs 160b e more collaboration
between geologists and hydrodynamical modelers. Otherwise, the conclusions based on
numerical modeling can be tenuous at best.
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