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Abstract: Here it is shown that the crystal radii of ions are represented by a simple relation
rcryst = rB

3√(10 m)/N, where m and N are small integer numbers determined by the principal
and orbital quantum numbers and valence, and rB is the Bohr radius. The relation holds to within
5%. This finding elucidates that despite their original definition crystal- and ionic radii are not
classical but represent the limiting case of spherically symmetric spatial averages of the valence
electron states and, therefore, are able to reflect changes in the valence electron configuration with
pressure and temperature. The relation is used to show general pressure-effects on the radii, in
particular the increase of bond coordination with pressure and metallization as limiting state. The
pressure-effect is exemplified for the elements Mg and Si as major constituent cations in the Earth’s
mantle, and for Ba as a large ionic lithophile element. It is found that at least to about 140 GPa the
radii depend linearly on pressure. Further, if a generalization is permitted for just three elements, the
pressure-dependence is lesser the higher the charge of the ion. The three elements exhibit a much
weaker pressure-dependence than previously calculated non-bonding radii. For mantle geochemistry
this finding implies that elements incompatible in the upper mantle remain so for the main lower
mantle minerals bridgmanite and periclase and are hosted by davemaoite.

Keywords: ionic radii; high pressure

1. Introduction

The development of ab initio methods of calculating electron density distributions
across electron band structures in solids pushed earlier empirical and semi-empirical
approaches of understanding properties of solids nearly into oblivion. One of those earlier
approaches is based on the concept of ionic radii. Ionic radii are still used in material science
for ‘back of the envelope’ approximations and in inorganic chemistry for the qualitative
understanding of polar solvent-solute systems. Geochemistry is one of the few disciplines
in modern science that still hold on to the ionic radius concept as a quantitative means
of understanding chemical and physical processes in the Earth. This faith into the ionic
radius concept reflects indirectly the complexity of processes in the Earth which involve
manifold changes of chemical bonding for most atomic species. Furthermore, it is related
to the fact that in order to understand those processes geochemistry is guided by the
distribution of minor and trace-elements rather than constituent elements of the major
minerals [1]. Any trace element atom that we detect in an igneous or metamorphic rock
has experienced manifold changes in its environment: solid-solid, solid-liquid transitions,
transition into fluids and precipitation out of fluids. In sum these processes average the
spatial differences between electron energy states and electron density distributions that
adhere to each of these different bond environments and result in an apparent equivalent
of a quasi-classical energy state represented by the electron kinetic energy and a spherical
potential. In other words, minor and trace-element distributions of rocks derived directly
or indirectly from partial melts in the Earth’s mantle may be seen as result of an enormous
experiment that stretches over geologic time and the spatial scale of geologic provinces
of the extend of continents and mantle convection cells and that emphasizes the spatially
averaged properties of interacting atoms over the direction-dependent electronic states and

Geosciences 2022, 12, 246. https://doi.org/10.3390/geosciences12060246 https://www.mdpi.com/journal/geosciences

https://doi.org/10.3390/geosciences12060246
https://doi.org/10.3390/geosciences12060246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0003-3364-8906
https://doi.org/10.3390/geosciences12060246
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences12060246?type=check_update&version=2


Geosciences 2022, 12, 246 2 of 14

density gradients which determine the state of matter in each of the many individual steps
of this global scale experiment.

Hence, the application of the ionic radius model of atoms to geochemical minor and
trace-element patterns is no anachronism but reflects the observable properties of atoms
within the context of Earth mantle geochemistry.

However, there is one aspect within this concept that has remained nearly unexplored:
Pressures in Earth range from ambient to 130 GPa at the core mantle boundary and to
360 GPa in the Earth’s inner core. A simple estimate of the effect of compression of Mg-Si-
oxides over 130 GPa and of iron over 360 GPa on the energy of electrons suggests an increase
in electron kinetic energy in the range of 0.5–1 eV for this range of pressure [2,3]. An increase
of energy by that amount is within the range of changes in valence states of many ions and
this has been observed indeed for ferrous iron which undergoes disproportionation into
ferric and native iron as result of a pressure-induced high spin to low-spin transition that
disfavours the larger volume of the high-spin divalent state [4,5]. It is plausible that other
elements exhibit changes in their valence electron structure within the pressure-range of the
Earth’s core and mantle and that these changes leave an imprint on geochemical element
distributions, if they sample reservoirs at great depth in the mantle. This seems possible,
in particular, for elements where the valence shell is well screened from the nucleus and
where a marked increase in electron density can transfer electrons from s- to p- and d-states.
This effect has been measured for metallic, dense Fe and Co [6] consistent with the pressure-
induced high spin-low spin transitions oxides of these elements and it has been shown for
the metallic heavier alkaline elements K, Rb and Cs [7] and for lanthanides [8]. K, Rb, Cs
and lanthanides belong to the groups of LILEs (‘large ionic lithophile elements’) and the
lanthanides to the REEs (‘rare earth elements’) in the context of mantle geochemistry which
are both important in modelling geochemical processes. Yet, there is no direct knowledge
if such transitions become effective for LILEs or REEs in the crystal-field of cation-oxide
polyhedra in Earth-materials and within the pressure range of the Earth’s mantle.

Attempts to assess the effect of pressure on the spatially averaged electron distributions
of atoms and ions have remained sparse [9,10] until quite recently [11,12] and have not yet
considered the effect of bond coordination.

Here I report an observation that is closely related to the pressure effect on the
ionic radii.

2. Method

I use the cation crystal radii listed by Shannon [13] for the coordinations 4,6,8, and 12
(henceforth I place coordination numbers in brackets {4}, {6} etc. and {X} for coordination
in general). Coordination is used in the sense of bond coordination, that is: the sum
of distinct radial trajectories intersecting at the cation along which finite charge transfer
occurs between cat- and anion. In absence of highly accurate electron density distribution
maps the distinction beween geometric and bond coordination may be ambiguous and
in those cases I calculate crystal radii for different apparent coordinations (Table 1). At
ambient pressure I use the radii for the coordinations specified by Shannon [13]. I derive
crystal radii of Ba from crystal structure analyses of solids with Ba as constituting cation
and O as anion at pressures of 0.2 to 143 GPa. In order to extract crystal radii from Ba-O
interatomic distances I use an empirical equation for the pressure-effect on the O2− anion
in six-fold coordination. This equation is obtained by (a) Mg-O and Si-O interatomic
distances in stishovite, seifertite, akimotoite, bridgmanite, postperovskite, and periclase
to 130 GPa (Table 1) and (b) the pressure-effect on the Baader radii of Si and O in the
computed compression of silica polymorphs to 170 GPa [14]. The Baader radii reported
by Du&Tse [14] are systematically larger than the crystal radii of Si4+ and O2−, even at
ambient and low pressure: At ambient pressure the Baader radius for Si4+ in six-fold
coordination is about 0.69 whereas the crystal radius is 0.54 Å [13]. This difference is
owed to a different definition of the electron density cut-off in the Shannon ionic radius-
and the Baader charge concept and needs no digression here (although this point is quite
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interesting in itself). However, the calculated pressure effect on the Baader radii of Si and
O are expected to exhibit less of a systematic difference from the empirical compression
than the absolute radii. The crystal radii of both elements at ambient pressure are well
established [13]. Therefore, I used these 1bar crystal radii as fiducial points, and used the
rescaled Si and O-radii from Du&Tse [14] for calculating the interatomic distances of Mg-O
and Si-O at high-pressure and compare them with observed values (Table 1). Accordingly,
the O2−-radii follow a relation r(O2−) = 1.215·P−0.0386 (radii in Å, P in GPa). Yet, by this
approach the contraction of the interatomic distance Si-O are overestimated by 7% (based
on Table 1) compared to the observed values and Mg-O is overestimated by ~10% at 50 GPa.
The O-ion compression that Du&Tse [14] calculated serves the particular purpose of their
study in reproducing the observed Si-O distances at high pressure but at the expense
of an ambient pressure radius of O2− of 1.33 Å (instead of the empirical value 1.26 Å)
and of overestimating the compression of Mg-O. Therefore, I corrected the relation from
Du&Tse [14] for Si and O to match all Mg-Si-O and silica polymorphs but kept the shape
of the functional. Hereby I obtained the relation r(O2−) = 1.269·P−0.0176 as fit equation for
the pressure dependence of the crystal radius of O2− in six-fold coordination to 150 GPa,
where P in GPa and r is in Å. The proper assessment of the accuracy of this equation
requires a more extensive set of structure data than currently available and presently I only
state that the uncertainty is better than 10%, based on the scatter of the available distances
(Table 1). In the regime of 0 to 10 GPa the pressure-dependence of the O2− radius may be
overestimated and this issue could be helped by considering structure data from a more
extended set of compounds but this is not within the scope of the paper. It is worth noticing
that the 300 K isotherm of periclase, MgO [15], where Mg-O = 1

2 -times the unit cell axis
length, is reproduced.

Table 1. (a): Crystal radii, pressures and coordination for Ba2+; (b): crystal radii, pressures and
measured average cation-oxygen bond distances for Mg and Si. The bond coordination for Si is [6],
above 100 GPa possibly [8]; for Mg, the two bond coordinations [6,12] are clearly distinguished by
their difference.

a. Barium

Compound Coordination Pressure (GPa) Ba-O(Å) r (Å) References

BaO_III 8 18.8 2.566 1.361 [16]
BaO_III 8 60 2.50 1.32 [16]

BaO, NiAs-type 6 13.9 2.654 1.443 [17]
Baryte 8 17.5 2.760 1.5 [18]
Baryte 6 17.5 2.688 1.482 [18]
Baryte 8 2.15 2.815 1.479 [18]
Baryte 6 2.15 2.739 1.487 [18]
Baryte 8 0.22 2.82 1.563 [18]

Baryte-II 8 0 2.85 1.59 [19]
Baryte-II 8 40.5 2.63 1.441 [19]
Baryte-II 12 40.5 2.653 1.46 [19]

BaWO4, fergusonite-type 12 15.6 2.708 1.52 [20,21]
BaSiO3, BaFeO3-type 6 48.5 2.64 1.455 [22]
BaSiO3, BaRuO3-type 18 27.9 2.766 1.569 [22]
BaSiO3, BaTiO3-type 6 141 2.393 1.23 [22]

BaO2 8 49.4 2.57 1.39 [23]
BaAlSi3O8 -II 14 7.81 2.75 1.52 [24]

BaV6O11 12 5.82 1.52 [25]
BaMoO4 12 7.2 1.41 * [26]

Gillespite, BaFeSi4O10 8 4.5 2.784 1.549 [27]
BaO2_CuCl2-typ 12 6.8 2.729 1.50 [23]
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Table 1. Cont.

b. Mg-Silicates, Silica, Periclase

Compound P [GPa] Mg-O Si-O rSi (Å)
{6,7}

rMg (Å)
{6,12}

Periclase, MgO 15.3 2.0485 0.839 [15]
29.9 2.0085 0.813 [15]
49.7 1.962 0.778 [15]
74.6 1.918 0.742 [15]
99.6 1.8825 0.712 [15]
111 1.869 0.701 [15]

Stishovite, SiO2 7 1.792 0.566 [28]
10.5 1.781 0.564 [28]
15 1.772 0.562 [28]
34 1.728 0.536 [28]

76.75 1.675 0.500 [28]
1.7 1.773 0.516 [29]
9 1.76 0.539 [29]

15 1.749 0.539 [29]
9.26 1.7603 0.540 [30]
29.1 1.7287 0.533 [30]

Seifertite, SiO2 129 1.652 0.487 [31]
Akimotoite, MgSiO3 19.91 2.033 1.761 0.557 0.829 [32]

Bridgmanite, MgSiO3 10.6 2.31 1.777 0.560 1.093 [33]
9.6 2.3075 1.782 0.563 1.088 [34]
15 2.3057 1.769 0.559 1.096 [35]

postperovskite, MgSiO3 121 2.035 1.664 0.498 0.869 [36]
116 2.045 1.678 0.511 0.878 [37]

Forsterite-II, Mg2SiO4 45.3 1.949 1.727 0.541 0.763 [38]
45.3 1.949 (1.866) (0.68) 0.763 [38]

Forsterite-III, Mg2SiO4 58.2 2.198 1.815 0.634 1.017 [38]
Wadsleyite, Mg2SiO4 16 2.082 ** ** 0.874 [39]

* Value for rBa is unusual. ** Si [4], not considered here.

3. Results

It was found that the examined 160 crystal radii for 79 elements that occur as cations
in coordinations {4,6,8} and {12} can all be represented through a the following equation:

rcryst = rB
3√(10 m)/N (1)

where rB is the Bohr radius (0.52177 Å), m is an integer that runs from 1 to 6 and N is an
integer that runs from 1 to 4 (except for C4+ {6}, which has N = 6). This equation holds
within +/− 5% (Figure 1, Table 2). First, it needs to be checked if 6 × 4 = 24 arithmetically
possible combinations of integers generate the observed 160 crystal radii to within 5%.
For all radii, the number before the point is either 0 or 1: the radii are either 0.ab or 1.cd
with a, b, c, d running from 0 to 9 (I ignore Cs+ {12} = 2.03 Å as the only radius with a
value larger than 2, Shannon [13]). Hence, for the two positions past the point there are
10 possible values each = 200 possible combinations. Within the 5% margin of uncertainty,
some of these combinations are treated as equal and this reduces the number of distinct
combinations to between 2·10·8 = 160 and 2·10·6 = 120 which overall gives a probability
of 1/5th to 3/20th to match a radius with a combination of N and m and Equation (1) by
chance. However, as shown in Figure 1 all radii are matched by Equation (1). Thus, the
empirical Equation (1) is statistically meaningful. The computed radii and the Shannon
radii are given in Table 2. Table 2 gives the values of N, m. One may argue that slightly
different definitions of the effective ionic radii (such as by Ahrens and Pauling) give slightly
different values but the 5% margin that is here allowed for accounts for almost all of these
differences. It is noted that not all arithmetically possible combinations of N and m give
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values in the range of ionic radii and the probability of matching a radius within 5% is even
less that the range estimated above.

Figure 1. The ratio of rB
3√(10 m)//r (X), where r (x) are the crystal radii by Shannon (1976) and

X = 4, 6, 8 and 12, the bond coordination. This ratio gives the parameter N in Equation (1), which is
independent on the nuclear charge number Z and assumes within uncertainties integer values N = 1,
2, 3, 4 and 6 for C4+ {6}. Symbols: Triangles = {4}, diamonds = {6}, squares = {8} and hexagons = {12}.

Table 2. (a): Parameters n = the ratios of the calculated crystal radii according to Equation (1) and
the radii reported by Shannon [13] labeled as robs. All values are in Å. The ratios are given for
coordinations {4},{6},{8} and {12}. The values of the integer parameter m that minimizes the ratios
rB

3√(10 m)/r (X) are given for each coordination in a separate column. (b): Crystal radii in Å
calculated based on Equation (1) with the parameters m as listed in Table 2 rclc and the radii robs

reported by Shannon [13] in Table 2.

a

Ion n(4) =
rB

3√(10 m)/r(4)obs
m n(6) =

rB
3√(10 m)/r(6)obs

m n(8) =
rB

3√(10 m)/r(8)obs
m n(12) =

rB
3√(10 m)/r(12)obs

M

Li+ 1.07547 1
Na+ 1.00885 1 0.98276 1 1.08808 2 1.07457 3
K+ 0.95117 2 0.94492 2 0.99642 3 1.0166 4
Rb+ 0.99042 3 1.03403 4 0.97288 4
Cs+ 0.99975 4 1.03684 5 0.96498 5
Be2+ 4.01 3 3.06703 4
Mg2+ 2.02292 2 1.91174 3 1.89249 5
Ca2+ 1 1 0.90476 1 0.97045 2
Sr2+ 1.08808 2 1.02591 2 1.04057 3
Ba2+ 0.96394 2 1.05391 3 1.03403 4
Al3+ 3.10207 3
Si4+ 4.11025 3 3.04463 3
Sn4+ 2.08155 2 1.98084 3 2.05185 5
Pb4+ 2.08114 3 1.97765 4 1.05555 1
Ge4+ 3.10207 3 2.90935 5
C4+ 3.93102 1 6.03183 4
Sc3+ 2.04469 4 1.92996 5
Y3+ 1.09615 1 0.9836 1
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Table 2. Cont.

a

Ion n(4) =
rB

3√(10 m)/r(4)obs
m n(6) =

rB
3√(10 m)/r(6)obs

m n(8) =
rB

3√(10 m)/r(8)obs
m n(12) =

rB
3√(10 m)/r(12)obs

M

La3+ 0.97269 1 1.10482 2 0.95751 2
Ce3+ 0.9913 1 1.11946 2 0.97045 2
Pr3+ 1.00885 1 0.90047 1
Nd3+ 1.01513 1 0.91273 1 1.01863 1
Sm3+ 1.03825 1 0.93519 1 1.04078 2
Eu3+ 1.04875 1 0.94527 1
Eu2+ 1.09639 2 1.03329 2
Gd3+ 1.05751 1 0.95557 1
Tb3+ 1.07243 1 0.9661 1
Dy3+ 1.08365 1 0.97686 1
Ho3+ 1.0951 1 0.98701 1 0.90476 1
Er3+ 1.10679 1 0.9965 1
Tm3+ 1.91104 5 1.00529 1
Yb3+ 1.93379 5 1.01333 1
Lu3+ 1.94731 5 1.02059 1
Th4+ 1.05555 1 0.95798 1 1.06391 2
U4+ 1.10679 1 1 1 1.09639 2
Ti2+ 1.94926 5
Ti3+ 2.02975 3
Ti4+ 2.03571 1 1.92788 2 2.0563 4
Zr4+ 1.9675 2 1.91174 3 1.98904 5
Hf4+ 1.99482 2 1.93423 3 2.00955 5
V2+ 1.94575 4
V3+ 2.10782 3
V4+ 1.99482 2 1.91174 3

Nb3+ 1.91174 3
Nb5+ 2.10782 3 2.0563 4
Ta3+ 1.91174 3
Ta5+ 2.10782 3 2.0563 4
Cr3+ 1.90235 2
Mo3+ 1.98084 3
Mo6+ 1.9675 2
W6+ 1.94091 2
Mn3+HS 2.09439 3
Mn3+LS 1.99482 2
Re7+ 2.90935 5
Fe2+HS 1.9669 4 1.07547 1
Fe2+LS 1.91503 2
Fe3+HS 2.09439 3 1.9669 4
Fe3+LS 2.08155 2
Ru4+

Os4+

Co2+HS 1.99482 2 2.04469 4 1.09615 1
Co2+LS 2.08114 3
Co3+HS 1.91503 2
Co3+LS 2.09675 2
Rh3+ 2.04236 3
Ir4+

Ni2+ 2.08155 2 1.98084 3
Ni3+HS 1.94091 2
Ni3+LS 2.05182 2
Pd2+ 1.94926 5
Pt2+ 2.07368 5
Cu2+ 2.02292 2 2.07994 4
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Table 2. Cont.

a

Ion n(4) =
rB

3√(10 m)/r(4)obs
m n(6) =

rB
3√(10 m)/r(6)obs

m n(8) =
rB

3√(10 m)/r(8)obs
m n(12) =

rB
3√(10 m)/r(12)obs

M

Ag2+ 1.05555 1
Au3+ 1.96895 5
Zn2+ 1.94091 2 2.0563 4 1.09615 1
Cd2+ 1.9669 4 1.04587 1 0.91935 1 0.99053 2
As3+ 1.99482 2
Sb3+ 2.01061 4
Bi3+ 0.97436 1
O2− 1.02756 3

b

Ion r (4)obs (Å)
r

(4)clc
(Å)

r (6)obs (Å)
r

(6)clc
(Å)

r (8)obs (Å)
r

(8)clc
(Å)

r (12)obs (Å)
r

(12)clc
(Å)

Li+ 0.73 0.72 0.9 0.900 1.06 1.060
Na+ 1.13 1.145 1.16 1.160 1.32 1.380 1.53 1.527
K+ 1.51 1.523 1.52 1.527 1.65 1.647 1.78 1.785
Rb+ 1.66 1.706 1.75 1.785 1.86 1.837
Cs+ 1.81 1.834 1.88 1.837 2.02 2.132
Be2+ 0.41 0.411 0.59 0.595
Mg2+ 0.71 0.711 0.86 0.853 1.03 1.020
Ca2+ 1.14 1.145 1.26 1.219 1.48 1.482
Sr2+ 1.32 1.377 1.4 1.378 1.58 1.527
Ba2+ 1.49 1.485 1.56 1.482 1.75 1.785
Al3+ 0.53 0.533 0.675 0.689
Si4+ 0.4 0.411 0.54 0.551
Sn4+ 0.69 0.689 0.83 0.853 0.95 1.020
Pb4+ 0.79 0.793 0.915 0.916 1.08 1.102
Ge4+ 0.53 0.533 0.67 0.689
C4+ 0.29 0.288 0.3 0.296
Sc3+ 0.885 0.892 1.01 1.020
Y3+ 1.04 0.96 1.159 1.145
La3+ 1.172 1.19 1.3 1.377 1.5 1.482
Ce3+ 1.15 1.14 1.283 1.219 1.48 1.482
Pr3+ 1.13 1.14 1.266 1.219
Nd3+ 1.123 1.19 1.249 1.219 1.41 1.422
Sm3+ 1.098 1.14 1.219 1.219 1.38 1.378
Eu3+ 1.087 1.14 1.206 1.219
Eu2+ 1.31 1.43 1.39 1.377
Gd3+ 1.078 1.14 1.193 1.218
Tb3+ 1.063 1.14 1.18 1.22
Dy3+ 1.052 1.14 1.167 1.22
Ho3+ 1.041 1.14 1.155 1.14 1.26 1.219
Er3+ 1.03 0.98 1.144 1.14
Tm3+ 1.02 0.98 1.134 1.14
Yb3+ 1.008 0.98 1.125 1.14
Lu3+ 1.001 0.96 1.117 1.14
Th4+ 1.08 1.190 1.19 1.218 1.35 1.377
U4+ 1.03 1.190 1.14 1.145 1.31 1.377
Ti2+ 1 0.960
Ti3+ 0.81 0.793
Ti4+ 0.56 0.552 0.745 0.740 0.88 0.893
Zr4+ 0.73 0.720 0.86 0.853 0.98 0.960
Hf4+ 0.72 0.720 0.85 0.853 0.97 0.960
V2+ 0.93 0.918
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Table 2. Cont.

b

Ion r (4)obs (Å)
r

(4)clc
(Å)

r (6)obs (Å)
r

(6)clc
(Å)

r (8)obs (Å)
r

(8)clc
(Å)

r (12)obs (Å)
r

(12)clc
(Å)

V3+ 0.78 0.787
V4+ 0.72 0.720 0.86 0.853

Nb3+ 0.86 0.853
Nb5+ 0.78 0.775 0.88 0.892
Ta3+ 0.86 0.853
Ta5+ 0.78 0.787 0.88 0.892
Cr3+ 0.755 0.763
Mo3+ 0.83 0.793
Mo6+ 0.73 0.720
W6+ 0.74 0.740
Mn3+HS 0.785 0.787
Mn3+LS 0.72 0.720
Re7+ 0.67 0.689
Fe2+HS 0.77 0.775 0.92 0.916 1.06 1.066
Fe2+LS 0.75 0.740
Fe3+HS 0.785 0.763 0.92 0.918
Fe3+LS 0.69 0.689
Ru4+ 0.76 0.763
Os4+ 0.77 0.775
Co2+HS 0.72 0.720 0.885 0.892 1.04 1.020
Co2+LS 0.79 0.793
Co3+HS 0.75 0.740
Co3+LS 0.685 0.689
Rh3+ 0.805 0.763
Ir4+ 0.765 0.763
Ni2+ 0.69 0.720 0.83 0.793
Ni3+HS 0.74 0.74
Ni3+LS 0.7 0.689
Pd2+ 1 0.960
Pt2+ 0.94 0.960
Cu2+ 0.71 0.720 0.87 0.916
Ag2+ 1.08 1.102
Au3+ 0.99 0.916
Zn2+ 0.74 0.720 0.88 0.916
Cd2+ 0.92 1.102 1.09 1.102 1.24 1.219 1.45 1.440
As3+ 0.72 0.720
Sb3+ 0.9 0.893
Bi3+ 1.17 1.19
O2− 1.60 1.64

Much more relevant than these arithmetic considerations is the question of the physical
meaning of N and m. Equation (1) may be used to predict radii as function of N and m.
Furthermore, any deviation of observed radii from Equation (1) carries a physical meaning
(otherwise we may extend Equation (1) to any larger quotient of variable integers that
reproduces a given radius with arbitrary precision, but this bears no relevance because
these additional quotients have only arithmetic but no physical meaning). For fourfold
coordination N equals the formal valence for 12 out of 19 available radii (Table 1). However,
the correlation between N and valence is generally less simple.

For six-fold coordination N is equal to or smaller than the valence but remains integer
(Table 2). For coordination {8} and {12} N equals valence only for univalent ions and is, thus,
generally smaller than valences larger than 1+ (see Table 2). Moreover, for coordination {8}
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N is restrained to values of 1 or 2 and for {12} N = 1 for all available crystal radii. This point
needs further examination: Based on these observations N becomes 1 if the coordination
goes to infinity and rcryst = rB

3√10 m. In other words: for a hypothetical very large number
of bonds the distribution of charge per bond becomes accordingly very small and in the
limiting case of infinitely many bonds it becomes zero and the effective radii are equivalent
to non-bonding radii. Thus, 10 m represents discrete volumetric units of atomic volumes.
The limiting non-bonding radii rcryst = rB

3√10 m are nearly identical to, tentatively slightly
smaller than atomic radii [40]. For instance for Na, K, Mg, Ca the atomic radii are 1.90,
2.43, 1.45, and 1.94 Å [40] and the corresponding rB

3√10 m are 1.92, 2.42, 1.42, and 1.94 Å
for m = 5, 10, 2, and 6, respectively. There are similar relations between the Wigner-Seitz
radii of metals and the parameter m. This will be discussed in a separate paper. Based
on what has been stated in the introduction it is plausible that m represents projections of
discrete sets of valence electron states onto spherically symmetric spatial averages (and the
emphasis is on the averaged spatial distribution, hence there is no violation of orthogonality
for orbitals higher than s).

For the parameter N I observe a very simple relation with the valence electron states:
As shown in Figure 2 the parameter N is related to the valence of the ions through a simple
relation equation Ni + n(d) − n(p) = valence where n(d), n(p) are the numbers of occupied
(ionic) valence p- and d-states and where Ni assumes the values 1, . . . , 6 given in Table 2.
The small observeable deviations from this relations is mostly within 5%, in few cases up
to 10% (Figure 2) and is intepreted as the difference between the actual and the formal
integer valences in solids where partial charge transfer between ions is possible. With this
parametrization Equation (1) is reformulated as:

rcryst = rB
3√(10 m)/N = rB

3√(10 m)/[Valence + n(pL) − n(dL−1)] (2)

where L = principal quantum number of the valence shell, n(pL) and n(dL−1) the oc-
cupancies of the valence p- and d-states. Hence, rB

3√(10 m) is the radius of the non-
bonding atoms and Ni = Valence + n(pL) − n(dL−1) modifies these radii according to their
bond states.

Figure 2. The figure shows that the parameter N in Equation (1) is related to formal valence through
the Equation Ni + n(d) − n(p) = valence. n(p) and n(d) give the occupation of the valence p- and
d-states, respectively. Ni runs through the values 1 to 6 that are given in Table 2.

N, m, and their correlation with valence electron configuration and valence imply
that that crystal- and ionic radii are not equivalent to Thomas-Fermi-type quasiclassical,
spherical electron density distributions where excess charge is added or removed. Instead,
the occupation of electronic states is intrinsic to the ionic radii (despite their original classical
concept). This is consistent with the fact that the radii depend on valence spin states where
high- and low-spin states are possible. Independent on that it is known that Thomas-Fermi-
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atoms with addition or removal of electron charge cannot be used for modeling chemical
bonds or yield convincing representations of bonding solids [41].

The observed minor deviations from (1) and (2) are likely not just empirical uncer-
tainties but represent actual physical properties such as partial charge transfer between
ions, partially occupied states, or the effect of f-electrons for high-Z elements or relativistic
corrections for higher Z ions. For instance, Equation (1) predicts equal radii for Zr and Hf
and Nb and Ta, respectively, and the observed lanthanide crystal radii [13] show a minor
but systematic deviation from the calculated ones (Figure 1).

Taking Equations (1) and (2) and Figures 1 and 2 together it can be stated that crystal
(ionic) radii are not quasi-classical approximations of electron densities but projections of
discrete sets of valence electron states onto spherically symmetric spatial averages. The
parameters m and N and the correlation in Figure 2 tentatively constrain the sets of allowed
states under this symmetry condition. It is noted that the orthogonality of the orbital states
is not consistent with spherical symmetry. Hence, the spherical symmetry is not applied to
the energy states but to a spatial integration of manifold projections of these states into the
configurational space.

4. Effect of Pressure on Ionic Radii

Because of the relation between crystal (and ionic) radii and electronic states, it is
expected that the radii not only show a continuous contraction over larger pressure ranges,
but also discrete contractive transitions. This effect has been shown theoretically for
non-bonding radii in confining continuous fields [12]. Here, we use empirical data from
Table 1 and Equation (1) to examine the effect of pressure on crystal radii. Equation (1) is
reformulated as

(rcryst/rB)3 = 10 m/N3 (3)

where (rcryst/rB)3 is a relative volume with limiting case r = rB ⇔ 10 m = N3. Since m
is related to non-bonding radii (see above), the limit is interpreted as the transition to
a metallic state. The trend toward pressure-induced metallization is empirically well
confirmed [3]. Equation (3) provides a quantitative parametrization of ionic volume
compression with metallization as limiting case. Based on the correlation between N
and bond coordination (see above) a balance between the decrease of (rcryst/rB)3, and the
increase of bond coordination is expected and ionic radii of elements which can increase
bond coordination by involving orbitals into binding states that are empty at low pressure
are expected to exhibit weaker compression than ions which remain with a fixed bond
coordination. The correlation between pressure and coordination also has been inferred
from observation [42,43]. Before testing this hypothesis with radii that are obtained from
experimentally measured interatomic distances, it should be noted that Shannon crystal
radii of highly charged low-Z ions in tetrahedral coordination like Si4+ are almost equal,
for C4+ even smaller than rB but this observation simply reflects that the bonds that involve
tetravalent C and Si in tetrahedral coordination are predominantly not ionic and the radius
model not well applicable. With this limitation in mind it is also clear that r approaching
rB does not strictly imply a state where electrons gradually enter the state of a metal or a
degenerate Fermi plasma but rather marks a transition to other types of bonding which
no longer obey Equation (3). This could be covalent bonding [42], but recent experimental
studies indicate that at extreme pressure transitions from ionic to covalent are accompanied
by transfer of electron density to non-bonding states centered on interstitial lattice sites
(‘high-pressure electrides’, [44,45]). In addition, there are actual pressure-driven valence
transition for some transition metal elements such as Fe and in some cases inner-shell
electrons become involved in the valence shell such as in the case of Li+ [46], Cl− [47],
Mg2+ [48]. More relevant for Earth is the regime in between this extreme pressure limit
and the ambient pressure state. How does the balance between m and N change upon
compression? In the present paper Ba2+ is discussed as example of a LILE along with Mg2+

and Si4+ as the two major constituent cations in Earth mantle material (since O2− is used to
obtain the radii of these three cations it is not an independent parameter—see Section 2).



Geosciences 2022, 12, 246 11 of 14

The pressure-dependent crystal radii of these three ions, Ba, Mg, and Si are given in Table 1
and shown in Figure 3.

Figure 3. Crystal radii of Ba (black = coordination {6}, green: coordination {6} to {18}), Mg (green
squares = coordination {12}, red diamonds = coordination {6}), and Si (blue) as function of pressure.

The radii were obtained from available experimental data (Table 1) and the pressure-
dependent radius of O2− (see Methods). The coordination of Ba varies between {6} and
{18} (Table 1) and, therefore, shows much variation. Equation (1) can be used to assess
bond coordination under pressure by checking which radii for the different geometric
coordinations give m-parameters closest to integer values and this was used to extract radii
for Ba in six-fold bond coordination.

Overall, Figure 3 shows that all examined crystal radii compress linearly within the
given uncertainties with their radial compressibilities on the order of 0.4 to 2× 10−23 m3/N.
Si [6] is the least compressible ion with rcryst(Si) = 0.552(5) − 0.000425(72)·P. Ba{6} (as well
as the average of all rBa(X)) and Mg {12} exhibit nearly the same dependence on pressure:
rcryst(Ba) = 1.50(1) − 0.0020(2)·P and rcryst(Mg) = 1.119(7) − 0.00204(10)·P for Mg{12},
whereas Mg{6} with rcryst (Mg) = 0.864(11) − 0.0016(2)·P is slightly less compressible but
overlaps with rBa within uncertainties. All radii are in Å and pressure is in GPa. It is worth
noting that the fitted zero pressure radii are equal to the Shannon radii within uncertainties.
The apparent linear pressure-dependence for Ba does not suggest any pressure-induced
change in valence. In fact, based on a formal valence of 2+ and Equation (2) the valence
configuration is 6s15d16p0 where 0.91 < N < 1.05 gives the deviation of the actual from these
formal values of valence and electron configuration. The observation that Si4+ is ~4.7-times
less compressible than Mg2+ and Ba2+, independent on their coordination, suggests that
it is not coordination but charge that controls the ionic compressibility, if three elements
permit any generalization.

The fact that the compression of twelve- and six-coordinated Mg2+ is both linear over
more than 100 GPa and that the radial compressibilities are somewhat but not markedly
different from each other does not support a trend towards coordinating changes over nar-
row pressure intervals for this element. For Ba there are not enough data for coordinations
other than {6} to make a similar clear statement but the average compression of Ba2+ for all
coordinations (Table 1) does not deviate from the compression of Ba2+{6}. This observation
suggests that the increase of coordination with pressure is not as effective a mechanism
of compression as inferred above. The observed crystal radii of Mg, Si and Ba exhibit up
to 120–140 GPa a much weaker dependence on pressure as the calculated non-bonding
radii (see ref. [12], more precisely for Ba2+ the ratio of the calculated non-bonding over
the empirical crystal radii in Fig. 3 decreases from about 1.6 to 1.25 times between 0 and
50 GPa).

If the compression behaviour of Ba2+ is representative for other LILEs, it may be stated
that LILEs that are geochemically incompatible in the upper mantle remain so over the
pressure range of the lower mantle. This does not imply that they are as easily mobilized
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in the lower mantle as they are in the upper mantle because they are predominantly
hosted in davemaoite, CaSiO3-perovskite [49,50], which has accordingly low solubility in
bridgmanite and which is solidus phase during partial melting of lower mantle rock [51].
Hence, the LILEs remain in the residual of partial melt events (such as in an early magma
ocean) rather than entering an ascending melt.

5. Summary

In sum we have shown that the crystal radii of cations are represented through a simple
Equation (1) with the Bohr radius and two discrete integer parameters which are related to
valence electron state of the cation in an oxide crystal field. Therefore, crystal (ionic) radii
are not quasi-classical approximations of electron densities but projections of discrete sets
of valence electron states onto spherically symmetric spatial averages. This relation does
not violate the orthogonality of the orbital states because the spherical symmetry is not
applied to the energy states but the result of the spatial integration of manifold projections
of these states into the configurational space. This statement defines the crystal and ionic
radii, respectively. The discrete integer parameters m and N are functions of the sets of
allowed states under this symmetry condition (Figure 2).

Based on the new relation (1) it can be shown that pressure increases coordination
and, in absence of decomposition or a valence transition, drives toward pressure-induced
metallization. In the 0–140 GPa regime Ba exhibits a pressure dependence equal to Mg in
{12}-fold coordination and from the limited available data it appears that ionic compress-
ibility is more determined by the cation charge rather than the nuclear charge number
and coordination. The observed ionic compressibilities of Mg, Si, and Ba are markedly
less that those predicted for non-bonding radii [12]. Overall, the observed ionic radial
compressibilities range around 0.4 to 2·10−23 m3/N.

For mantle geochemistry these findings imply that incompatible elements remain
so for the deep mantle main minerals bridgmanite and periclase. Consequently, these
elements are predominantly hosted by davemaoite, which is solidus phase for lower mantle
peridotite and contains Ca as constituent element. Hence, davemaoite retains Ba and
probably other high-Z cations of equivalent behaviour rather that they enter an ascending
melt. The scheme of upper mantle geochemistry where incompatibility equals depletion
upon partial melting is therefore reversed for the lower mantle.
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